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Abstract 

Digerential  encoding is a well known low complez- 
i l y  coding technique. Its use in  the coding of wideband 
audio i s  limited by i t s  inability t o  follow rapid changes 
in the signal. This i s  a serious drawback when coding 
high fidelity audio where this inability can seriovsly 
degrade the perceptual quality of the reconstruction. 
This overload problem can be remedied by using a re- 
cursively indexed quantizer. In  this paper we present 
some empirical results f o r  the differential coding o f  au- 
dio signals. 

1 Introduction 

With the increased popularity of multimedia, and 
the increasing computational power of personal com- 
puters, schemes for compressing wideband audio sig- 
nals have been attracting increasing attention. While 
several highly efficient audio compression techniques 
have been developed in recent years [l], these are for 
the most part relatively complex schemes. In this pa- 
per, we present a low complexity scheme for coding 
wideband audio signals. The proposed scheme uses 
differential encoding to remove the redundancy from 
the signal, and a recursively indexed quantizer to en- 
code the residual signal. We describe the basic system - 

in the following. 

1.1 Differential Pulse Code Modulation 

Differential Pulse Code Modulation (DPCM) is a 
popular speech coding technique. The DPCM sys- 
tem consists of two main blocks, the predictor and the 
quantizer. 
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Fig. 1: The DPCM system 

For a given input sequence {xn}, the predictor gen- 
erates the prediction sequence {pn} using the past re- 
constructed values {2n} 

Pn = f(*n-1,5n-2,. ' . 150) (1) 

The difference between the input sequence and the 
predicted sequence d, is quantized and transmitted 
to the receiver. The quantizer can be viewed as a par- 
titioning of the input space into intervals, with each 
interval being represented by a binary codeword. This 
binary codeword is translated into a representation 
value at  the receiver. The difference between the in- 
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put and the representation value is called the quanti- 
zation noise. In order to cover the entire input space, 
the outer intervals are, at least in theory semi-infinite. 
This results in the division of the quantization noise 
into two types. The quantization noise resulting from 
an input falling in the inner (bounded) levels is called 
the granular noise, while the quantization error re- 
sulting from inputs falling in the outer (unbounded) 
intervals is called the overload noise. 

Representing the quantizer as a source of quantiza- 
tion noise the differencing and quantization operations 
can be represented as follows 

At the receiver this quantized difference is added to 
the prediction value generated by the receiver. If there 
is no error introduced in the transmission channel the 
transmitter and receiver predictor are operating on the 
same input and therefore produce the same prediction 
value. Therefore the reconstructed value is given by 

Thus the only distortion contained in the reconstruc- 
tion is the quantization noise. However, the quantiza- 
tion noise depends on the magnitude of the difference 
dn which in turn depends on the accuracy of the pre- 
diction p,. If the prediction is far from the input dn 
will be large. A large value of dn would fall in the 
outer intervals of the quantizer, resulting in a large 
overload error. This error would then become part of 
the reconstruction signal which would result in a de- 
crease in the accuracy of the next prediction. Such a 
situation would generally occur when the input signal 
would be changing too rapidly for the predictor to  keep 
track. As this is not an unusual situation for many 
wideband audio signals, differential encoding can re- 
sult in objectionable distortion in the reconstructed 
signal. The recursively indexed quantizer (RIQ) was 
originally developed to  deal with similar problems in 
image compression [3]. We have since shown that the 
use of the RIQ in a differential encoding system results 
in optimum performance for synthetic sources [4] and 
that an adaptive version of the RIQ also performs well 
in differential encoding of audio [2]. 

1.2 The Recursively Indexed Quantizer 

In [5] a Recursively Indexed quantizer (RIQ) was 
presented. The RIQ algorithm is briefly described as 
follows. 

For a given quantizer stepsize A and a positive in- 
teger K ,  define z1 and z h  as follows: 

z h  = + ( K  - 1)A 

where LzJ is the largest integer not exceeding 2:. A 
recursively indexed quantizer of size K is a uniform 
quantizer with step size A (the uniform spacing both 
between the thresholds and between the output lev- 
els) and with 21 and zh being its smallest and largest 
output levels (Q defined this way always has 0 as an 
output level). The quantization rule Q is given as fol- 
lows: 

For a given input value z if z falls in the interval 
(21 + (A/2),zh - (A/2)), then Q(z) is the nearest 
output level. If 2: is greater than zh - (A/2), see if 

~ 1 %  - z h  E (ti + (A/2), 2:h - (A/2)). 
If 80, Q(z) = ( E h ,  Q(z1)). 
If not, form 2 2  = z - 2 2 h  and do the same as for 

21. 
This process continues until for some m, 2, = 2: - 

mzh falls in (.c1(A/2),zh - (A/2)), in which case 3: 
will be quantized into 

Q ( 2 )  = (zhrZh,.”rzh,Q(Zm)) 

If 2: is smaller than 11 + (A/2), a similar procedure to 
this is used, i.e., x,,, = z - mzl is formed so that it 
falls in (zI + (A/2), Z h  - (A/2)), and is quantized to 

In summary, the quantizer operates in two modes: 
it operates in one mode when the input falls in the 
range (21 + $,zh - $), and another when the input 
falls outside of the specified range. The distortion per 
sample is always bounded by $. 

Let 0 be the ratio of the number of output symbols 
from the RIQ for a given number of input symbols. 
The rate of the quantizer is given by [ti] 

(2 : / ,2 / , .  ’ &(zm)).  

R = 0Pog2(K)l (8)  

R = 0HRg ( K )  (9) 

if the output of the RI& is encoded using a fixed rate 
code, and 

when the output of the RIQ is encoded using an en- 
tropy coder. H R Q ( K )  is the entropy of the represen- 
tation alphabet. 

1223 



2 The Proposed System 

The proposed system is a DPCM system similar 
to the one shown in Figure 1. The only difference is 
that the quantizer is replaced by a recursively indexed 
quantizer. This structure yields granular distortion 
only and with the error being bounded by A/2. Thus 
even if the prediction is highly inaccurate resulting 
in a large input for the quantizer, the output of the 
quantizer is at most AI2 away from the input. This 
means that the reconstructed value z; will differ from 
the input zn by at most A/2, thus preventing the error 
in prediction from propagating. 

In the case of small A, and a smooth input density, 
we can show that 

A2 
U; k 12 

This means that specifying the value of the stepsize 
A specifies the quantization noise power and hence 
the signal to noise ratio. This property allows us to 
“fine tune” the noise power at any time. Modifica- 
tion of the stepsize has been used as a method of rate 
control in some applications. While in these appli- 
cations the modification of the stepsize also affected 
the distortion, the control over the distortion was not 
precise; modifying the stepsize changes the granular 
noise, but it also affects the probability of overload. In 
the DPCM-RIQ system, as there is no overload noise, 
modification of the stepsize allows us to precisly con- 
trol the distortion. 

The recursively indexed quantizer can be totally 
specified by specifying the stepsize A and the number 
of levels K .  We have briefly discussed the effect of the 
selection of A, we look now at the effect of the selection 
of K .  In [5] we had noted that if the output of the RIQ 
was to  be entropy coded, as long as the value of K was 
moderately large (> 16), there was no significant effect 
of the actual size of K .  However if the output of the 
RIQ was to be encoded using a fixed length code, the 
size of K could significantly affect the rate. For fixed 
rate encoding the average rate is going to be at least 
as large as log,(M), therefore we would like to keep K 
small. This is exactly the opposite of the situation in 
the entropy coded case, where increasing the size of the 
quantizer alphabet can only decrease the average rate. 
However, making K small also increases the number 
of recursions and therefore the expansion factor 8. 

In [4] we had shown that for Gauss-Markov and 
Laplace-Markov sources, if the output of the RIQ sys- 
tem is entropy coded, the DPCM-RIQ performed at 
or close to the optimum entropy constrained DPCM 
system. In this paper, we will examine the perfor- 
mance of the DPCM-RIQ system when it is used to 

encode audio sequences. We have a number of ob- 
jectives. First, we would like to  see if the earlier re- 
sults obtained for synthetic sources hold true for real 
sources. Secoud, we would like to see the effect of the 
size of the alphabet on the average rate for a fixed rate 
coding system. Finally we would like to  see if there 
is much advantage to be gained from entropy coding 
the output of the RIQ in terms of both objective and 
subjective criteria. 

3 Simulation Results 

We implemented the DPCM-RIQ system using a 
first order predictor and RIQs with different numbers 
of levels. The inputs consisted of three different au- 
dio signals, an orchestra piece (moz),  a rock and roll 
piece (cohn),  and a solo soprano (uega).  The stepsize 
A was adjusted in order to provide two compression 
ratios, 4 : 1, and 5 : 1. The results are tabulated 
in Tables 1- 6 .  The rates were computed assuming 
fixed rate coding but without using the ceiling func- 
tion in (8). Therefore, unless we were to use some 
form of extended code, the compression ratios have 
been over estimated. However, for seven level quan- 
tizer which seems to give the best or close to the best 
performance in all cases, this overestimation is very 
slight. The SNR is given by 

where U: is the variance of the input, and CT: is the 
variance of the reconstruction error. For the estimated 
values of SNR,  the value of U: was obtained by using 
equation (10). For the computed value of S N R ,  the 
value of U; was computed from the simulation. Notice 
the extremely close agreement between the computed 
and estimated values. 

In both the 4 : 1 and 5 : 1 case the S N R  peaks at 
around 7 levels. This means that if we represent the 
output of the DPCM-RI& system using three bits per 
sample we will be operating close to  the optimum. 

To see how much gain could be had by using en- 
tropy coding on the output, we used a twenty one level 
RIQ with entropy coding. The stepsize wits adjusted 
to obtain the desired rate. The results are tabulated 
in Table 7. 

As can be seen from Table 7 except for the 4 : 1 
Mot  input, there is about a 3 dB gain with entropy 
coding. Based on informal listening tests, this 3 dB 
gain was clearly perceptible. However, whether the 
improvement is sufficient to  warrant the added com- 
plexity would depend on the application. 

1224 



Levels e SNR(est.) 
3 .047 37.34 
5 .037 39.42 

SNR(comp.) 
37.34 
39.44 

Table 1. Performance of the 4 : 1 DPCM-RIQ system 
with the Cohn input. 

Levels 9 SNR(est.) 
3 .083 32.41 
5 .069 34.01 

SNR(comp.) 
32.41 
34.01 

7 
9 
11 
13 
15 

Table 2. Performance of the 4 : 1 DPCM-RI& system 
with the Moz input. 

~~ 

.035 39.91 39.91 

.034 40.16 40.16 

.034 40.16 40.16 

.036 39.66 39.67 

.050 36.81 36.81 

Levels I e I SNR(est.) I SNR(comp.) 
3 I .070 I 33.88 I 33.89 

7 
9 

.069 34.01 I 34.01 

.110 29.96 I 29.96 

Levels 5 SNR(est.) 
3 .055 35.98 
5 .043 38.12 

SNR(comp.) 
35.97 
38.12 

Table 5. Performance of the 5 : 1 DPCM-RIQ system 
with the Moz input. 

7 
9 
11 
13 
15 

Levels I I SNR(est.) I SNR(comp.) 
3 I ,117 I 29.42 I 29.39 

I 

.038 39.19 39.19 
,035 39.91 39.90 
.034 40.16 40.16 
.036 39.66 39.66 
.Os0 36.81 36.81 5 

7 
9 

Table 6. Performance of the 5 : 1 DPCM-RIQ system 
with the Vega input. 

I 

. lo5 30.36 30.27 

.115 29.57 29.55 

.270 22.16 22.65 

Input Compression Best Fixed 
Ratio Rate SNR Table 3. Performance of the 4 : 1 DPCM-RIQ system 

with the Vega input. Cohn 4 : l  40.16 
Cohn 5 : l  35.22 
MO% 4 :  1 40.16 
MOP 5 : l  34.01 
Vega 4 : l  35.99 
Vega 5 : l  30.27 

I I 

9 I .150 I 27.27 I 27.28 1 
Table 4. Performance of the 5 : 1 DPCM-RIQ system 
with the Cohn input. 

Entropy 
Coded SNR 

43.56 
38.33 
41.53 
36.64 
39.18 
34.02 

Table 7. Comparison of entropy coded and fixed rate 
systems. 

5 
7 
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4 Conclusion 

The results for the DPCM-RIQ system for audio 
signals seems to agree with the earlier results for syn- 
thetic sources. For the fixed rate coding scheme, there 
is a clear dependence on the number of levels. Based 
on these rather limited results, a seven level RIQ seems 
to  give the best, or close to the best performance. The 
utility of this scheme depends on the tradeoffs required 
in a particular application. The system is extremely 
simple to implement, and can easily perform at real- 
time on a 486 Personal computer using an implemen- 
tation in C. The perceptual quality of the 4 : 1 coded 
system, while not transparent, is quite good. If trans- 
parent reconstruction is required and computational 
complexity is not an issue, systems such as those de- 
scribed in [l] would probably be preferred. However, 
where complexity becomes important, this approach 
is certainly worth looking at. 
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