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ABSTRACT

Digital models of various audio devices are useful for simulating audio processing effects, but developing good
models of nonlinear systems can be challenging. This paper reports on the in-progress work of determining
attributes of black-box audio devices using Volterra series modeling techniques. In general, modeling an audio
effect requires determination of whether the system is linear or nonlinear, time-invariant or –variant, and whether it
has memory. For nonlinear systems, we must determine the degree of nonlinearity of the system, and the required
parameters of a suitable model. We explain our work in making educated guesses about the order of nonlinearity in
a memoryless system, and then discuss the extension to nonlinear systems with memory.

1 Introduction

With the proliferation of digital signal processing in
both software and embedded hardware implementa-
tions, emulating existing audio systems is a natural
curiosity. There is no shortage of evidence to support
this: consider the contemporary work on modeling non-
linear audio systems such as distortion pedals, guitar
amplifiers, and audio limiters [1, 2, 3]. If an audio
system of interest exhibits linear, time-invariant (LTI)
behavior, methods such as periodic impulse excitation,
maximum-length sequences, and time-delay spectrom-
etry exist to represent the system with either its im-
pulse response or frequency response function [4, 5, 6].
However, many interesting audio devices exhibit non-
linear and/or time-varying properties, rendering the
well-known LTI techniques ineffective. In particular,

this paper is concerned with nonlinear system modeling
considerations.

In theory, the ability to abstract audio devices sounds
convenient, but what goes into the process of deter-
mining a digital model? The process of replicating
a given system depends on our prior knowledge of
its inner workings. At one extreme, if we completely
know the electronic circuit of a device we can create a
parametric or "white box" model of the effect; on the
other hand, if we know nothing about the device, we
employ a variety of "black box" modeling techniques,
which mandate a degree of assumptions [1]. Suppos-
ing an optimal solution exists within our chosen model
framework, we seek to minimize the error between the
actual and modeled system. To improve our model
it is helpful to identify basic system properties such
as memory, linearity, time-invariance, and causality.
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Assuming time-invariance, stability, causality and no
memory, by benchmarking the audio device-under-test
(DUT) against a linear Volterra series model of the
system, we hope to glean information regarding the
system’s degree of nonlinearity. With this information,
we hope to take a more guided approach to determin-
ing a Volterra series model resulting in a lower overall
mean-square-error compared to the DUT.

The organization of this paper is as follows. First, we
provide a review of basic properties from systems the-
ory, providing context when dealing with audio sys-
tems. Second, we present a summary of approximat-
ing audio systems with Volterra series models, and
discuss considerations when modeling causal, stable,
time-invariant, and memoryless systems that may be
nonlinear. Then, we generate linear and nonlinear mod-
els of known systems in an attempt to establish rules of
thumb in deciding degree of nonlinearity. Finally, we
summarize the practical considerations and limitations
of this approach and how it may apply to real-world
systems.

2 Black Box Model Considerations

To aid discussion of system modeling, we first review
the key system properties of memory, linearity, time-
invariance, causality, and stability from [7]. We wish
to contrast the conveniences of modeling linear time-
invariant systems with the difficulties of modeling non-
linear systems. If a system is linear and time-invariant
(LTI), it can be represented by an impulse response or
frequency response function. However, we will see that
this framework breaks down if linearity is violated.

2.1 Basic System Properties and their
implications

Memory: In a system with memory, there exists some
mechanism to retain energy or information such as
a capacitor, kinetic energy, or digital memory. The
instantaneous output of a system with memory may
be a function of the present input as well as past or
future inputs. In contrast, the output of a memoryless
system is only dependent on the input at the present
time. Example audio systems with memory include
reverberation units or a filter, whereas a memoryless
system could be a simple gain block.

Linearity: A linear system obeys the superposition prin-
ciple [7]. When considering sinusoidal input signals, a

linear system’s output will be some linear combination
or superposition of the input frequencies, whereas a
nonlinear system may include nonlinear combinations
of the input frequencies. A fuzz pedal and tube ampli-
fier are known to exhibit nonlinear behavior, manifested
by harmonic distortion [8].

Time-invariance: In a time-invariant system, a time-
shift of the input signal results in the same time-shift of
the output signal. Intuitively, the state or settings of a
time-varying system vary with time. While a wah pedal
at a fixed position can be viewed as time-invariant, mod-
ulating the pedal position manifests the time-varying
nature of the system.

Causality: A causal system only operates on present
and past inputs. All physical systems are causal as they
cannot anticipate future inputs. A real-time pitch shifter
is a causal system due to only operating on present and
past inputs, whereas a real-time implementation of an
audio time-reversal would require knowledge of future
inputs that have not yet occured.

Stability: A system is stable if inputs with bounded
amplitude produce outputs whose amplitude is also
bounded; conversely, an unstable system may produce
outputs with unbounded amplitude. In an orientation
lending to feedback, a microphone connected to an
amplifier and loudspeaker is example of an unstable
system resulting in an unbounded growth of the output
amplitude. A stable audio system could be the impulse
response of a room, whose total acoustic energy decays
with each wave reflection/absorption.

2.2 Audio System Assumptions

In this paper, we make the assumption that our systems
are causal, stable, time-invariant, and memoryless, but
may be linear or nonlinear. In the case of a nonlinear
system with memory, a suitable black box framework
is the Volterra series representation [9]. An example
memoryless nonlinear system is that of a Taylor series
expansion [8]; we demonstrate that this type of sys-
tem may be modeled by the Volterra series, which is
essentially a Taylor series with memory [10].

3 Volterra series modeling approach

Schetzen [11] gives an illuminating presentation of
the Wiener and Volterra theories of nonlinear systems,
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which are both ways of relating the output of a time-
invariant system y(t) to an input x(t). While it is pos-
sible and valid to produce a Wiener or Volterra series
model given a characteristic equation for a known sys-
tem, our concern here is with the empirical determi-
nation of a "black box" Volterra series model based
on a cross-correlation measurement technique, known
as the Lee-Schetzen method. In brief, this method ex-
ploits statistical properties of white Gaussian noise to
isolate and measure Wiener kernels corresponding to
each degree of nonlinearity of a system. It is important
to note that the measured Wiener kernels are depen-
dent on the variance of the identification signal. The
Wiener kernels can be thought of as impulse responses
of various dimensions from zero (DC term), one (lin-
ear impulse response), up to infinity. The nonlinear
behavior of a system is captured by the n-dimensional
impulse responses for n ≥ 2. We then obtain the ho-
mogeneous Volterra kernels by combining all Wiener
kernels of the same order. The total response of a sys-
tem can be approximated by infinite order and memory
of Wiener/Volterra kernels, but in practice we must
truncate order and memory. The Volterra series repre-
sentation does have limitations; for example, it is not
suited for modeling extreme nonlinearities such as hard
clipping [5, 8].

The aforementioned Lee-Schetzen method is a an im-
portant aspect in determing the Volterra kernels of a
black box system, and it is still being improved upon
[9]. For example, Orcioni et al. [12] apply their novel
multivariance approach to determine models of tube
amplifiers, demonstrating the approach’s relative root-
mean-square error (RRMSE) advantage when com-
pared to the single-variance approach of the classic
Lee-Schetzen method [13]. Whereas these improve-
ments yield lower error measurements by a different
approach to the implementation, we seek to improve
model error by establishing guidelines for choosing
model order and memory length. Our hope is that by
combining both approaches, we can produce more ac-
curate models.

3.1 Parameters when determining a Volterra
series model

Once again, the systems we are concerned with here
are causal, stable, time-invariant, and memoryless, with
no assumption made about linearity. When applying
the cross-correlation technique to determine a Volterra

series model, we have several parameters to choose:
length of identification signal, identification signal vari-
ance, Volterra series model order, and model memory.

Input signal length is important as the Volterra theory
is closely linked to the Wiener theory of nonlinear
systems. Measurement of the Wiener kernels, which
the Volterra kernels are based on, relies on Wiener G-
functionals that are orthogonal when the input signal
has a white Gaussian distribution [11]. In practice,
the longer our test signal, the closer we approach an
ideal Gaussian distribution resulting in better kernel
estimation.

Input signal variance results in the excitation of dif-
ferent levels of nonlinearity. Consider an arctangent
function: for low input amplitudes, the function may be
approximated as linear. As input amplitude increases,
the nonlinear behavior of the function manifests as the
output is no longer a homogeneous scaling of the input.
Thus, the choice of input variance of the identification
signal will affect the linear or nonlinear excitation of
the system.

Model order refers to the highest-order Volterra ker-
nel we wish to identify. We want to strike a balance
between low orders and low model error, as compu-
tational cost increases exponentially with additional
higher-order kernels [12].

Model memory refers to the energy or information stor-
age aspect of the Volterra series model. A system with
finite memory may be compared to a system with a fi-
nite impulse response. For a system with a memoryless
nonlinearity, we only need one value for each kernel,
as the instantaneous output is only dependent on the
instantaneous input. This is akin to a finite impulse
response with only one coefficient. For systems with
memory, determining the memory for kernel is a neces-
sary step to optimizing our model. As mentioned in the
previous subsection, kernels may be thought of as the
n-dimensional impulse response of the system. Just as
with measuring a linear impulse response, capturing the
total impulse response for all dimensions is important
to preserving the nature of the nonlinear system.

3.2 Determining system properties given a
Volterra series model

As mentioned at the beginning of this section, model-
ing nonlinear audio systems with the Volterra series is
well-known. In this subsection we will discuss how to
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make educated guesses about the linearity and mem-
ory of the DUT, which influence our choices when
creating a Volterra series model. As mentioned be-
fore, we assume only that the system be causal, stable,
time-invariant, and possibly nonlinear. Given some
known stimulus, we use the relative root mean square
error metric (RRMSE) in Equation 1 to compare the
responses of the DUT and our model, yi and ŷi, re-
spectively. Qualitative metrics such as human factors
listening tests are also important, but are beyond the
scope of this paper.

RRMSE =

√
∑

N
i=0 (yi − ŷi)2√
∑

N
i=0 (yi)2

(1)

We first wish to answer the question, “is the system lin-
ear?” By comparing the harmonic content of the input
to and output from the DUT, total harmonic distortion
(THD) is a familiar way to check whether our system
adheres to superposition, as a linear system should have
no harmonic distortion [8]. Our proposed approach is
to create various linear Volterra series models of the
reference system, and to use (1) to quantify model per-
formance against the actual system. Because measured
Volterra kernels depend on the variance of the measure-
ment signal, we will use multiple variances to generate
multiple models. We predict that as RRMSE values
increase for a given model, the linear model becomes
worse at approximating the nonlinear behavior of the
reference device.

Then, if the system appears to be nonlinear we ask, “to
what extent is the system nonlinear?” For example, if
we know our DUT is a square-law operator, we should
only need up to a second-order Volterra series model.
With black box systems we lack this detailed knowl-
edge, however. By creating multiple linear models of
the DUT using increasing input signal variance, we
can get a rough idea of whether increased variances are
exciting nonlinearities in the system.

[12] gives some guidelines to determining memory
extent of an audio amplifier, which has a symmetric
distribution of kernel values about some peak. To sum-
marize, the first-order kernel is first identified using a
large memory value due to low computation cost. Then,
the significant kernel values are kept by truncating val-
ues below a noise threshold. Higher-order kernels also
have truncated memories based around the peak of the

Fig. 1: Plot of arctan(x) for x = [−10,10]. This sig-
moidal function may be approximated linearly
for small inputs x, but exhibits increasingly non-
linear behavior as x increases.

first-order kernel, to reduce computational complexity.
We focus only on memoryless nonlinearities here; the
extension to systems with memory remains as a future
development.

4 Experiment: Nonlinear, memoryless
system

As mentioned, we seek to establish some guidelines
for assessing the degree of nonlinearity of a system
by conducting experiments with a known memoryless
nonlinearity. Our hope is that by developing insights
from a known system in a controlled context, we will
have more confidence in approaching unknown, real-
world black box systems.

For our memoryless, time-invariant nonlinear system
we choose y = arctan(x). The response of this sig-
moidal function becomes increasingly nonlinear as in-
put amplitude increases; see Figure 1. Though our
reference system is primitive compared to a real phys-
ical system, we feel this choice is justified as we see
the contemporary use of the hyperbolic tangent func-
tion – also a sigmoidal function – for emulating the
nonlinear behavior of distortion and guitar amplifier
audio systems [1]. With a reference system decided,
we next choose our experimental parameters: degree
of nonlinearity of the Volterra series model, input sig-
nal duration in samples, input signal variances, and
validation signal variances.
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4.1 Experiment parameters

The first parameter we control is the degree of non-
linearity of the Volterra series model. We begin by
creating a first-order (linear) Volterra series model of
the system, then subsequently increase the order of our
models by one until we reach a fourth-degree model.
This is to see if adding nonlinear terms offers improve-
ment over a purely linear approximation.

Secondly, input signal duration is important because
the measurement of Wiener and thus Volterra ker-
nels depends on identification signals with ideal white
Gaussian distributions [11]. Practically speaking, we
can never get a perfect white Gaussian distribution
with finite-length sequences, but the approximation im-
proves as we include more samples. We choose 106

samples for our input signal length, as this seems to be
a good balance between computation time and nearly
white Gaussian distribution of our finite data.

Our third parameter is the variance of our white Gaus-
sian identification signal, σ2

id . This parameter directly
influences our measured kernel values. For instance,
from [11] consider the expression for the first-order ker-
nel k1(τ) as a function of σ2

id and the time-average of
the reference system response y(t) and “n-dimensional
delayed input” y1(t):

k1(τ) =
1

σ2
id

y(t)y1(t). (2)

Higher-order kernels are also variance-dependent; see
[13] for a thorough discussion of such expressions. To
model the reference system under various input con-
ditions, we will use a logarithmic range of σ2

id values
from 0.01 to 5.

Fourth and finally, the variance parameter σ2
val refers to

the variance of the signals used to validate each model.
As noted in [9], a Volterra series kernel performs best
when the input signal has a variance nearly that of the
signal used to measure the kernel. RRMSE values will
be computed for each combination of σ2

id and σ2
val ; we

expect to see local minima in RRMSE where these vari-
ances are a close match. Our validation signal variance
ranges logarithmically between 0.001 and 50; note that
this range covers more variances than than the identifi-
cation signal variance, to simulate testing models with
variances beyond those expected.

Fig. 2: RRMSE values for linear approximations of
arctan(x), each obtained as a first-order memo-
ryless Volterra kernel. A minimum RRMSE of
8.17×10−5 occurs where σ2

id , σ2
val = 0.01.

4.2 Experiment method

A single test case consists of a choice of model order,
identification signal variance σ2

id , and validation signal
variance σ2

val . Our output from each test case is an
RRMSE which compares our reference system against
the generated model with the given order, σ2

id , and
σ2

val . Within our range of experimental parameters we
generate Volterra series models with the Lee-Schetzen
cross-correlation method by adapting code provided in
[9].

4.3 Experimental results: Linear model

In Figure 2 we see that the global minimum of our
linear model occurs where input signal variance σ2

id =
0.01 evaluated with a signal variance σ2

val = 0.01. This
point is marked with a circle; the RRMSE here is
8.17×10−5. As we move along the axis labelled σ2

val ,
the RRMSE increases. This is because higher variances
excite the nonlinear portion of the function more than
lower variances used to measure the linear Volterra ker-
nel. Note that beyond a certain threshold, we manually
clipped the plot where RRMSE ≥ 1. Errors greater
than or equal to 1, according to our RRMSE equation
(1), suggest a poor-fitting model. Corroborating with
the findings in [9], an underside view of Figure 2 (not
shown) indicates local minima where σ2

id = σ2
val . This

phenomenon suggests that a better linear approxima-
tion exists for validation input signals whose variance
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Fig. 3: Percentage of test cases with lower RRMSE
compared against the linear model and next-
lowest order model. Model order indicated by
color code in legend.

is greater than that corresponding to the absolute mini-
mum RRMSE.

4.4 Experimental results: Nonlinear models

With linear models established for each σ2
id , we proceed

to identify 2nd-, 3rd-, and 4th-order nonlinear Volterra
series models. Instead of focusing on where global min-
ima occur in each model, we are more concerned with
whether the nonlinear model performs better than the
linear model. As we create models that include higher-
order Volterra kernels, we want a way to benchmark
against our linear model.

For each test case (that is, each combination of
σ2

id and σ2
val), we first find the RRMSE for the

various-ordered models. Then, we compare this
RRMSE, RRMSENonlinear, with that of the linear model,
RRMSELinear. This results in a ∆RRMSE measure; see
Equation 3. Negative ∆RRMSE values are better, in-
dicating that the nonlinear model error is less than the
linear model error. To indicate how often a nonlinear
model performs better, we compute the percentage of
test cases with negative ∆RRMSE’s, shown in Figure 3.
To get a broad idea of how much the nonlinear model
improves upon the linear model, we take the sample
mean of all negative ∆RRMSE’s. For each nonlinear
model comparison, we provide identical difference met-
rics against both the linear model and the next-lowest
degree model’s RRMSE values, respectively shown

Fig. 4: Sample mean of negative ∆RRMSE test cases
for each nonlinear model, compared against
the linear model and next-lowest order model.
Model order indicated by color code in legend.

in the left and right bar groups. For example, the 3rd-
degree model is compared against both the linear model
and the 2nd-degree model, and so on. This helps give
an idea of the relative performance of each subsequent
model.

∆RRMSE = RRMSENonlinear −RRMSELinear (3)

5 Discussion

From the left bar groups in Figures 3-4 we can see
that adding a 2nd-order term offers little RRMSE im-
provement over the linear model, on the order of 10−7.
We see that both the 3rd- and 4th-order models give a
∆RRMSE of about -0.09. Because the improvement
upon the linear model offered by the 3rd- and 4th-order
models is so similar, in the right bar group we show
a comparison of each model order against the next-
lowest order model. Although the sample mean of
the ∆RRMSE for the 3rd- and 4th-order models was
similar, we see that adding the 4th order term offers
little improvement over the 3rd-order term, on the or-
der of 10−5. The ∆RRMSE for the 2nd-order model
is the same in both bar groups because of the com-
parison against the linear model in both cases. The
disparity between the 2nd- and 3rd-order model perfor-
mance highlights the benefit of adding the 3rd-order
term. Thus, if given the choice between model orders
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1-4, we suspect that a 3rd-order model may best ap-
proximate the reference system. This is likely due to
the Taylor series approximation for arctan(x) having
only odd-order terms.

Taking a step back, the process of determining the
various-ordered, memoryless Volterra series models of
the reference system amounts to empirically determin-
ing a generic Taylor series approximation of the form
y(t) = ∑

N
n=0 anxn(t), where N is our highest model or-

der, and the Taylor series coefficients an are a function
of input variance σ2

id . In a practical modeling situa-
tion, the engineer is tasked with deciding what is “good
enough” for a given model. This Volterra series model-
ing process is equally valid if the system has memory,
but we limited our focus to a memoryless nonlinearity.
As mentioned earlier, including higher-order kernels
may improve RRMSE at the expense of computation
cost, especially when the kernels include memory.

6 Conclusion

Developing models of nonlinear audio systems can be
challenging, especially if the degree of nonlinearity is
unknown. We offer one approach to making educated
guesses about the degree of nonlinearity of a system
by comparing various measured Volterra series mod-
els against the reference system. This was done by
comparing 2nd-, 3rd-, and 4th-order Volterra series
models against a linear model and against each next-
lowest order model to judge incremental improvements.
For the memoryless, nonlinear reference system arc-
tan(x), we saw that between orders 1-4, a 3rd-order
model seemed to offer the best approximation in a rela-
tive root-mean-square error (RRMSE) sense, and that
even-order nonlinear terms offered relatively low im-
provement. We attribute these observations to the fact
that an ideal Taylor series approximation of the arctan
function uses only odd-order terms.

Future extensions of the work include considering non-
linear systems with memory; that is, systems with fi-
nite impulse responses with more than one coefficient.
As model order increases, the presence of memory
causes computation time to increase exponentially. To
address this, we might draw inspiration from [1] by
approximating finite impulse responses with iteratively-
determined second-order IIR filters. Also, we could
combine our experimental techniques with the mul-
tivariance approach described in [9]. Although the
compartive advantage of a multivariance model over a

single-variance model has been shown, we theorize that
the ideal choice of σ2

id for each Volterra kernel might
be found experimentally to give an even better multi-
variance Volterra series model. Lastly, though our error
metric was quantitative, we acknowledge the impor-
tance of subjective listening tests, as a better RRMSE
score does not necessarily equate to better human per-
ception [2].
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