
Audio Engineering Society

Convention Paper 5937

Presented at the 115th Convention
2003 October 10–13 New York, New York

This convention paper has been reproduced from the author's advance manuscript, without editing, corrections, or consideration
by the Review Board. The AES takes no responsibility for the contents. Additional papers may be obtained by sending request
and remittance to Audio Engineering Society, 60 East 42nd Street, New York, New York 10165-2520, USA; also see www.aes.org.
All rights reserved. Reproduction of this paper, or any portion thereof, is not permitted without direct permission from the
Journal of the Audio Engineering Society.

Compression and Decompression of
Wavetable Synthesis Data

Robert C. Maher

Dept. of Electrical and Computer Engineering, Montana State University, Bozeman, MT 59717-3780 USA
email: rob.maher@montana.edu

ABSTRACT

Table look-up (or wavetable) synthesis methods have been widely used for many years in music synthesizers.
Recently wavetable music synthesis has received new interest in the context of mobile applications such as
personalized ring tones and pager notification signals. The limited amount of storage and processing available in
such mobile devices makes the use of compressed wavetable data desirable. In this paper several issues related to
wavetable compression are described and an efficient compression/decompression method is proposed for reducing
the size of wavetable data while maintaining loop continuity and timbral quality.

1. INTRODUCTION
Digital table-lookup synthesis has been widely used
in music synthesis applications [1, 2, 3]. In its most
basic form, a single cycle of the desired waveform is
digitized and then simply played back repeatedly
(looped) to create a sustained signal. In order to
create musically interesting synthesized signals it is
necessary to have a set of stored waveform tables that
correspond to sounds from a variety of musical
instruments, or from different pitch and amplitude
ranges of the same instrument. The size of the set of
lookup tables can become quite large if a wide range
of timbres at a high level of quality is desired, and the
complexity of selecting, manipulating, and possibly
cross-fading various tables in real time can be

significant. Nonetheless, the table lookup technique
has been employed in many commercial products and
computer music synthesis systems.

Recently there has been renewed interest in the use of
stored waveform music synthesis for personalized
ring and page tones in mobile telephony [4]. The
extremely limited amount of storage, transmission
bandwidth, and available computation, not to
mention the prevalent cost-reduction pressure of the
competitive marketplace, indicates the need for a
simple and efficient means to reduce the size of
stored wavetables while still allowing low
complexity decompression.

Maher Wavetable Data Compression

In order to achieve a reduction in the storage required
for the wavetable data, the number of bits used to
represent each sample must be reduced. It is, of
course, desirable to perform the bit rate reduction
losslessly so that the original wavetable can be
recovered exactly from the compressed data.
However, to achieve a useful data compression factor
and minimal computation it is helpful to consider a
quantized (lossy) representation, yet still meet the
loop continuity and Nyquist constraints.

The method proposed in this paper is to use a
nonuniformly quantized differential pulse-code
modulation (DPCM) procedure. The difference
between the current wavetable sample and the next
sample is calculated then quantized with a
nonuniform characteristic, such as A-law, µ-law, or
logarithmic [5]. This allows more resolution for
small signal details and relatively less accuracy for
large signal changes. The output is then recovered by
decoding the sample differences and summing them
to obtain the output waveform.

Due to the quantization process, this procedure is a
many-to-one mapping and is therefore lossy. As with
any lossy coding operation the discrepancy between
the original signal and the reconstructed signal may
or may not be objectionable depending upon the
nature of the signals and the application context.
However, the use of lossy coding for looped
wavetables poses several peculiar problems. First,
the reconstruction obtained from the quantized
differential data may not allow a “perfect” loop
(amplitude match at the end points), which may cause
an audible click or DC buildup as the waveform is
cycled. Second, the introduction of quantization
errors into the wavetable data occurs after the
antialiasing (or resampling) filters that are used by
the sound designer in the looping process, and the
resulting error signal is unlikely to be properly
bandlimited, resulting in unintended aliasing in the
wavetable signal. Finally, the use of common
statistical procedures such as dither and noise
feedback to ameliorate the audible effects of the
quantizer are not appropriate for wavetable coding,
since the added signals are “frozen” into the stored
wavetable and looped, rather than being statistically
independent as in ordinary digital audio processing.

The remaining sections of this paper are organized as
follows. First, a summary of wavetable principles
and differential encoding is given. Next, the
proposed low-complexity encode/decode scheme for
wavetable data is presented. Finally, several
variations of the proposed technique are discussed.

2. WAVETABLE SYNTHESIS
A wavetable or stored-waveform synthesizer operates
by repeatedly sending an array of waveform
samples—the wavetable—through a digital-to-analog
(D/A) converter. The basic schema of a wavetable
synthesizer for N=32 is shown in Figure 1.

It is generally necessary to be able to synthesize a
periodic waveform of arbitrary length, so the
wavetable is often filled with one or more cycles of a
periodic waveform which is then repeatedly cycled,
or looped, as long as necessary. If the array of
samples is of length N and the D/A converter is

-1 -0.5 0 0.5 1
0

4

8

12

16

20

24

28

31

Index Sample
0 0.000
1 0.313
2 0.525
3 0.591
4 0.544
5 0.476
6 0.480
7 0.591
8 0.769
9 0.918
10 0.941
11 0.803
12 0.544
13 0.264
14 0.064
15 -0.013
16 0.000
17 0.013
18 -0.064
19 -0.264
20 -0.544
21 -0.803
22 -0.941
23 -0.918
24 -0.769
25 -0.591
26 -0.480
27 -0.476
28 -0.544
29 -0.591
30 -0.525
31 -0.313

Figure 1: Example wavetable of length
N=32. Look-Up Index (LUI) and Sample
Increment (SI) are rational numbers used
to set the table repetition frequency.

LUI : Integer LUI : Fraction.
SI : Integer SI : Fraction .

Current Index = LUI : Integer
Next LUI = (LUI + SI) modulo N

AES 115TH CONVENTION, NEW YORK, NEW YORK, 2003 OCTOBER 10-13
2

Maher Wavetable Data Compression

clocked at a fixed rate fs samples per second, it
requires N/fs seconds to read every sample from the
table. This corresponds to a waveform frequency of
fs/N Hz, assuming the table contains just one
waveform cycle.

2.1. Resampling and Interpolation
For music synthesis it is usually necessary to produce
waveforms with differing and perhaps time-varying
fundamental frequencies, and certainly frequencies
that are not integer divisors (fs/N) of the sample
frequency [6]. This requires sample rate conversion
of the wavetable data, meaning that waveform
samples in between the given samples of the
wavetable will need to be interpolated. One common
way to keep track of the interpolation is to define a
sample increment value (integer and fraction) that
indicates the required hop through the table in terms
of the original fs and table length N.

 SI = N·(fdesired/fs)

The location within the table where interpolation is to
occur is the lookup index (LUI), which is computed
recursively by

 LUI[n] = { LUI[n-1] + SI } mod N

where “mod N” indicates a mathematical integer
modulus operation. This simply implies that LUI
wraps around the end of the wavetable. Since LUI is
in general a real number and the stored wavetable
samples correspond to integer indices, the wavetable
value at LUI can be interpolated in a number of ways,
such as rounding or truncating LUI to the nearest
integer, using linear interpolation, or using some
higher-order interpolation function. For example,
linear interpolation involves the two wavetable
samples adjacent to LUI, namely w{(int) LUI[n]} and
w{(1+(int) LUI[n])mod N}, and can be accomplished
by:

where (int) and (fract) indicate the integer part and
fractional part, respectively, of LUI.

Higher-order interpolation can provide a closer
approximation to bandlimited interpolation of the

wavetable, at the expense of additional computation:
more than the two adjacent wavetable samples are
required for a higher-order structure.

There are two important implications of the
resampling/interpolation procedure used in the
wavetable synthesizer. First, the resampling process
condenses or expands the spectrum of the signal
stored in the wavetable—analogous to a tape being
played faster or slower—and this can cause timbral
changes (formant shifts) that are usually undesirable.
Second, the resampling process may introduce
aliasing if the interpolation is not strictly bandlimited
or if the wavetable is critically sampled to begin with.
Since it is advantageous to minimize the size (length)
of the wavetable for practical reasons, there is a
tradeoff between using a longer wavetable with
oversampled data to allow easier resampling, or using
a shorter wavetable with critically sampled data to
conserve storage space.

2.2. Other Considerations
In addition to the cyclical wavetable described above,
it is common in practice to provide additional
features for enhancing the flexibility and sound
quality of the wavetable procedure. One important
feature is to allow an attack waveform to be spliced
in front of the cyclical wavetable, as depicted in
Figure 2.

The attack portion is played once at the onset of the
musical note, while the cyclical wavetable is used to
sustain the length of the note as necessary. The use

Attack Segment

Loop
Segment

Figure 2: Example of a wavetable with a
one-shot attack portion and a sustaining
loop segment.

{ }
{ }

{ }
{ }][)fract(]][)int(

mod])[)int(1([
][)int(

][lin_interp

nLUInLUIw
NnLUIw

nLUIw

nLUIw

⋅−
+

+

=

AES 115TH CONVENTION, NEW YORK, NEW YORK, 2003 OCTOBER 10-13
3

Maher Wavetable Data Compression

of a one-shot attack segment allows for more realistic
and/or musically interesting timbres.

Another common feature is to provide an amplitude
envelope function to create a smoothly varying onset
and release of the wavetable signal. More
sophisticated wavetable synthesizers may include
frequency selective filters, provision for frequency
vibrato and amplitude tremolo, layering of multiple
wavetables, elaborate control interfaces, and so forth.

A critical requirement of a successful wavetable
synthesis system is to have carefully prepared
wavetable data. The process of creating the
wavetable source material and ensuring that the loop
points are minimally audible must be performed by a
skilled sound designer.

3. THE WAVETABLE DATA COMPRESSION

PROBLEM
In many applications the size of the wavetable data
for a synthesizer can be problematic. A set of
wavetables for a synthesizer supporting the 175
timbres required by the General MIDI Level 1 (GM1)
specification [7] is typically at least 1 MB, and for
high quality applications it may be 4 MB, 12 MB, or
even more. Tens of megabytes of storage may not be
an issue in the context of a modern personal
computer, but for small, inexpensive, and mobile
devices such as cell phones or personal digital
assistants (PDAs) even an 8 MB wavetable data set
may be more than an order of magnitude too large for
practical use.

The synthesizer designer has several options for
decreasing the size of the wavetables, but generally
this involves a corresponding loss of signal quality.
Some common strategies to reduce the wavetable
storage size are the following.

 NEW YORK, 2003 OCTOBER 10-13
4

 The length of the one-shot attack sections

can be compromised or eliminated.

 The same wavetable data can be re-used for
many different timbres, either without
modification or with real time changes to
disguise the data using amplitude envelopes,
filter settings, etc.

 The synthesizer can be run at a lower sample
rate, meaning fewer stored samples per
cycle of the waveforms and a lower audio
bandwidth.

 The number of bits used to represent each
sample in the wavetables can be reduced,

such as going from 16-bits per sample to 12-
bits or 8-bits per sample.

 The wavetable data can be encoded using a
lossless or lossy method.

The latter strategy—a simple wavetable data
compression/decompression method—can be quite
helpful to reduce the required data storage size while
maintaining as much signal quality as possible. The
proposed low-complexity wavetable coding
procedure is described next.

4. DIFFERENTIAL REPRESENTATION
Many musically useful signals have a lowpass
characteristic: the spectral level is a declining
function of frequency. One feature of this type of
signal is a broad autocorrelation function due to the
relatively slow amplitude variations of the lowpass
waveform. The high sample-to-sample correlation
means that the adjacent sample difference signal
d[n] = x[n] – x[n-1] will have a smaller variance than
the signal x[n] itself. In other words, the signal is at
least somewhat predictable from one sample to the
next. We can exploit this redundancy to reduce the
required bit rate, and thereby represent the signal
with fewer total bits [5].

If we accumulate (sum) the sequence d[n] we can
compute the reconstructed signal
xr[n] = d[n] + xr[n-1]. If d[n] is received without
error or loss, then xr[n] = x[n], as depicted in
Figure 3.

z-1

x[n]

x[n-1]

d[n]=x[n]-x[n-1] +
-

z-1

+

+

xr[n-1]

xr[n] = d[n] + xr[n-1] = x[n] d[n]

Figure 3: Simple differential encoder and
decoder without quantization. The z-1
indicates a single sample delay.

AES 115TH CONVENTION, NEW YORK,

Maher Wavetable Data Compression

Although some data reduction is possible due to the
difference signal d[n] being of smaller variance (or
average amplitude) than x[n], it is typically necessary
to reduce the number of bits per sample still further
to obtain a useful amount of compression (e.g., 30-
50% reduction). The usual data reduction approaches
for a differential waveform coder are to attempt
further redundancy reduction by improving the
predictor, and to quantize the difference signal more
coarsely by allowing lossy coding (xr[n] ≠ x[n]).
For the wavetable data compression task it is
necessary to keep the decompression computation as
quick and simple as possible while still obtaining
satisfactory signal quality. The proposed
compression method therefore uses the coarse
quantization approach.

Since the difference signal d[n] is to be quantized
more coarsely—becoming dq[n]—the reconstructed
signal xr[n] = Q-1{dq[n]} + xr[n-1] is based only on
the quantized difference values and therefore the
coarse quantization of one step in the difference
sequence directly influences the reconstructed signal
thereafter. Rather than the simple differential
encoder of Figure 3, a better approach to help track
the discrepancy between x[n] and xr[n] is to quantize
the difference between x[n] and xr[n-1] and use this
as the encoded stream, as shown in Figure 4.

Thus, the encoder and the decoder will track each
other assuming there are no errors in the storage and
retrieval process.

It should be noted that if extra computation is
available it may indeed be possible to improve signal
quality by using a higher-order predictor in the
differential quantization feedback path.

It is clearly an advantage to minimize the audible
difference between the original wavetable samples
x[n] and the reconstructed wavetable xr[n]. In the
proposed wavetable compression method a non-
uniform quantizer Q is used to obtain essentially
lossless reconstruction when d[n] is small, while
allowing some discrepancy if d[n] is large. A variety
of non-uniform quantizers can be selected. Common
choices include A-law, µ-law, or logarithmic.

4.1. Wavetable Compression Details
The use of a lossy differential representation
introduces distortion. Conventional audio coders
often treat the coding distortion as an additive
uncorrelated white noise process on a sample by
sample basis [5]. However, for wavetable
compression the coding distortion is embedded in the
decoded waveform and is therefore looped over and
over along with the desired signal itself, so simple
additive noise models are inappropriate

AES 115TH CONVENTION, NEW YORK, NEW YORK, 2003 OCTOBER 10-13
5

The distortion components will also introduce
aliasing when the wavetable is resampled by the
synthesizer to change the musical pitch. Moreover,
the correlation between the distortion components
and the desired waveform can result in audible noise
modulation when the sample increment is changed
for vibrato or other musical pitch effects. It is also
important to treat the end-of-loop condition carefully
so that no discontinuity is introduced at the loop
boundary.

These special considerations require extra care during
the sound design phase. In particular, the sound
designer must be aware of the audible characteristics
introduced by the differential encoding process and
choose wavetables that reflect the strengths and
weaknesses of the encoding system.

5. IMPLEMENTATION FRAMEWORK
Creating a wavetable sample set requires several
steps. One common approach is to obtain recordings
of the desired musical timbre, select appropriate
attack and sustain (loop) segments, and apply sample
rate conversion and amplitude quantization to

Q

z-1

dq[n] x[n]

xr[n-1]

d[n]

+

+

+
-

xr[n]

Q-1

z-1

+

+

xr[n-1]

xr[n] = Q-1{dq[n]} + xr[n-1] ≈ x[n]
dq[n]

Q-1

Figure 4: Differential encoder and
decoder with a quantizer (Q). Q reduces
the number of bits required to represent
d[n], causing a discrepancy between x[n]
and the recovered signal xr[n].

Maher Wavetable Data Compression

achieve a reasonable compromise between wavetable
length, word size, and susceptibility to aliasing.

5.1. The Encoding Process
The encoding process is expected to be done once by
a skilled sound designer “at the factory” rather than
by the user in the field. Thus, it is feasible to expend
some effort to adjust the precise sampling rate and
amplitude to minimize the encoding error and
distortion introduced by the lossy differential
wavetable representation. The sound designer must
be prepared to evaluate the intermediate results and
adjust the waveform parameters as necessary.

An example of the wavetable encoding process is
shown in Figure 5. First, the initial (unencoded)
value of the wavetable is stored. Next, the first
difference is calculated using the method of Figure 4
and a non-uniform quantizer, Q. The quantizer can

be implemented in a variety of forms. For this
example an explicit logarithmic formula is shown,
although a lookup table could also be used. The
sequence of quantized differences is determined and
the differential (encoded) values are stored. At the
end of the encoded wavetable it may be helpful to
calculate the exact (unencoded) difference between
the last accumulated wavetable sample and the first
sample of the loop (see Method 3 below). If a
higher-order predictor is used in the encoder, the
initial values of the internal predictor coefficients
may also be stored for use by the decoder.

5.2. The Decoding Process
While the encoding process can involve iterative
procedures and the services of a skilled sound
designer, the decoding process must be extremely
efficient and sufficiently fast to allow real time
operation. The precise nature of the decoder may

Q

z-1

dq[n] x[n] d[n]

+

+

+
-

Q-1

Sample 0

Sample 1

Sample 2

Sample N-1

Stored 0

Coded 1

Coded 2

Initialize

Original
Wavetable

Encoded
Wavetable

Fix-Up
(optional)

Coded N-1

[] []{ } []() [](){ }ndKndndQndq 10log5.0floorsgn ⋅+⋅==

[]{ } []() [] Knd
qq

qndndQ /1 10sgn ⋅=−

Figure 5: Wavetable encoding process using a log-based non-linear quantizer. The
coded values have fewer bits of precision than the original samples. K is a scaling
constant chosen to provide the desired encoded signal resolution.

AES 115TH CONVENTION, NEW YORK, NEW YORK, 2003 OCTOBER 10-13
6

Maher Wavetable Data Compression

vary from one product platform to another, but it is
generally necessary to keep the decoding complexity
of the same order as the wavetable synthesis process
itself. This implies that a lookup table in the decoder
might be preferable to an algorithm to compute
exponentials or transcendental functions.

Three possible decoding scenarios are considered
next.

5.2.1. Method 1: Full decode buffer.
The first scenario to be considered for wavetable
reconstruction is the use of a decode buffer holding
the entire decoded wavetable. The encoded data is
read from storage and the entire wavetable loop is
decoded into a buffer, or cache, for the synthesizer.
This method requires enough buffer storage for the
entire wavetable loop, but only the active wavetable
data needs to be present. The decode operation
occurs only when a new musical note calls for a
different wavetable.

The advantage of the full decode buffer is that it may
allow the synthesizer functions to be simplified, since
the decoding operation is accomplished outside of the
sample-by-sample computation of the synthesizer. It
is also possible for multiple concurrent synthesized
voices to share the same cached wavetable. The
primary disadvantages of this approach are the need
to delay while the entire wavetable is decoded, and
the obvious need for substantial buffer memory for
the active wavetable cache.

5.2.2. Method 2: Accumulator with loop reset
In this scenario the synthesizer fetches and decodes
only sufficient wavetable data “on-the-fly” to
produce the current block of output samples. An
accumulator variable is loaded with the initial
wavetable value, then each decoded wavetable
sample is obtained by adding (accumulating) the
sequence of differential values over the required LUI
(look-up index) range for the current block. Once the
current wavetable block is synthesized the last value
of the accumulator is saved for use in the next block.
If LUI traverses the end of the wavetable data, the
wraparound condition is detected, the accumulator is
loaded again with the initial wavetable value, and the
process continues.

The accumulator method has the advantage that
minimal buffer storage is required. It also allows the
synthesis process to begin more rapidly than Method
1, since only the required wavetable samples need to
be decoded. The accumulator method does have the
disadvantage that the fetch and decoding operations
must occur over and over as long as the synthesizer

sustains the note, thereby increasing the average
computational cost per output sample.

A more subtle disadvantage is that the differential
encode/decode implies that every encoded wavetable
element must be fetched and accumulated even if the
intervening samples are not actually needed by the
synthesizer. For example, if the sample increment
(SI) is greater than unity and only simple linear
interpolation is performed, certain wavetable samples
will be skipped as the lookup index hops through the
wavetable, but the skipped samples must still be
computed due to the sequential differential
representation of the wavetable.

5.2.3. Method 3: Accumulator with loop fix-up
The third scenario is similar to Method 2, except a
special “fix-up” value is used rather than resetting the
decode accumulator at the end of the loop. The fix-
up value allows a perfect loop accumulation by
holding the unencoded difference between the
accumulated differential values at the end of the
wavetable and the value at the start of the loop. The
fix-up is pre-calculated during the encoding process
and stored at the end of the wavetable. By reserving
one of the code words to indicate that the fix-up
value is to be fetched, the decode/synthesis process
can be implemented with a symmetrical structure that
does not require explicit end-of-loop calculations.
This approach is particularly suited to situations in
which the sample fetch, decoding, and interpolation
processes are performed by special-purpose
hardware.

6. CONCLUDING COMMENTS
The differential wavetable encoding method can
achieve data compression factors of 30-50% with
acceptable quality. This corresponds to representing
the original 16-bit audio samples with only 8-bit
nonlinear differential values, while still achieving
roughly 12-bit quality.

6.1. Distortion Minimization

The nonlinear quantizer (e.g., log, µ-law, etc.) may
make the encoder quite sensitive to the amplitude of
the original wavetable data. It has been found that
performing a systematic search for the minimum
level of distortion can be helpful. During the sound
design process the wavetable data are automatically
encoded repeatedly with different amplitude scalings
and the RMS discrepancy between the decoded
wavetable and the original data is calculated. The
amplitude scaling that results in the lowest distortion
is then stored for use by the synthesizer. The
nonlinear nature of the differential quantization

AES 115TH CONVENTION, NEW YORK, NEW YORK, 2003 OCTOBER 10-13
7

Maher Wavetable Data Compression

process prevents an easy analytical solution, but the
availability of fast computers makes the iterative
optimization very feasible. The use of an objective
perceptual quality measurement might also be helpful
for this purpose.

6.2. Log Encoding to Reduce Multiplies
In typical wavetable synthesis applications the
samples recovered from the wavetable are
interpolated using a multiplicative weighting, and
then further multiplied by a time-varying amplitude
envelope to simulate the attack and release
characteristics of the desired timbre. The
multiplication operations may be costly in a custom
silicon implementation due to the size and
complexity of the multiplier hardware. However, by
using a true logarithmic encoding of the wavetable
differential values and representing the amplitude
envelope in logarithmic form, it has been shown that
the interpolation and amplitude scaling can be
performed by adding the logarithms rather than
requiring explicit multiplies [8]. An anti-log lookup
table in the decoder can then be used to reconstruct
the output waveform.

6.3. Model-based compression
Another encoding alternative consists of a linear
prediction model. In this case the wavetable is
considered to be a portion of the impulse response of
a recursive digital filter. The encoding process
involves determining the parameters of the filter
model, selecting a suitable excitation function such as
a noise burst or impulse, and minimizing the coding
distortion. During synthesis the filter coefficients
and initial filter state are fetched and the excitation
function is used to regenerate the wavetable. If the
complexity of the filter and the excitation function
can be minimized, the model approach can further
reduce the storage needed for wavetable synthesis.

7. REFERENCES

[1] Mathews, Max (1969). The Technology of
Computer Music, M.I.T. Press: Cambridge, MA.

[2] Dodge, Charles and Jerse, Thomas (1997).
Computer Music: Synthesis, Composition, and
Performance, 2nd ed., Shirmer Books: New York,
NY.

[3] Bristow-Johnson, Robert (1996). “Wavetable
Synthesis 101, A Fundamental Perspective,” Proc.
101st AES Conv., Preprint 4400.

[4] MIDI Manufacturers Association (2001). GM Lite
Specification and Guidelines for Mobile
Applications, MMA: La Habra, CA.

[5] Jayant, N.S., and Noll, Peter (1984). Digital
Coding of Waveforms, Prentice Hall: Englewood
Cliffs, NJ.

[6] Rossum, Dave (1989). “An Analysis of Pitch-
Shifting Algorithms,” Proc. 87th AES Conv.,
Preprint 2843.

[7] MIDI Manufacturers Association (2001).
Complete MIDI 1.0 Detailed Specification, version
96.1, MMA: La Habra, CA.

[8] Lindemann, Eric (1999). “Audio Data
Decompression and Interpolation Apparatus and
Method,” U.S. Patent Number 5,890,126.

AES 115TH CONVENTION, NEW YORK, NEW YORK, 2003 OCTOBER 10-13
8

