
Wavetable Synthesis Strategies for
Mobile Devices*

ROBERT C. MAHER, AES Member

Department of Electrical and Computer Engineering, Montana State University, Bozeman, MT 59717-3780, USA

Table look-up (or fixed-wavetable) music synthesis has recently received new interest in
the context of mobile applications such as personalized ring tones and pager notification
signals: the market for consumers purchasing polyphonic ring tones exceeded US $4 billion
worldwide in 2004. Table look-up (or fixed-wavetable) synthesis methods have been widely
used for many years in music synthesizers. The limited amount of storage and transmission
bandwidth available in such mobile devices makes the use of compressed synthesizer data
desirable. The important considerations for implementing a wavetable music synthesizer in a
small portable device are described. In particular, an efficient compression/decompression
method for the synthesizer data is used in order to reduce the size of the synthesizer data bank
with good fidelity while still maintaining the loop continuity constraints necessary for looped
wavetable synthesis.

0 INTRODUCTION

Recently there have been commercial projects that re-
quire the use of stored waveform music synthesis for per-
sonalized ring and pager tones in mobile telephony [1].
While the availability of custom ring tones might seem at
first glance to be a trivial frill for mobile phone users, AES
members may be surprised to learn that the market for
downloaded ring tones exceeded US $3.5 billion in world-
wide sales during 2003, with future sales predicted to
reach $5.2 billion per year by 2008 [2]. Considering that in
2003 the worldwide market for all recorded music was
approximately $32.2 billion, the ring tone market repre-
sented fully 10% of entertainment audio sales in 2003—an
astonishing statistic indeed. Although some mobile tele-
phony devices allow playback of short digital audio re-
cordings with compressed data, devices in the commercial
marketplace also have to provide support for looped wave-
form music synthesis.

Digital fixed-waveform table-look-up methods have
been used widely in music synthesis applications [3]–[5].
In its most basic form, a single cycle of the desired wave-
form is digitized and then simply played back repeatedly
(looped) to create a sustained digital signal to be sent
through a digital-to-analog converter for audition. In order

to create musically interesting synthesized signals it is
necessary to have a set of stored waveform tables that
correspond to sounds from a variety of musical instru-
ments, or from different pitch and amplitude ranges of the
same instrument. The size of the set of synthesizer look up
tables can become quite large if a wide range of timbres at
a high level of quality is desired, and the complexity of
selecting, manipulating, and possibly cross-fading various
tables in real time can be significant. Nonetheless, the table
look-up technique has been employed successfully in many
commercial products and computer music synthesis systems.

The synthesis requirements must entail careful consider-
ation of the wavetable synthesizer implementation choices,
particularly the size of the wavetable data set. The extremely
limited amount of storage, transmission bandwidth, and
available computation—not to mention the prevalent cost-
reduction pressure of the competitive marketplace—has re-
quired a simple and efficient means to reduce the size of
stored synthesis wavetables while still allowing low-
complexity decompression. This communication describes
one such commercial wavetable synthesis implementation.

In order to achieve a reduction in the storage required
for the wavetable data, the number of bits used to represent
each sample must be reduced. It is, of course, desirable to
perform the bit-rate reduction losslessly so that the origi-
nal wavetable can be recovered exactly from the com-
pressed data [6]. However, to achieve a useful data com-
pression factor and minimal decoding complexity it was
necessary to use a quantized (lossy) representation that
would still meet the loop continuity and Nyquist con-
straints, as will be described.

*Manuscript received 2004 January 19; revised 2004 Decem-
ber 2 and 2005 January 7. Based on “Compression and Decom-
pression of Wavetable Synthesis Data,” presented at the 115th
Convention of the Audio Engineering Society, New York, 2003
October, convention paper 5937.

COMMUNICATIONS

J. Audio Eng. Soc., Vol. 53, No. 3, 2005 March 205

At the outset one might reasonably ask whether percep-
tual audio coders such as the MPEG family could be used
to compress wavetable synthesizer data [7]. The unfortu-
nate answer is no, because the compact wavetable synthe-
sizer framework requires continuity between waveform
loops so that no audible discontinuity is present. Thus a
coder must maintain wave-shape integrity, which is not a
goal of the standard perceptual audio coders. Furthermore,
the wavetable decoding and signal generation occur at the
signal sample rate, so minimizing the cost of computation
is an important design factor.

A nonuniformly quantized differential pulse-code-
modulation (DPCM) procedure is used in this implemen-
tation. The DPCM technique is a well-known waveform
coding procedure, of low complexity, and convenient to
modify for wavetable compression [8]. The encoder cal-
culates the difference between an estimate of the current
wavetable sample and its actual value. The difference is
then quantized with a nonuniform characteristic, such as
A-law, �-law, or logarithmic. This allows more resolution
for small signal details and relatively less accuracy for
large signal changes. The output is decompressed by de-
coding the sample differences and summing them to ob-
tain the output waveform.

However, the use of lossy coding for looped wavetables
poses several peculiar problems. First the reconstruction
obtained from the quantized differential data may not al-
low a “perfect” loop (amplitude match at the end points),
which may cause an audible click or dc buildup as the
waveform is cycled. Second the introduction of quantiza-
tion errors into the wavetable data occurs after the antiali-
asing (or resampling) filters that are used by the sound
designer in the looping process, and the resulting error
signal is unlikely to be properly band limited, resulting in
unintended aliasing in the wavetable signal. Finally the use
of common statistical procedures such as dither and noise
feedback to ameliorate the audible effects of the quantizer
is not appropriate for wavetable coding, since the added
signals are “frozen” into the stored wavetable and looped,
rather than being statistically independent as in ordinary
digital audio processing. Thus the use of compressed
wavetable synthesis data requires special considerations.

The remaining sections of this communication are or-
ganized as follows. First a summary of wavetable prin-
ciples and differential encoding is given. Next the low-
complexity encode/decode scheme for wavetable data is
presented. Finally several variations of the proposed tech-
nique are discussed.

1 WAVETABLE SYNTHESIS

A fixed wavetable or stored-waveform synthesizer op-
erates by repeatedly sending an array of waveform
samples—the wavetable—through a digital-to-analog (D/
A) converter. The basic schema of a wavetable synthesizer
for N � 32 is shown in Fig. 1.

It is generally necessary to be able to synthesize a pe-
riodic waveform of arbitrary length, so the fixed wavetable
is often filled with one or more cycles of a periodic wave-
form, which is then repeatedly cycled, or looped, as long as

necessary. If the array of samples is of length N and the D/A
converter is clocked at a fixed rate fs samples per second, it
requires N/fs seconds to read every sample from the table.
This corresponds to a waveform frequency of fs/N Hz, as-
suming the table contains just one waveform cycle.

1.1 Resampling and Interpolation
For music synthesis it is usually necessary to produce

waveforms with differing and perhaps time-varying fun-
damental frequencies, and certainly frequencies that are
not integer divisors (fs/N) of the sample frequency [9],
[10]. This requires sample-rate conversion of the wave-
table data, meaning that waveform samples in between the
given samples of the wavetable will need to be interpo-
lated. Higher order interpolation can provide a closer ap-
proximation to band-limited interpolation of the wave-
table, at the expense of additional computation—more
than the two adjacent wavetable samples are required for
a higher order structure.

Sample-rate conversion condenses or expands the spec-
trum of the signal stored in the wavetable, and this can cause
timbral changes (formant shifts), which are usually undesir-
able. Further, the resampling process may introduce spectral
aliasing if the interpolation is not strictly band-limited or if
the wavetable is critically sampled to begin with. Since it is

Fig. 1. Example wavetable of length N � 32. Look-up index
(LUI) and sample increment (SI) are rational numbers used to set
table repetition frequency.

MAHER COMMUNICATIONS

J. Audio Eng. Soc., Vol. 53, No. 3, 2005 March206

advantageous to minimize the size (length) of the wavetable
for practical reasons, there is a tradeoff between 1) using a
longer wavetable with oversampled data to allow easier re-
sampling, and 2) using a shorter wavetable with critically
sampled data to conserve storage space.

1.2 Other Considerations
In addition to the cyclical wavetable as described, it is

common in practice to provide additional features for en-
hancing the flexibility and sound quality of the wavetable
procedure. One important feature is to allow an attack
waveform to be spliced in front of the cyclical wavetable,
as depicted in Fig. 2.

The attack portion is played once at the onset of the
musical note, while the cyclical wavetable is used to sus-
tain the length of the note as necessary. The use of a
one-shot attack segment allows for more realistic and/or
musically interesting timbres.

Another common feature is to provide an amplitude
envelope function to create a smoothly varying onset and
release of the wavetable signal. More sophisticated wave-
table synthesizers may include frequency-selective filters,
provision for frequency vibrato and amplitude tremolo,
layering of multiple wavetables, elaborate control inter-
faces, and so forth.

A critical requirement of a successful wavetable syn-
thesis system is to have carefully prepared wavetable data.
A skilled sound designer must perform the process of cre-
ating the wavetable source material and ensuring that the
loop points are minimally audible.

2 WAVETABLE DATA COMPRESSION
PROBLEM

In current mobile applications the size of the wavetable
data for a synthesizer is problematic. A set of wavetables
for a synthesizer supporting the 175 timbres required by

the general MIDI level 1 (GM1) specification [11] is typi-
cally at least 1 megabyte (MB), and for high-quality ap-
plications it may be 4 MB, 12 MB, or even more. Tens of
megabytes of storage may not be an issue in the context of
a modern personal computer, but for small, inexpensive,
and mobile devices such as cell phones or personal digital
assistants (PDAs) even a 1-MB wavetable data set may be
orders of magnitude too large for practical use.

The synthesizer designer has several options for de-
creasing the size of the wavetables, but generally this in-
volves a corresponding loss of signal quality. Some com-
mon strategies used in commercial products to reduce the
wavetable storage size include the following.

• The length of the one-shot attack sections can be com-
promised or eliminated.

• The same wavetable data can be reused for many dif-
ferent timbres, either without modification or with real-
time changes to disguise the data using amplitude enve-
lopes, filter settings, and so on.

• The synthesizer can be run at a lower sample rate, mean-
ing fewer stored samples per cycle of the waveforms and
a lower audio bandwidth.

• The number of bits used to represent each sample in the
wavetables can be reduced, such as going from 16 bit
per sample to 12 or 8 bit per sample.

The wavetable data can be encoded using a lossy wave-
form coder, as described next.

3 DIFFERENTIAL REPRESENTATION

Many musically useful signals have a broad autocorre-
lation function due to the relatively slow amplitude varia-
tions of the low-pass waveform. The high sample-to-
sample correlation means that the adjacent sample
difference signal d[n] � x[n] − x[n − 1] will have a

Fig. 2. Example wavetable with one-shot attack segment and sustaining loop segment.

COMMUNICATIONS WAVETABLE SYNTHESIS STRATEGIES

J. Audio Eng. Soc., Vol. 53, No. 3, 2005 March 207

smaller variance than the signal x[n] itself. In other words,
the signal is at least somewhat predictable from one
sample to the next. We can exploit this redundancy to
reduce the required bit rate and thereby represent the sig-
nal with fewer total bits [8]. A convenient form of the
differential encoder is shown in Fig. 3. Thus the encoder
and the decoder will track each other assuming there are
no errors in the storage and retrieval process.

Although some data reduction is possible due to the
difference signal d[n] being of smaller variance (or aver-
age amplitude) than x[n], it is typically necessary to reduce
the number of bits per sample still further to obtain a
useful amount of compression (such as 30–50% reduc-
tion). The usual data reduction approaches for a differen-
tial waveform coder are to attempt further redundancy
reduction by improving the predictor, and to quantize the
difference signal more coarsely by allowing lossy coding,
xr[n] � x[n]. For the wavetable data compression task
it is necessary to keep the decompression computation as
fast and simple as possible while still obtaining satisfac-
tory signal quality, so the coarse quantization approach is
chosen.

It is clearly an advantage to minimize the audible dif-
ference between the original wavetable samples x[n] and
the reconstructed wavetable xr[n]. A nonuniform quantizer
Q is used to obtain essentially lossless reconstruction
when d[n] is small, while allowing some discrepancy if

d[n] is large. A quasi-logarithmic quantizer has been found
to work well for this purpose.

3.1 Wavetable Compression Details
The use of a lossy differential representation introduces

distortion. Conventional waveform coders often treat the
coding distortion as an additive uncorrelated white-noise
process on a sample-by-sample basis [8]. However, for
wavetable compression the coding distortion is embedded
in the decoded waveform and is therefore looped over and
over along with the desired signal itself, so simple uncor-
related noise models are inappropriate.

The signal-correlated distortion components introduce
aliasing when the synthesizer resamples the wavetable to
change the musical pitch. Moreover, the correlation be-
tween the distortion components and the desired wave-
form can result in audible noise modulation when the
sample rate is changed for vibrato or other musical pitch
effects. It is also important to treat the end-of-loop condi-
tion carefully so that no discontinuity is introduced at the
loop boundary.

These special considerations require extra care during
the sound design phase. In particular the sound designer
must be made aware of the audible characteristics intro-
duced by the differential encoding process and choose
wavetables that reflect the strengths and weaknesses of the
encoding system.

Fig. 3. Differential encoder and decoder with quantizer Q. Q reduces the number of bits required to represent d[n], causing a
discrepancy between x[n] and recovered signal xr[n].

MAHER COMMUNICATIONS

J. Audio Eng. Soc., Vol. 53, No. 3, 2005 March208

4 IMPLEMENTATION FRAMEWORK

Creating a wavetable sample set requires several steps.
One common approach is to obtain recordings of the de-
sired musical timbre, select appropriate attack and sustain
(loop) segments, and apply sample-rate conversion and
amplitude quantization to achieve a reasonable compro-
mise between wavetable length, word size, and suscepti-
bility to aliasing.

4.1 Encoding Framework
A skilled sound designer performs the encoding process

once “at the factory” rather than being something the user
must do in the field. Thus it is feasible to expend some sound
design effort to adjust the precise sampling rate and ampli-
tude to minimize the encoding error and distortion introduced
by the lossy differential wavetable representation. The sound
designer must be prepared to evaluate the intermediate re-
sults and adjust the waveform parameters as necessary.

4.1.1 Simple Encoding Procedure
An example of the wavetable encoding process is

shown in Fig. 4. First the initial (unencoded) value of the
wavetable is stored. Next the first difference is calculated
using the method of Fig. 4 and a nonuniform quantizer Q.
An explicit logarithmic formula derived for integer (non-
fractional) data is shown, although a look-up table is used
in practice. The sequence of quantized differences is de-
termined, and the differential (encoded) values are stored.
At the end of the encoded wavetable it may be helpful to
calculate the exact unencoded difference between the last
accumulated wavetable sample and the first sample of the
loop (see decode method 3, Section 4.2.3). If a higher
order predictor is used in the encoder, the initial values of
the internal predictor coefficients may also be stored for
use by the decoder.

4.1.2 Distortion Minimization
The quantizer’s nonuniform steps and lossy behavior

make the encoder quite sensitive to the sample-to-sample
amplitudes of the original wavetable data. An adaptive
quantization procedure can be considered as a way to
minimize the coding error, but the fixed nature of the
wavetable and the loop constraint make any time-adaptive
algorithms inappropriate.

Instead we use a systematic search for the waveform am-
plitude resulting in minimum distortion. The nonlinear nature
of the differential quantization process prevents an easy ana-
lytical solution, but the availability of fast computers makes
an iterative optimization feasible during sample set creation.

The process works as follows. During the sound design
process the wavetable data are automatically encoded re-
peatedly with different amplitude scalings, and the total
mean-square discrepancy between the decoded wavetable
and the original data is calculated. The amplitude scaling
that results in the lowest distortion (highest signal-to-error
ratio) is then stored for use by the synthesizer. This simple
search procedure is depicted in Fig. 5.

An example output from the search procedure shows
clearly the complicated relationship between the signal
amplitude and the coding error (see Fig. 6). The measured
signal-to-error ratio is plotted as a function of the ampli-
tude scaling parameter applied to the input wavetable prior
to encoding. The automatic procedure chooses the appro-
priate gain factor within the synthesizer design constraints
on numerical range, overflow protection, and so forth. As
in this example, the optimization procedure typically pro-
vides an improvement of several dB in the wavetable’s
raw signal-to-error ratio—the equivalent of nearly 1 bit of
precision in this case. It is also possible to consider a
perceptual quality model instead of the signal-to-error ra-
tio during the optimization, but the simple error criterion
has been found satisfactory in practice.

Fig. 4. Wavetable encoding process using log-based nonlinear quantizer. Coded values have fewer bits of precision than original
samples. K—scaling constant chosen to provide desired encoded signal resolution.

COMMUNICATIONS WAVETABLE SYNTHESIS STRATEGIES

J. Audio Eng. Soc., Vol. 53, No. 3, 2005 March 209

The amplitude scaling parameter can often be combined
with the other wavetable gain scaling parameters into a
single factor within the synthesizer patch architecture,
thereby avoiding any additional decoder computation.
Thus the optimized encoding process requires little if any
change to the decoder and synthesizer architecture.

4.2 Decoding Framework
While the encoding process can involve iterative pro-

cedures and the services of a skilled sound designer, the
decoding process must be extremely efficient and suffi-
ciently fast to allow real-time operation. We find that the
precise nature of the decoder varies from one product plat-
form to another, but it is generally necessary to keep the
decoding complexity commensurate with the wavetable
synthesis process itself. This implies that a look-up table in
the decoder might be preferable to an algorithm to com-
pute exponentials or transcendental functions. Three de-
coding scenarios are described next.

4.2.1 Method 1–Full Decode Buffer
The first wavetable reconstruction scenario is to use a

decode buffer holding the entire decoded wavetable. The
encoded data are read from storage and the entire wave-
table loop is decoded into a buffer, or cache, for the syn-
thesizer. This method requires enough buffer storage for
the entire wavetable loop, but only the active wavetable
data need to be present. The decode operation occurs only
when a new musical note calls for a different wavetable,
that is, a MIDI patch change.

The advantage of the full decode buffer is that it allows
the synthesizer functions to be simplified since the de-
coding operation is accomplished outside of the sample-
by-sample computation of the synthesizer. It is also
possible for multiple concurrent synthesized voices to
share a single cached wavetable. The primary disadvan-
tages of this approach are the need to delay playback until
the entire wavetable is decoded and the obvious need for

Fig. 5. Systematic procedure to optimize wavetable amplitude for best signal-to-error ratio. Nonlinear behavior of encoding process can
result in coding error being sensitive to waveform amplitude.

Fig. 6. Example signal-to-error ratio as a function of wavetable amplitude. Varying the signal amplitude and reencoding can find the
best signal-to-noise ratio within acceptable amplitude limits. In this example a roughly 5-dB improvement is possible by selecting gain
factor to maximize signal-to-error ratio, such as 0.96.

MAHER COMMUNICATIONS

J. Audio Eng. Soc., Vol. 53, No. 3, 2005 March210

substantial buffer memory to hold the active wavetable
cache.

4.2.2 Method 2–Accumulator with Loop Reset
In this alternative the synthesizer fetches and decodes

only sufficient wavetable data “on the fly” to produce the
current block of several output samples. An accumulator
variable is loaded with the initial wavetable value and then
each decoded wavetable sample is obtained by adding (ac-
cumulating) the sequence of differential values over the
required LUI (look-up index) range for the current block.
Once the current wavetable block is synthesized the last
value of the accumulator is saved for use in the next block.
When the LUI traverses the end of the wavetable, the
accumulator is simply loaded again with the initial wave-
table value and the process continues.

The accumulator method has the advantage that mini-
mal buffer storage is required. It also allows the synthe-
sis process to begin more rapidly than method 1,
since only the immediately required wavetable samples
need to be decoded, not the entire table. However, the
accumulator method has the disadvantage that the wave-
table fetch and decoding operations must occur over and
over as long as the synthesizer sustains the note, thereby
increasing the average computational cost per output
sample. The inner loop of the synthesizer must also be
modified to handle the additional wavetable decoding
operations.

A more subtle disadvantage is that the differential
encode/decode implies that every encoded wavetable
element must be fetched and accumulated even if the
intervening samples are not actually needed by the
synthesizer—the current wavetable sample depends
on all the prior differential values. For example, if the
sample increment is greater than unity and only simple
linear interpolation is performed, certain wavetable
samples will be skipped as the LUI hops through the
wavetable, but the skipped samples must still be computed
due to the sequential differential representation of the
wavetable.

4.2.3 Method 3—Accumulator with Loop Fix-Up
The third implementation alternative is similar to

method 2, except a special fix-up value is used rather than
resetting the decode accumulator at the end of the loop.
The fix-up value allows a perfect loop accumulation by
holding the precise unencoded difference between the ac-
cumulated differential values at the end of the wavetable
and the value at the start of the loop. The fix-up is pre-
calculated during the encoding process and stored at the
end of the wavetable. A key advantage of this method is
that it can be implemented with a symmetrical structure
that does not require explicit end-of-loop calculations. By
reserving one of the code words to indicate that the fix-up
value is to be fetched, the decode/synthesis process auto-
matically handles the loop transition without needing any
side information. This approach is particularly suited
to situations in which the sample fetch, decoding, and in-
terpolation processes are performed by special-purpose
hardware.

5 OTHER OPTIONS

We have recently simulated several alternatives for the
wavetable compression/decompression task. Two such op-
tions, described briefly in this section, have the potential to
improve the compression ratio for a given level of quality,
and also to improve the efficiency of the synthesis process.

5.1 Log Encoding to Reduce Multiplies
In typical wavetable synthesis applications the samples

recovered from the wavetable are interpolated using a
multiplicative weighting, and then further multiplied by a
time-varying amplitude envelope to simulate the attack and
release characteristics of the desired timbre. The multiplica-
tion operations may be costly in a custom silicon implemen-
tation due to the size and complexity of the multiplier hard-
ware, or the need to time multiplex access to the multiplier
unit. However, by using a true logarithmic encoding of the
wavetable differential values and representing the amplitude
envelope in logarithmic form, it has been suggested that the
interpolation and amplitude scaling could be performed by
adding the logarithms rather than requiring explicit multiplies
[12]. An antilog look-up table in the decoder can then be used
to reconstruct the output waveform.

5.2 Model-Based Compression
Another encoding alternative consists of a linear pre-

diction model. In this case the wavetable is considered to
be a portion of the impulse response of a recursive digital
filter. The encoding process involves determining the pa-
rameters of the filter model, selecting a suitable excitation
function such as a noise burst or impulse, and minimizing
the coding distortion. During synthesis the filter coeffi-
cients and initial filter state are fetched, and the excitation
function is used to regenerate the wavetable. If the com-
plexity of the filter and the excitation function can be
minimized, the model approach can further reduce the
storage needed for wavetable synthesis.

6 CONCLUSION

The differential wavetable encoding method can achieve
data compression factors of 30–50% with acceptable quality.
This corresponds to representing the original 16-bit audio
samples with only 8-bit nonlinear differential values, while
still achieving 12-bit quality. As described in this communi-
cation, the peculiar coding problems presented by the looped
wavetable synthesizer can be ameliorated to a great extent by
careful sample set selection and effort in coding optimization
during the encoding process, yet without affecting the inher-
ent low complexity of the differential decoder. Thus a single
compressed sample set delivered to the mobile playback de-
vice can be used repeatedly with low bandwidth synthesizer
command messages, such as mobile MIDI [1].

7 REFERENCES

[1] MIDI Manufacturers Association, GM Lite Specifi-
cation and Guidelines for Mobile Applications (MMA, La
Habra, CA, 2001).

COMMUNICATIONS WAVETABLE SYNTHESIS STRATEGIES

J. Audio Eng. Soc., Vol. 53, No. 3, 2005 March 211

[2] “Ring Tones Bringing in Big Bucks,” Wired News/
Reuters (2004 Jan. 13); www.wired.com/news/business/
0,1367,61903,00.html.

[3] M. Mathews, The Technology of Computer Music
(MIT Press, Cambridge, MA, 1969).

[4] C. Dodge and T. Jerse, Computer Music: Synthesis,
Composition, and Performance, 2nd ed. (Schirmer, New
York, 1997).

[5] R. Bristow-Johnson, “Wavetable Synthesis 101, A
Fundamental Perspective,” presented at the 101st Con-
vention of the Audio Engineering Society, J. Audio Eng.
Soc. (Abstracts), vol. 44, p. 1176 (1996 Dec.), preprint
4400.

[6] M. Hans and R. W. Schafer, “Lossless Compression
of Digital Audio,” IEEE Signal Process. Mag., vol. 18, no.
4, pp. 21–32 (2001).

[7] K. Brandenburg, “Perceptual Coding of High Qual-
ity Digital Audio,” in Applications of Digital Signal Pro-

cessing to Audio and Acoustics, M. Kahrs and K. Bran-
denburg, Eds. (Kluwer, Boston, MA, 1998).

[8] N. S. Jayant and P. Noll, Digital Coding of Wave-
forms (Prentice-Hall, Englewood Cliffs, NJ, 1984).

[9] D. Rossum, “An Analysis of Pitch-Shifting Algo-
rithms,” presented at the 87th Convention of the Audio
Engineering Society, J. Audio Eng. Soc. (Abstracts), vol.
37, p. 1072 (1989 Dec.), preprint 2843.

[10] D. C. Massie, “Wavetable Sampling Synthesis,” in
Applications of Digital Signal Processing to Audio and
Acoustics, M. Kahrs and K. Brandenburg, Eds. (Kluwer,
Boston, MA, 1998).

[11] MIDI Manufacturers Association, Complete MIDI
1.0 Detailed Specification, version 96.1 (MMA, La Habra,
CA, 2001).

[12] E. Lindemann, “Audio Data Decompression and In-
terpolation Apparatus and Method,” U.S. patent 5,890,126
(1999).

THE AUTHOR

Robert C. (Rob) Maher was born in 1962 in Cambridge,
UK, of American parents. He received a B.S. degree from
Washington University, St. Louis, in 1984, an M.S. degree
from the University of Wisconsin–Madison in 1985, and a
Ph.D. degree from the University of Illinois–Urbana in
1989, all in electrical engineering. While a student he
worked as a graduate research assistant with James
Beauchamp at the University of Illinois Computer Music
Project, supported by a National Science Foundation
Graduate Fellowship and an Audio Engineering Society
Educational Grant.

Dr. Maher was a professor with the Department of Elec-
trical Engineering at the University of Nebraska–Lincoln
from 1989 to 1997. In 1997 he left academia to join
EuPhonics, Inc., of Boulder, CO, serving as vice president
of engineering. When EuPhonics was acquired by 3Com
Corporation in 1998 he became the engineering manager
for audio product development for 3Com/U.S. Robotics.

In 2001 he became sole proprietor of a digital audio signal
processing consulting company, serving a variety of cli-
ents in the computer audio and multimedia industry. He
also taught part-time as an adjunct professor at the Uni-
versity of Colorado, Boulder. He formally reentered the
academic field in 2002 by joining the Department of Elec-
trical and Computer Engineering at Montana State Uni-
versity, Bozeman, where he is currently an associate pro-
fessor. His teaching and research interests lie in the
application of advanced digital signal processing methods
in audio engineering, environmental sound classification,
and music synthesis.

Dr. Maher is a member of the Tau Beta Pi, Eta Kappa
Nu, Phi Kappa Phi, and Sigma Xi honor societies and of
several professional organizations, including the Audio En-
gineering Society, IEEE, ASA, and ASEE. He was the chair
of the AES Colorado Section from 1999 to 2001 and served
as papers cochair for the 2004 AES 117th Convention.

MAHER COMMUNICATIONS

J. Audio Eng. Soc., Vol. 53, No. 3, 2005 March212

http://www.wired.com/news/business/0,1367,61903,00.html

