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ABSTRACT 
 
Table look-up (or wavetable) synthesis methods have been widely used for many years in music synthesizers.  
Recently wavetable music synthesis has received new interest in the context of mobile applications such as 
personalized ring tones and pager notification signals.  The limited amount of storage and processing available in 
such mobile devices makes the use of compressed wavetable data desirable.  In this paper several issues related to 
wavetable compression are described and an efficient compression/decompression method is proposed for reducing 
the size of wavetable data while maintaining loop continuity and timbral quality. 
 
 
1. INTRODUCTION 
Digital table-lookup synthesis has been widely used 
in music synthesis applications [1, 2, 3].  In its most 
basic form, a single cycle of the desired waveform is 
digitized and then simply played back repeatedly 
(looped) to create a sustained signal.  In order to 
create musically interesting synthesized signals it is 
necessary to have a set of stored waveform tables that 
correspond to sounds from a variety of musical 
instruments, or from different pitch and amplitude 
ranges of the same instrument.  The size of the set of 
lookup tables can become quite large if a wide range 
of timbres at a high level of quality is desired, and the 
complexity of selecting, manipulating, and possibly 
cross-fading various tables in real time can be 

significant.  Nonetheless, the table lookup technique 
has been employed in many commercial products and 
computer music synthesis systems. 
 
Recently there has been renewed interest in the use of 
stored waveform music synthesis for personalized 
ring and page tones in mobile telephony [4].  The 
extremely limited amount of storage, transmission 
bandwidth, and available computation, not to 
mention the prevalent cost-reduction pressure of the 
competitive marketplace, indicates the need for a 
simple and efficient means to reduce the size of 
stored wavetables while still allowing low 
complexity decompression. 
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In order to achieve a reduction in the storage required 
for the wavetable data, the number of bits used to 
represent each sample must be reduced.  It is, of 
course, desirable to perform the bit rate reduction 
losslessly so that the original wavetable can be 
recovered exactly from the compressed data.  
However, to achieve a useful data compression factor 
and minimal computation it is helpful to consider a 
quantized (lossy) representation, yet still meet the 
loop continuity and Nyquist constraints. 
 
The method proposed in this paper is to use a 
nonuniformly quantized differential pulse-code 
modulation (DPCM) procedure.  The difference 
between the current wavetable sample and the next 
sample is calculated then quantized with a 
nonuniform characteristic, such as A-law, µ-law, or 
logarithmic [5].  This allows more resolution for 
small signal details and relatively less accuracy for 
large signal changes.  The output is then recovered by 
decoding the sample differences and summing them 
to obtain the output waveform. 
 
Due to the quantization process, this procedure is a 
many-to-one mapping and is therefore lossy.  As with 
any lossy coding operation the discrepancy between 
the original signal and the reconstructed signal may 
or may not be objectionable depending upon the 
nature of the signals and the application context.  
However, the use of lossy coding for looped 
wavetables poses several peculiar problems.  First, 
the reconstruction obtained from the quantized 
differential data may not allow a “perfect” loop 
(amplitude match at the end points), which may cause 
an audible click or DC buildup as the waveform is 
cycled.  Second, the introduction of quantization 
errors into the wavetable data occurs after the 
antialiasing (or resampling) filters that are used by 
the sound designer in the looping process, and the 
resulting error signal is unlikely to be properly 
bandlimited, resulting in unintended aliasing in the 
wavetable signal.  Finally, the use of common 
statistical procedures such as dither and noise 
feedback to ameliorate the audible effects of the 
quantizer are not appropriate for wavetable coding, 
since the added signals are “frozen” into the stored 
wavetable and looped, rather than being statistically 
independent as in ordinary digital audio processing. 
 
The remaining sections of this paper are organized as 
follows.  First, a summary of wavetable principles 
and differential encoding is given.  Next, the 
proposed low-complexity encode/decode scheme for 
wavetable data is presented.  Finally, several 
variations of the proposed technique are discussed. 
 

2. WAVETABLE SYNTHESIS 
A wavetable or stored-waveform synthesizer operates 
by repeatedly sending an array of waveform 
samples—the wavetable—through a digital-to-analog 
(D/A) converter.  The basic schema of a wavetable 
synthesizer for N=32 is shown in Figure 1. 
 

 
It is generally necessary to be able to synthesize a 
periodic waveform of arbitrary length, so the 
wavetable is often filled with one or more cycles of a 
periodic waveform which is then repeatedly cycled, 
or looped, as long as necessary.  If the array of 
samples is of length N and the D/A converter is 
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Index Sample 
0 0.000 
1 0.313 
2 0.525 
3 0.591 
4 0.544 
5 0.476 
6 0.480 
7 0.591 
8 0.769 
9 0.918 
10 0.941 
11 0.803 
12 0.544 
13 0.264 
14 0.064 
15 -0.013 
16 0.000 
17 0.013 
18 -0.064 
19 -0.264 
20 -0.544 
21 -0.803 
22 -0.941 
23 -0.918 
24 -0.769 
25 -0.591 
26 -0.480 
27 -0.476 
28 -0.544 
29 -0.591 
30 -0.525 
31 -0.313 

 

Figure 1:  Example wavetable of length 
N=32.  Look-Up Index (LUI) and Sample 
Increment (SI) are rational numbers used 
to set the table repetition frequency. 

LUI : Integer LUI : Fraction. 
SI : Integer SI : Fraction . 

Current Index = LUI : Integer 
Next LUI = (LUI + SI) modulo N 
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clocked at a fixed rate fs samples per second, it 
requires N/fs seconds to read every sample from the 
table.  This corresponds to a waveform frequency of 
fs/N Hz, assuming the table contains just one 
waveform cycle. 
 

2.1. Resampling and Interpolation 
For music synthesis it is usually necessary to produce 
waveforms with differing and perhaps time-varying 
fundamental frequencies, and certainly frequencies 
that are not integer divisors (fs/N) of the sample 
frequency [6].  This requires sample rate conversion 
of the wavetable data, meaning that waveform 
samples in between the given samples of the 
wavetable will need to be interpolated.  One common 
way to keep track of the interpolation is to define a 
sample increment value (integer and fraction) that 
indicates the required hop through the table in terms 
of the original fs and table length N. 
 
  SI = N·(fdesired/fs) 
 
The location within the table where interpolation is to 
occur is the lookup index (LUI), which is computed 
recursively by 
 
  LUI[n] = { LUI[n-1] + SI } mod N 
 
where “mod N” indicates a mathematical integer 
modulus operation.  This simply implies that LUI 
wraps around the end of the wavetable.  Since LUI is 
in general a real number and the stored wavetable 
samples correspond to integer indices, the wavetable 
value at LUI can be interpolated in a number of ways, 
such as rounding or truncating LUI to the nearest 
integer, using linear interpolation, or using some 
higher-order interpolation function.  For example, 
linear interpolation involves the two wavetable 
samples adjacent to LUI, namely w{(int) LUI[n]} and 
w{(1+(int) LUI[n])mod N}, and can be accomplished 
by: 
 

 
where (int) and (fract) indicate the integer part and 
fractional part, respectively, of LUI. 
 
Higher-order interpolation can provide a closer 
approximation to bandlimited interpolation of the 

wavetable, at the expense of additional computation:  
more than the two adjacent wavetable samples are 
required for a higher-order structure. 
 
There are two important implications of the 
resampling/interpolation procedure used in the 
wavetable synthesizer.  First, the resampling process 
condenses or expands the spectrum of the signal 
stored in the wavetable—analogous to a tape being 
played faster or slower—and this can cause timbral 
changes (formant shifts) that are usually undesirable.  
Second, the resampling process may introduce 
aliasing if the interpolation is not strictly bandlimited 
or if the wavetable is critically sampled to begin with.  
Since it is advantageous to minimize the size (length) 
of the wavetable for practical reasons, there is a 
tradeoff between using a longer wavetable with 
oversampled data to allow easier resampling, or using 
a shorter wavetable with critically sampled data to 
conserve storage space. 
 

2.2. Other Considerations 
In addition to the cyclical wavetable described above, 
it is common in practice to provide additional 
features for enhancing the flexibility and sound 
quality of the wavetable procedure.  One important 
feature is to allow an attack waveform to be spliced 
in front of the cyclical wavetable, as depicted in 
Figure 2. 

 
The attack portion is played once at the onset of the 
musical note, while the cyclical wavetable is used to 
sustain the length of the note as necessary.  The use 

Attack Segment 

Loop 
Segment

Figure 2:  Example of a wavetable with a 
one-shot attack portion and a sustaining 
loop segment. 
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of a one-shot attack segment allows for more realistic 
and/or musically interesting timbres. 
 
Another common feature is to provide an amplitude 
envelope function to create a smoothly varying onset 
and release of the wavetable signal.  More 
sophisticated wavetable synthesizers may include 
frequency selective filters, provision for frequency 
vibrato and amplitude tremolo, layering of multiple 
wavetables, elaborate control interfaces, and so forth. 
 
A critical requirement of a successful wavetable 
synthesis system is to have carefully prepared 
wavetable data.  The process of creating the 
wavetable source material and ensuring that the loop 
points are minimally audible must be performed by a 
skilled sound designer. 
 
3. THE WAVETABLE DATA COMPRESSION 

PROBLEM 
In many applications the size of the wavetable data 
for a synthesizer can be problematic.  A set of 
wavetables for a synthesizer supporting the 175 
timbres required by the General MIDI Level 1 (GM1) 
specification [7] is typically at least 1 MB, and for 
high quality applications it may be 4 MB, 12 MB, or 
even more.  Tens of megabytes of storage may not be 
an issue in the context of a modern personal 
computer, but for small, inexpensive, and mobile 
devices such as cell phones or personal digital 
assistants (PDAs) even an 8 MB wavetable data set 
may be more than an order of magnitude too large for 
practical use. 
 
The synthesizer designer has several options for 
decreasing the size of the wavetables, but generally 
this involves a corresponding loss of signal quality.  
Some common strategies to reduce the wavetable 
storage size are the following. 

 NEW YORK, 2003 OCTOBER 10-13 
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 The length of the one-shot attack sections 

can be compromised or eliminated. 

 The same wavetable data can be re-used for 
many different timbres, either without 
modification or with real time changes to 
disguise the data using amplitude envelopes, 
filter settings, etc. 

 The synthesizer can be run at a lower sample 
rate, meaning fewer stored samples per 
cycle of the waveforms and a lower audio 
bandwidth. 

 The number of bits used to represent each 
sample in the wavetables can be reduced, 

such as going from 16-bits per sample to 12-
bits or 8-bits per sample. 

 The wavetable data can be encoded using a 
lossless or lossy method. 

 
The latter strategy—a simple wavetable data 
compression/decompression method—can be quite 
helpful to reduce the required data storage size while 
maintaining as much signal quality as possible.  The 
proposed low-complexity wavetable coding 
procedure is described next. 
 
4. DIFFERENTIAL REPRESENTATION 
Many musically useful signals have a lowpass 
characteristic:  the spectral level is a declining 
function of frequency.  One feature of this type of 
signal is a broad autocorrelation function due to the 
relatively slow amplitude variations of the lowpass 
waveform.  The high sample-to-sample correlation 
means that the adjacent sample difference signal 
d[n] = x[n] – x[n-1] will have a smaller variance than 
the signal x[n] itself.  In other words, the signal is at 
least somewhat predictable from one sample to the 
next.  We can exploit this redundancy to reduce the 
required bit rate, and thereby represent the signal 
with fewer total bits [5]. 
 
If we accumulate (sum) the sequence d[n] we can 
compute the reconstructed signal 
xr[n] = d[n] + xr[n-1].  If d[n] is received without 
error or loss, then xr[n] = x[n], as depicted in 
Figure 3. 
 

z-1

x[n] 

x[n-1] 

d[n]=x[n]-x[n-1] +
-

z-1

+

+

xr[n-1] 

xr[n] = d[n] + xr[n-1] = x[n] d[n] 

Figure 3:  Simple differential encoder and 
decoder without quantization.  The z-1 
indicates a single sample delay. 
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Although some data reduction is possible due to the 
difference signal d[n] being of smaller variance (or 
average amplitude) than x[n], it is typically necessary 
to reduce the number of bits per sample still further 
to obtain a useful amount of compression (e.g., 30-
50% reduction).  The usual data reduction approaches 
for a differential waveform coder are to attempt 
further redundancy reduction by improving the 
predictor, and to quantize the difference signal more 
coarsely by allowing lossy coding ( xr[n] ≠ x[n] ).  
For the wavetable data compression task it is 
necessary to keep the decompression computation as 
quick and simple as possible while still obtaining 
satisfactory signal quality.  The proposed 
compression method therefore uses the coarse 
quantization approach. 
 
Since the difference signal d[n] is to be quantized 
more coarsely—becoming dq[n]—the reconstructed 
signal xr[n] = Q-1{dq[n]} + xr[n-1] is based only on 
the quantized difference values and therefore the 
coarse quantization of one step in the difference 
sequence directly influences the reconstructed signal 
thereafter.  Rather than the simple differential 
encoder of Figure 3, a better approach to help track 
the discrepancy between x[n] and xr[n] is to quantize 
the difference between x[n] and xr[n-1] and use this 
as the encoded stream, as shown in Figure 4. 

Thus, the encoder and the decoder will track each 
other assuming there are no errors in the storage and 
retrieval process. 
 
It should be noted that if extra computation is 
available it may indeed be possible to improve signal 
quality by using a higher-order predictor in the 
differential quantization feedback path. 
 
It is clearly an advantage to minimize the audible 
difference between the original wavetable samples 
x[n] and the reconstructed wavetable xr[n].  In the 
proposed wavetable compression method a non-
uniform quantizer Q is used to obtain essentially 
lossless reconstruction when d[n] is small, while 
allowing some discrepancy if d[n] is large.  A variety 
of non-uniform quantizers can be selected.  Common 
choices include A-law, µ-law, or logarithmic. 
 

4.1. Wavetable Compression Details 
The use of a lossy differential representation 
introduces distortion.  Conventional audio coders 
often treat the coding distortion as an additive 
uncorrelated white noise process on a sample by 
sample basis [5].  However, for wavetable 
compression the coding distortion is embedded in the 
decoded waveform and is therefore looped over and 
over along with the desired signal itself, so simple 
additive noise models are inappropriate 
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The distortion components will also introduce 
aliasing when the wavetable is resampled by the 
synthesizer to change the musical pitch.  Moreover, 
the correlation between the distortion components 
and the desired waveform can result in audible noise 
modulation when the sample increment is changed 
for vibrato or other musical pitch effects.  It is also 
important to treat the end-of-loop condition carefully 
so that no discontinuity is introduced at the loop 
boundary. 
 
These special considerations require extra care during 
the sound design phase.  In particular, the sound 
designer must be aware of the audible characteristics 
introduced by the differential encoding process and 
choose wavetables that reflect the strengths and 
weaknesses of the encoding system. 
 
5. IMPLEMENTATION FRAMEWORK 
Creating a wavetable sample set requires several 
steps.  One common approach is to obtain recordings 
of the desired musical timbre, select appropriate 
attack and sustain (loop) segments, and apply sample 
rate conversion and amplitude quantization to 

Q 

z-1 

dq[n] x[n] 

xr[n-1] 

d[n] 

+ 

+ 

+ 
- 

xr[n] 

Q-1

z-1 

+ 

+ 

xr[n-1] 

xr[n] = Q-1{dq[n]} + xr[n-1] ≈ x[n] 
dq[n] 

Q-1 

Figure 4:  Differential encoder and 
decoder with a quantizer (Q).  Q reduces 
the number of bits required to represent 
d[n], causing a discrepancy between x[n] 
and the recovered signal xr[n]. 
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achieve a reasonable compromise between wavetable 
length, word size, and susceptibility to aliasing. 
 

5.1. The Encoding Process 
The encoding process is expected to be done once by 
a skilled sound designer “at the factory” rather than 
by the user in the field.  Thus, it is feasible to expend 
some effort to adjust the precise sampling rate and 
amplitude to minimize the encoding error and 
distortion introduced by the lossy differential 
wavetable representation.  The sound designer must 
be prepared to evaluate the intermediate results and 
adjust the waveform parameters as necessary.   
 
An example of the wavetable encoding process is 
shown in Figure 5.  First, the initial (unencoded) 
value of the wavetable is stored.  Next, the first 
difference is calculated using the method of Figure 4 
and a non-uniform quantizer, Q.  The quantizer can 

be implemented in a variety of forms.  For this 
example an explicit logarithmic formula is shown, 
although a lookup table could also be used.  The 
sequence of quantized differences is determined and 
the differential (encoded) values are stored.  At the 
end of the encoded wavetable it may be helpful to 
calculate the exact (unencoded) difference between 
the last accumulated wavetable sample and the first 
sample of the loop (see Method 3 below).  If a 
higher-order predictor is used in the encoder, the 
initial values of the internal predictor coefficients 
may also be stored for use by the decoder. 
 

5.2. The Decoding Process 
While the encoding process can involve iterative 
procedures and the services of a skilled sound 
designer, the decoding process must be extremely 
efficient and sufficiently fast to allow real time 
operation.  The precise nature of the decoder may 

Q

z-1

dq[n] x[n] d[n]

+

+

+
- 

Q-1

Sample 0 

Sample 1 

Sample 2 

Sample N-1 

Stored 0 

Coded 1 

Coded 2 

Initialize 

Original 
Wavetable 

Encoded 
Wavetable

Fix-Up 
(optional) 

Coded N-1 

[ ] [ ]{ } [ ]( ) [ ]( ){ }ndKndndQndq 10log5.0floorsgn ⋅+⋅==

[ ]{ } [ ]( ) [ ] Knd
qq

qndndQ /1 10sgn ⋅=−

Figure 5:  Wavetable encoding process using a log-based non-linear quantizer.  The 
coded values have fewer bits of precision than the original samples.  K is a scaling 
constant chosen to provide the desired encoded signal resolution. 
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vary from one product platform to another, but it is 
generally necessary to keep the decoding complexity 
of the same order as the wavetable synthesis process 
itself.  This implies that a lookup table in the decoder 
might be preferable to an algorithm to compute 
exponentials or transcendental functions. 
 
Three possible decoding scenarios are considered 
next. 
 

5.2.1. Method 1:  Full decode buffer. 
The first scenario to be considered for wavetable 
reconstruction is the use of a decode buffer holding 
the entire decoded wavetable.  The encoded data is 
read from storage and the entire wavetable loop is 
decoded into a buffer, or cache, for the synthesizer.  
This method requires enough buffer storage for the 
entire wavetable loop, but only the active wavetable 
data needs to be present.  The decode operation 
occurs only when a new musical note calls for a 
different wavetable. 
 
The advantage of the full decode buffer is that it may 
allow the synthesizer functions to be simplified, since 
the decoding operation is accomplished outside of the 
sample-by-sample computation of the synthesizer.  It 
is also possible for multiple concurrent synthesized 
voices to share the same cached wavetable.  The 
primary disadvantages of this approach are the need 
to delay while the entire wavetable is decoded, and 
the obvious need for substantial buffer memory for 
the active wavetable cache. 
 

5.2.2. Method 2:  Accumulator with loop reset 
In this scenario the synthesizer fetches and decodes 
only sufficient wavetable data “on-the-fly” to 
produce the current block of output samples.  An 
accumulator variable is loaded with the initial 
wavetable value, then each decoded wavetable 
sample is obtained by adding (accumulating) the 
sequence of differential values over the required LUI 
(look-up index) range for the current block.  Once the 
current wavetable block is synthesized the last value 
of the accumulator is saved for use in the next block.  
If LUI traverses the end of the wavetable data, the 
wraparound condition is detected, the accumulator is 
loaded again with the initial wavetable value, and the 
process continues. 
 
The accumulator method has the advantage that 
minimal buffer storage is required.  It also allows the 
synthesis process to begin more rapidly than Method 
1, since only the required wavetable samples need to 
be decoded.  The accumulator method does have the 
disadvantage that the fetch and decoding operations 
must occur over and over as long as the synthesizer 

sustains the note, thereby increasing the average 
computational cost per output sample. 
 
A more subtle disadvantage is that the differential 
encode/decode implies that every encoded wavetable 
element must be fetched and accumulated even if the 
intervening samples are not actually needed by the 
synthesizer.  For example, if the sample increment 
(SI) is greater than unity and only simple linear 
interpolation is performed, certain wavetable samples 
will be skipped as the lookup index hops through the 
wavetable, but the skipped samples must still be 
computed due to the sequential differential 
representation of the wavetable. 
 

5.2.3. Method 3:  Accumulator with loop fix-up 
The third scenario is similar to Method 2, except a 
special “fix-up” value is used rather than resetting the 
decode accumulator at the end of the loop.  The fix-
up value allows a perfect loop accumulation by 
holding the unencoded difference between the 
accumulated differential values at the end of the 
wavetable and the value at the start of the loop.  The 
fix-up is pre-calculated during the encoding process 
and stored at the end of the wavetable.  By reserving 
one of the code words to indicate that the fix-up 
value is to be fetched, the decode/synthesis process 
can be implemented with a symmetrical structure that 
does not require explicit end-of-loop calculations.  
This approach is particularly suited to situations in 
which the sample fetch, decoding, and interpolation 
processes are performed by special-purpose 
hardware. 
 
6. CONCLUDING COMMENTS 
The differential wavetable encoding method can 
achieve data compression factors of 30-50% with 
acceptable quality.  This corresponds to representing 
the original 16-bit audio samples with only 8-bit 
nonlinear differential values, while still achieving 
roughly 12-bit quality. 
 

6.1. Distortion Minimization 

The nonlinear quantizer (e.g., log, µ-law, etc.) may 
make the encoder quite sensitive to the amplitude of 
the original wavetable data.  It has been found that 
performing a systematic search for the minimum 
level of distortion can be helpful.  During the sound 
design process the wavetable data are automatically 
encoded repeatedly with different amplitude scalings 
and the RMS discrepancy between the decoded 
wavetable and the original data is calculated.  The 
amplitude scaling that results in the lowest distortion 
is then stored for use by the synthesizer.  The 
nonlinear nature of the differential quantization 
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process prevents an easy analytical solution, but the 
availability of fast computers makes the iterative 
optimization very feasible.  The use of an objective 
perceptual quality measurement might also be helpful 
for this purpose. 
 

6.2. Log Encoding to Reduce Multiplies 
In typical wavetable synthesis applications the 
samples recovered from the wavetable are 
interpolated using a multiplicative weighting, and 
then further multiplied by a time-varying amplitude 
envelope to simulate the attack and release 
characteristics of the desired timbre.  The 
multiplication operations may be costly in a custom 
silicon implementation due to the size and 
complexity of the multiplier hardware.  However, by 
using a true logarithmic encoding of the wavetable 
differential values and representing the amplitude 
envelope in logarithmic form, it has been shown that 
the interpolation and amplitude scaling can be 
performed by adding the logarithms rather than 
requiring explicit multiplies [8].  An anti-log lookup 
table in the decoder can then be used to reconstruct 
the output waveform. 
 

6.3. Model-based compression 
Another encoding alternative consists of a linear 
prediction model.  In this case the wavetable is 
considered to be a portion of the impulse response of 
a recursive digital filter.  The encoding process 
involves determining the parameters of the filter 
model, selecting a suitable excitation function such as 
a noise burst or impulse, and minimizing the coding 
distortion.  During synthesis the filter coefficients 
and initial filter state are fetched and the excitation 
function is used to regenerate the wavetable.  If the 
complexity of the filter and the excitation function 
can be minimized, the model approach can further 
reduce the storage needed for wavetable synthesis. 
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