Automatic Search and Classification of Sound Sources in Long-Term Surveillance Recordings

Robert C. Maher and Joseph Studniarz Electrical and Computer Engineering Montana State University - Bozeman

Outline

Introduction

• Experimental Procedure

- Example recordings
- Feature detection

Experimental Results

- Time-variant spectra
- Identifying events
- Effects of temporal and spectral overlap
- Discussion and Conclusions

Introduction

- Long-term audio recordings
 - Continuous recordings of urban areas and natural soundscapes
 - Duration may be days, weeks, months, ...
 - Human audition infeasible due to length
- Forensic applications
 - Detection and Classification
 - Event reconstruction
 - Timeline Assessment

College of ENGINEERING

Introduction (cont.)

- Source may be deliberate surveillance or inadvertent surveillance
 - Wildlife studies
 - Regulatory monitoring
 - Acoustic surveys
 - Electronic newsgathering
 - Amateur A/V recordings

Introduction (cont.)

- Prior research in speech/non-speech segmentation, music recognition, and computational auditory scene analysis
- General research questions:

College of

- Search for a target sound, or classify all sounds?
- Will conventional pattern matching techniques do the job?
- What level of performance is necessary?

Experimental Procedure

- Our example recordings
 - Grant-Kohrs Ranch (2009-10): 8,700 hours
 - Nyack River experiment (2012): 29 hours
- Sound composition
 - Biophony—birds, frogs, insects, mammals
 - Geophony-wind, rain, hail, thunder, waterfall
 - Anthrophony—aircraft, automobiles, trains, domestic sounds


Experimental Proc. (cont.)

- Typical recordings contain a background texture punctuated by foreground sounds—but also gradual evolution and overlaps in time and frequency.
- Isolated pattern matching not applicable in general.
- Current compromise: use automated search to identify sections of interest for subsequent audition

Technical Approach

- Treat spectrographic information as an *image*, or as a 3-D *surface*
- Sound events comprise *edges*, *ridges*, *cliffs*, and *valleys* in the spectrogram
- Plan: process the spectrographic information to reveal the feature space

College of
ENGINEERING

Spectral-domain Filters

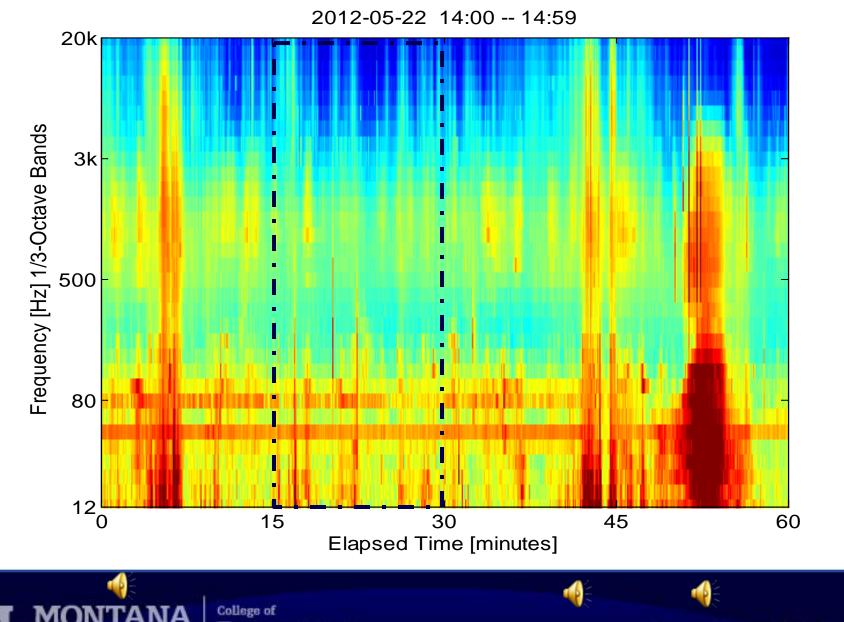
- Vertical edges = broad in frequency, narrow in time: clicks
- Horizontal edges = narrow in frequency, broad in time: tones
- Diagonal edges = tonal sweeps
- "Waffle" pattern viewpoint

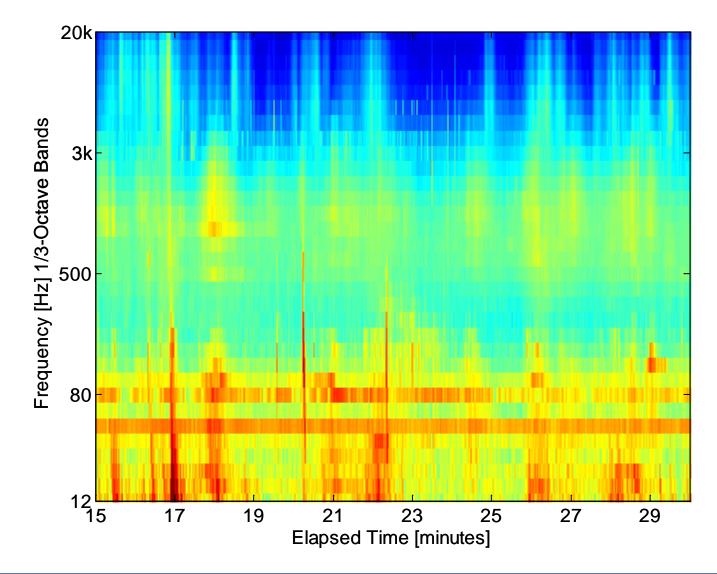
Forensic Example

One hour audio recording

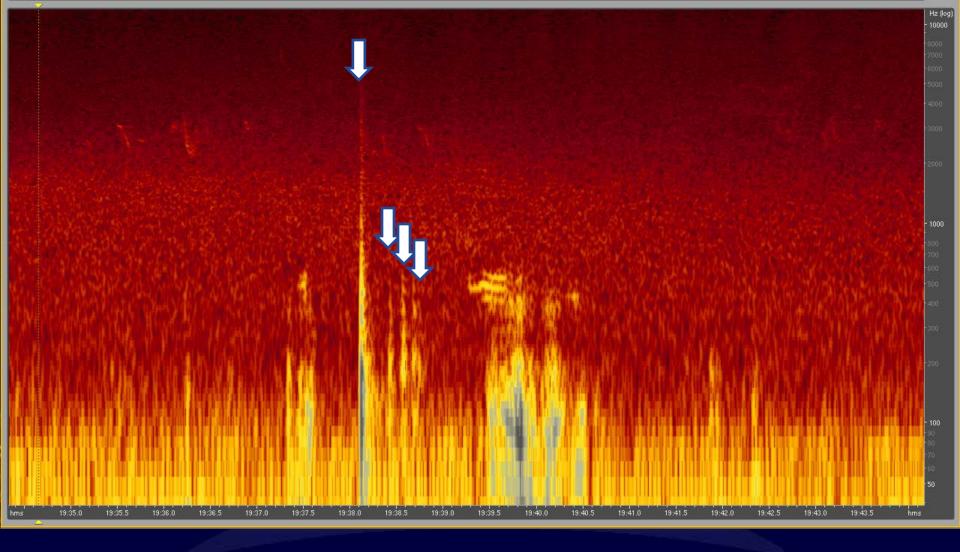
– Question 1: Is the sound of a gunshot present at any time in the recording?

If the answer to question 1 is yes,


- Question 2: Is there more than one recorded shot?
- If the answer to question 2 is yes,
- Question 3: Are the multiple shots from the same or from different firearms?


Forensic Example (an aside)

- This is a "needle in the haystack" analogy
- Finding the needle may be extremely difficult
- If no needle is found, it may mean:
 - no needle was present, or
 - the search process missed it
- But if a needle IS found, it will generally not be misinterpreted as some other object



ENGINEERING

Experimental Results (cont.)

- Edge-based spectro-temporal search can be implemented easily
- Good for abrupt sound events or narrowband tones
- Sounds with spectral and temporal overlap are not handled well

Future Work

- Extend approach to detailed patterns, such as birdcalls and other elements of the biophony
- Establish reliability of using MP3 spectral frame data
- Classification algorithm development

Acknowledgements

- Co-author Joe Studniarz (undergraduate research assistant at Montana State Univ.)
- NPS Natural Sounds and Night Skies Program, Ft. Collins, CO
 - Kurt Fristrup, Emma Lynch, Damon Joyce
- Montana Institute on Ecosystems

 Cathy Whitlock and Ric Hauer, Directors

