Electron Spin Coherence in Optically Excited States of Rare-Earth Ions for Microwave to Optical Quantum Transducers

Authors

Sacha Welinski, Philip J. T. Woodburn, Nikolai Lauk, Rufus L. Cone, Christoph Simon, Philippe Goldner, Charles W. Thiel

Publication

Physical Review Letters

Abstract

Efficient and reversible optical to microwave transducers are required for entanglement transfer between superconducting qubits and light in quantum networks. Rare-earth-doped crystals with narrow optical and spin transitions are a promising system for enabling these devices. Current resonant transduction approaches use ground-state electron spin transitions that have coherence lifetimes often limited by spin flip-flop processes and spectral diffusion, even at very low temperatures. We investigate spin coherence in an optically excited state of an Er3+ : Y 2 SiO 5 crystal at temperatures from 1.6 to 3.5 K for a low 8.7 mT magnetic field compatible with superconducting resonators. Spin coherence and population lifetimes of up to 1.6?s and 1.2 ms, respectively, are measured by optically detected spin echo experiments. Analysis of decoherence processes suggest that ms coherence can be reached at lower temperatures for the excited-state spins, whereas ground-state spin coherence would be limited to a few ?s due to resonant interactions with other Er3+ spins in the lattice and greater instantaneous spectral diffusion from the radio-frequency control pulses. We propose a quantum transducer scheme with potential for close to unity efficiency that exploits the advantages offered by spin states of the optically excited electronic energy levels.

Links

 

How is this information collected?

This collection of Montana State authored publications is collected by the Library to highlight the achievements of Montana State researchers and more fully understand the research output of the University. They use a number of resources to pull together as complete a list as possible and understand that there may be publications that are missed. If you note the omission of a current publication or want to know more about the collection and display of this information email Leila Sterman.