
Delta method Appendix F of WNC (esp. F.4) & Appendix B of CW

Once you’ve produced an estimate of one or more parameters in a model of interest, you often want to
use those estimates to obtain estimates of the mean and variance of transformations of those
parameter estimates. Our attention here will be on estimating the variance of the transformed variable.
One common approach is to use the Delta method, which propagates the errors or uncertainty about
the estimated parameters into the variance of the transformed quantity based on those estimates or
random variables. From page B-7 of CW: “… the Delta method rests on the assumption the first-order
Taylor expansion around the parameter value is effectively linear over the range of values likely to be encountered.”

Examples of Transformations of Interest

ˆ ˆ
A BDiff S S= −

1 (or Mean Life Span) ˆln()
MLS

S
= −

2
1

1

ˆˆ
ˆ

N
N

λ =

35
NestSuccess DSR=

0 1

0 1

ˆ ˆexp()ˆ
ˆ ˆ1 exp()

PatchSizeS
PatchSize

β β
β β

+ ⋅=
+ + ⋅

The Delta Method

As shown below, the Delta method uses a first-order Taylor series expansion. Appendix B of CW goes
into great detail on the approach and I will not repeat much of that information here. Instead, the
material here focuses on the concept. We are interested in bringing two types of information together:

(1) How uncertain are we of the estimates being used in the equation that generates the transformed
quantity? This is measured by the appropriate values in the variance-covariance matrix.

(2) How much does that uncertainty matter to the transformed quantity? This is measured using
calculus, specifically derivatives.

The two types of information are multiplied together (by matrix multiplication).

 2var() var(()) ('()) var()Y g X g Xμ= =

The trick is getting the derivatives but we can use software to help us find them so it’s not too hard.

Examples

A. ˆ ˆ
A BDiff S S= −

1. Obtain the partial derivatives of transformation with respect to each of the random variables
involved:

1 1ˆ1 1ˆ A

A

d Diff S
dS

−= ⋅ = ; 1 1ˆ1 1ˆ B
B

d Diff S
dS

−= − ⋅ = −

2. Multiply the vector of derivatives by the variance-covariance matrix in appropriate fashion.

()
2

2

2

ˆ ˆ ˆˆ ˆ[] [,] 1
ˆ 1 1

ˆ ˆ ˆ 1ˆ ˆ[,] []
A A B

Diff
A B B

S S S

S S S

σ σ
σ

σ σ

⎛ ⎞ ⎛ ⎞
= − ⋅ ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟ −⎝ ⎠⎝ ⎠

()2

2

0.0059525 0.0001484673 1
ˆ 1 1 0.007170965

0.0001484673 0.0015154 1

ˆ 0.08468155

Diff

Diff

σ

σ

⎛ ⎞ ⎛ ⎞
= − ⋅ ⋅ =⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

=

R code –
sigma=matrix(c(0.0059525, 0.0001484673, 0.0001484673, 0.0015154),2,2)
derivs=matrix(c(1,-1),2,1)
VarDiff=t(derivs)%*%sigma%*%derivs
sP = 0.5770599
sG = 0.7699526
Diff= sG - sP
lciDiff=Diff-1.96*sqrt(VarDiff)
uciDiff=Diff+1.96*sqrt(VarDiff)
c(lciDiff, Diff, uciDiff)

or … with ‘msm’ package installed, which works out the derivatives for you

library(msm)
sigma=matrix(c(0.0059525, 0.0001484673, 0.0001484673, 0.0015154),2,2)
sP = 0.5770599
sG = 0.7699526
Diff= sG - sP
seDiff=deltamethod(~x1-x2,c(sG,sP),sigma,ses=TRUE)
lciDiff=Diff-1.96*seDiff
uciDiff=Diff+1.96*seDiff
c(lciDiff, Diff, uciDiff) # 0.02691686 0.19289270 0.35886854

B. 2
1

1

ˆˆ
ˆ

N
N

λ =

1.
()

1 2
2

1 1

ˆ ˆ
ˆ ˆ

d N
dN N

λ = − ; 1

2 1

ˆ 1
ˆ ˆ

d
dN N

λ =

2.
()

()
1

2
22

1 1 22 12
ˆ 2 2

1 1 2 21

1

ˆ

ˆ ˆ ˆ ˆˆ ˆ ˆ[] [,]1ˆ 0.0183023ˆ ˆ ˆ ˆˆ ˆ ˆ[,] [] 1
ˆ

N

NN
NN

N

λ

σ λ σ λ λ
σ

σ λ λ σ λ

⎛ ⎞
−⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎜ ⎟⎜ ⎟= − ⋅ ⋅ =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎜ ⎟⎝ ⎠ ⎜ ⎟
⎝ ⎠

1 1

2
ˆ ˆˆ ˆ 0.1353λ λσ σ= =

R code –

N1=117.04
N2=67.20
L1=N2/N1
sigma=matrix(c(575.75, 144.02, 144.02, 226.29),2,2)
seLambda=deltamethod(~x2/x1,c(N1,N2),sigma,ses=TRUE)
lciL1=L1-1.96*seLambda
uciL1=L1+1.96*seLambda
c(lciL1, L1, uciL1) # 0.3090021 0.5741627 0.8393232

C.
35

NestSuccess DSR=

1.
34

35d NS DSR
d DSR

= ⋅

2. () ()
2342 2ˆ ˆ35 0.000308

NS DSR
DSRσ σ= ⋅ ⋅ =

2ˆ ˆ 0.01755

NS NS
σ σ= =

R code –

DSR=0.9528288
seDSR=0.002592525^2
seNS=deltamethod(~x1^35,DSR,seDSR,ses=TRUE)
NS=DSR^35
lciNS=NS-1.96*seNS

uciNS=NS+1.96*seNS
c(lciNS, NS, uciNS) # 0.1498985 0.1842980 0.2186976

D. 0 1

0 1

ˆ ˆexp()ˆ
ˆ ˆ1 exp()

PatchSizeS
PatchSize

β β
β β

+ ⋅=
+ + ⋅

0 1
ˆ ˆ22.72412 0.18589

71.0620388 -0.579228143ˆ
-0.579228143 0.004726825

β β= − =

⎡ ⎤
Σ = ⎢ ⎥

⎣ ⎦

R code –
out2=matrix(0,51,9)
for (i in 1:51) {
 PA=99+i
 out2[i,1]=PA # store value of Patch Area in output matrix
 out2[i,2]=betas[1]+betas[2]*PA # store est. of ln(S/(1-S))
 formula <- sprintf("~x1+%f*x2", PA) # build formula to include ‘PA’
 # Store se(ln(S/(1-S)))
 out2[i,3]=deltamethod(as.formula(formula),betas,sigma,ses=TRUE)
 out2[i,4]=out2[i,2]-1.96*out2[i,3] # store est of lcl for ln(S/(1-S))
 out2[i,5]=out2[i,2]+1.96*out2[i,3] # store est of lcl for ln(S/(1-S))
 out2[i,6]=1/(1+exp(-(out2[i,2]))) # store est of S
 formula <- sprintf("~1/(1+exp(-(x1+%f*x2)))", PA)
 # Store se(S)
 out2[i,7]=deltamethod(as.formula(formula),betas,sigma,ses=TRUE)
 out2[i,8]=1/(1+exp(-(out2[i,4]))) # store lcl for est of S
 out2[i,9]=1/(1+exp(-(out2[i,5]))) # store ucl for est of S
}
colnames(out2)=c('PatchArea','logOddsS','seLogOdds','lclLO','uclLO',
 'estS','seS','lclS','uclS')
out2=as.data.frame(out2)

with(data=out2,plot(PatchArea,estS,'l',col='blue',ylim=c(0,1),ylab=’Estimated S’))
points(out2$PatchArea,out2$lclS,type='l',lty=3,col='blue')
points(out2$PatchArea,out2$uclS,type='l',lty=3,col='blue')

Other Methods of Developing Confidence Intervals do exist and sometimes are preferred (see B-7, CW)

