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Testing GOF & Estimating Overdispersion 
 
Your Most General Model Needs to Fit the Dataset 
 
It is important that the most general (complicated) model in your candidate model list fits the 
data well.  This model is a benchmark when evaluating other models.  Thus, comparing the 
relative fit of simpler models to that of your most general model only makes sense IF the 
general model fits the data.  That is, modeling only provides accurate description and inference 
for your data set if the general model fits the data set well.  If your general model does not fit, 
you need to consider your data further and consider explanations for lack of fit.  Such re-
evaluation can improve your understanding of the problem at hand. 
 
You evaluate whether the model fits the data via Goodness-of-Fit (GOF) testing.  In typical 
regression problems with normally distributed errors, you can evaluate GOF by a variety of 
methods.  For example, you can check R2, plot the fitted model and the raw data against 
explanatory variables, plot the residuals, test for outliers and influential observations, etc.  Some 
of these diagnostics are simply unavailable for binomial and multinomial response variables, 
e.g., R2. Others are more difficult with binomial and multinomial response variables.  For 
example, for a binomial response, analysis of residuals is difficult because each residual ( i ) can 

take on only one of two values for any i (either 1- i  or 0 - i ).  Thus, we don’t expect the 

residuals to be normally distributed and don’t know what distribution to expect them to follow 
under the assumption that the fitted model is appropriate.  Consequently, plots of residuals 
against values of the explanatory variables are uninformative.  So, we’ll have to consider other 
diagnostics. 
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GOF is Evaluated with a Variety of Methods 
 
Although GOF can be difficult for the data types we discuss in this class, there are a variety of 
methods that people have employed for testing GOF.  To develop an understanding of how GOF 
works, it helps to start with a relatively simple GOF test first.  Let’s start with a simple 
comparison of observed and expected counts. 
 

1. Observed vs. Expected Counts  
 

An omnibus GOF test for CR models can be based on the mij array  
Example with the European Dipper dataset – both sexes pooled 
 
observed array 
11   2   0   0   0   0 

    24   1   0   0   0 

        34   2   0   0 

            45   1   2 

                51   0 

                    52 

 
expected  (under CJS model, i.e., phi(t), p(t) given estimates and Ri)         
11.0   1.9  0.1  0    0    0 

      24.1  0.9  0.1  0    0 

           34.0  1.8  0.1  0 

                45.1  2.8  0.1 

                     49.1  1.9 

                          52.0 

 
Many of the expected values are less than 2 (14 of 21), which is problematic for the test’s 
performance.  Also, the test gives only an overall idea of GOF.  It does not take full advantage of 
the information that we have and inform us as to where problems exist, e.g., certain years or 
cohorts.  Program RELEASE was developed to go further.  Specifically, we can use Program 
RELEASE to examine whether animals behave the same: 

1. regardless of their past capture history (Test 3), and 
2. regardless of whether they are captured on the current occassion (Test 2). 

RELEASE partitions the data and analyzes it in pieces – RELEASE does this nicely for us and 
RELEASE can be run from inside Program MARK – it’s under the TESTS button.  
NOTE: if you conduct a CJS-type analysis for serious work, you’ll need to learn how to use 
Program RELEASE and Chapter 5 of C&W and references therein will help you to do that.   

 
For a logistic-regression analysis of known-fate data, you can compare the fitted model’s 
predicted or expected counts of Y=1 and Y=0 against the observed counts for each level of the 
explanatory variable used in the study.  The comparisons can be done using a Pearson X2 or 
likelihood-ratio G2 test statistic to test the null hypothesis that the model fits the data.  For a 
fixed number of levels and when most expected counts are >~5, then these test statistics have 
approximate chi-squared distributions.  The df  for the test is equal to the number of levels of 
the explanatory variables minus the number of parameters estimated by the model. 
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When the explanatory variables are continuous, it is difficult to analyze GOF without some form 
of grouping of the explanatory values.  This is because the expected values for each observed 
value of the explanatory variable are usually small (<5) in this case.  Thus, the test statistics do 
not have approximate chi-squared distributions.  Let’s consider an example for survival of 
cutthroat trout as a function of length.  Length was measured as a continuous variable, 66 
different lengths were obtained for 173 fish, and this variable was used to estimate S.  The fitted 

model is: 
12.351 0.497

12.351 0.4971

Length

Length

e

e

 

 
.  However, not many fish were the same length so the number of 

fish that are expected to live or die for any length is quite small for this model.  The way around 
this is to group the fish into groups by length.  Of course, decisions have to be made about how 
to group the data.  It is common to partition the data so that all groups have ~equal sample size. 
Strategies for grouping and other forms of these tests (e.g., the Hosmer-Lemeshow test) are 
discussed well in books on the analysis of categorical data (e.g., Agresti 1996) and easily 
implemented in good logistic-regression software packages. 
 

Length (cm) Observed 
Survived 

Expected 
Survived 

(Obs-Exp)
2
 

Exp 
 Observed 

Died 
Expected 

Died 
(Obs-Exp)

2
 

Exp 

<23.5 5 3.64 0.508  9 10.36 0.179 

23.25-24.25 4 5.31 0.323  10 8.69 0.197 

24.25-25.25 17 13.78 0.752  11 14.22 0.729 

25.25-26.25 21 24.23 0.431  18 14.77 0.706 

26.25-27.25 15 15.94 0.055  7 6.06 0.146 

27.25-28.25 20 19.38 0.020  4 4.62 0.083 

28.25-29.25 15 15.65 0.027  3 2.35 0.180 

>29.25 14 13.08 0.065  0 0.92 0.920 

  Sumsurv part 2.181   Sumdied part 3.140 

 
There are 8 levels and the model contains 2 estimated parameters: an intercept (12.351) and 
slope term (0.497 for length) for predicting the survival of the fish as a function of length.  Thus, 
df = 6.  The 2 test statistic values are: Pearson X2 = 5.321 (2.181+3.140) and G2 = 6.2.  Neither 
indicates lack of fit (P > 0.4).   

As the number of explanatory variables increases, simultaneous grouping across many variables 
leads to a contingency table with many cells, and many will have small expected counts.  Under 
these circumstances, you can group the observed and expected counts according to their 
predicted probabilities, 8 groups formed from low to high probability.  If you are doing logistic 
regression, you might want to read Hosmer et al. (1997; A comparison of goodness-of-fit tests 
for the logistic regression model. Stat in Med 16:965–980) and see if anything newer has come 
out since then.  The rms package in R implements some of the latest goodness-of-fit methods 
for logistic regression.  
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The Saturated Model & Model Deviance for Fitted Models 
 
Because the deviance is used commonly in various diagnostics, it is worth working a bit to 
understand how deviance is estimated. 
 
“The deviance of a fitted model is determined by comparing the log-likelihood of the fitted 
model to the log-likelihood of a model with n parameters that fits the n observations perfectly.  
Such a perfectly fitting model is called a saturated model.”  Neter et al. 1996.  Applied linear statistical 

models. 4
th

 Edition.  Irwin. 
 
It is rarely the case that the saturated model is in your candidate list.  For example, consider CJS 
models for 1 group, 3 occasions, 2 releases (R1 & R2), and no covariates.  Here, you might think 
that φ(t)p(t) would be the saturated model.  But, … think about this a bit more.  We said that we 
want a model with as many parameters as there are data points, and a truly saturated model 
would not just let φ and p vary by time.  For this type of dataset we would have 6 data points: 
the number of animals with each of 6 different Encounter Histories: 111, 110, 101, 100, 011, and 
010 .  We could also envision parameters varying based on which Release or cohort the animal 
was part of.  Thus, for CJS models, a reasonable way of calculating the saturated model’s lnL is: 
 

111 111 1 110 110 1 101 101 1 100 100 1 011 011 2 010 010 2[ ln( / ) ln( / ) ln( / ) ln( / ) ln( / ) ln( / )]Y Y R Y Y R Y Y R Y Y R Y Y R Y Y R            

 
Think about this formula – this is definitely the lnL based on a set of probabilities that match the 
observed probabilities for each encounter history perfectly. 
 
If you observed the following for a CJS study of 1 group over 3 occasions: 

EH 111 110 101 100 011 010  =6 

Yi 6 46 21 427 20 80  =600 

Here, R1 = 500, R2 = 100. 
 
The lnL =  6 ln(  6/500) + 46 ln(46/500) + 21 ln(21/500) + 427 ln(427/500) + 
               20 ln(20/100) + 80 ln(80/100) 
 
Thus, the lnLsaturated model = -320.294, and the –2lnL = 640.589.   
 
The saturated model fits the data perfectly assuming that the data are independent and that all 
animals with the same encounter history have parameter values that are identical (no 
overdispersion).  If we don’t know any covariate values for the animals we can’t develop a more 

complex model of φ and p and we calculate the -2lnL as above.  If individual covariates are 
included, the saturated model has a -2 log likelihood value of zero and the steps above aren’t 
needed: the deviance for a model with individual covariates is just its -2 log likelihood value. 
 
The saturated model gives us a baseline for evaluating the fits of other models.  A fitted model 
with a small deviance fits the data almost as well as the saturated model, and a fitted model 
with a large deviance value does not fit very well.  But, how do we decide when the deviance is 
too large? 
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Uses of Deviance in Analyses 
 

Likelihood Ratio tests - LRTs compare deviances of nested models to conduct 
significance tests of various factors in the models. The difference between the deviance values 
(which is the same value as the difference between the –2lnL values) is distributed 
approximately as X2 with the number of degrees of freedom equal to the difference in the 
number of parameters contained in the two models being tested.   
 

Deviance GOF Test – Given the logic that a fitted model with a small deviance fits the 
data almost as well as the saturated model, and that a fitted model with a large deviance value 
does not fit very well, deviance itself is sometimes proposed as a GOF criterion.  Formally, some 
people have proposed that deviance follows approximately a chi-squared distribution with 
degrees of freedom approximately equal to the difference in the degrees of freedom for the 
Saturated Model and the Fitted Model. 

 
Example for CJS model: The Saturated Model for the CJS example estimates 4 

probabilities. Okay, 6 probabilities are in the likelihood expression, but REMEMBER the 
probability of EH=100 is known once the probabilities of 111, 110, and 101 are estimated; and 
the probability of EH=010 is known once the probability of 011 is estimated (or vice versa). 
 
The phi(t)p(t) model estimates 3 parameters. Remember: phi2 and p3 are confounded and 

estimated only as a product.  Thus, when testing GOF for our most general model (φ(t)p(t)) 
using deviance, we have 1 degree of freedom.  For our simple example, the  
–2lnL for phi(t)p(t) = 642.41 and thus, the Deviance = 642.41 - 640.589 = 1.82 
The probability of a chi-squared value >1.82 with 1 df = 0.823, i.e., it’s a likely value to observe 
when the null hypothesis is true (H0 = phi(t)p(t) fits the data as well as the saturated model).   
 
Unfortunately, for CJS models it doesn’t appear that, in most cases, deviance follows the chi-
squared distribution well enough to provide a valid test.  Ughh!  Like LRTs, this is mentioned 
because you’ll see this in many books and discussions of categorical data. 
 
 Deviance Residuals – GOF statistics provide summary indicators of overall fit.  But, they 
do not inform us as to the nature of any lack of fit.  Residuals are useful for this purpose.  We’re 
not going to discuss them at any great length, but you should know that there are several 
special kinds of residuals calculated for categorical response variables. One type is a deviance 
residual.  As for regression of normally distributed Y values, there is a residual for each case in 
the study.   
 
 Overdispersion - The major use of deviance for our purposes will be to estimate the 
amount of over-dispersion in the data via c-hat.  Overdispersion occurs when the variance of 
the response variable exceeds the nominal variance, e.g., for a binomial the nominal variance is 
np(1-p).  Overdispersion can be caused by: 

1. lack of independence among animals – e.g., twins.  You have less data than you 
think! 

2. heterogeneity in the probabilities beyond that specified by the model, e.g., phi 
varies among animals within the same group during a single interval. 
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In ordinary regression models for a normally distributed random component, overdispersion 
due to heterogeneity is not a problem because the normal distribution describes variation using 

a separate parameter ( 2̂ ) than that used to describe the mean.  This is not true for categorical 

response variables.  For example, with the binomial distribution, the variance is a function of the 

mean ( p̂  (1- p̂ )/n).   

 
Factors such as genetics, environmental conditions, etc. can cause overdispersion among 
animals.  Apparent overdispersion occurs when the systematic component of the model (the 
regression string) is inadequate in some way.  For example, you: 

1. Omit important explanatory variables, 
2. Fail to include sufficient interaction terms, 
3. Assume a linear relationship between the transformed parameter (e.g., ln(S/(1-S)) 

and X  ), 

4. Have outliers in the dataset. 
You should eliminate these possibilities before concluding that the data are overdispersed.   
 
Let’s think about overdispersion and how it relates to deviance and GOF.  We said earlier that 
we wanted to know the deviance for our saturated model so that we’d have a baseline lnL value 
for evaluating other models.  Hmmm, what if the saturated model is inadequate?   How can this 
be?  Well, take the simple example of estimating weekly survival for 4 weeks and 2 groups (let’s 
say males and females).  You might not know that within each sex, there are 2 sub-groups.  Each 
of these sub-groups has different survival but you yet have no way of readily distinguishing 
these sub-groups by looking at them or measuring them!  In this case, your saturated model 
might NOT fit the data and now your deviances are wrong. 
 
As you can imagine, overdispersion, or at least apparent overdispersion, is common to many 
data sets.  You need to concern yourself with it because overdispersion causes you to 
underestimate the variance of parameter estimates and choose models that are too complex 
for the data at hand. 
 
To correctly estimate the variances, you need to inflate the nominal variance (that of the model) 

by the dispersion parameter, ĉ .  When the data are not overdispersed, ĉ =1.0.  When the data 

are overdispersed, ĉ is >1.0.  Thus, ĉ  is often termed a variance inflation factor. 
 
The good news is that the MLEs for the parameters are typically quite unaffected by 
overdispersion.  That is, the estimates of the model’s parameters are usually okay even when 
you have overdispersion.   
 
 Estimating c-hat - First, it is important that you estimate c-hat, the variance inflation 
factor, from your most general model (sometimes termed the global model).  Your most general 
model is the most highly parameterized model in your set of candidate models, i.e., the model 
that you think explains the variation in your model quite thoroughly. 
 
For some data types, you can use the deviance GOF test or Pearson GOF test to estimate c-hat.  
In either case the estimation is quite simple.  For example, if the deviance is used, you simply 
take the deviance/df as an estimate of c-hat.  Thus, in our earlier example for the CJS model, 
phi(t)p(t) is the most general model and would be used for estimating c-hat.  Its deviance was 
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1.82 and there was 1 degree of freedom.  Thus, the estimate of c-hat would be 1.82, which 
indicates some overdispersion.  Unfortunately, this does NOT work well for open-population 
capture-recapture models such as CJS, and estimates of c-hat obtained this way tend to be 
biased high.  Ugghh again!   
 

We need to consider other ways of estimating c-hat.  Fortunately, the median ĉ  procedure 

seems to work well for CJS models, and Lab 4 works through how to use the median ĉ  

procedure.   But, what do we do once we have ĉ ? 

 
Using c-hat – Improving Estimation and Model Selection for Overdispersed Data 
 
Okay, let’s say you’ve identified that there is some overdispersion in your dataset, what next?  
First you should be convinced that you don’t have any missing covariates, interactions, etc., i.e., 
you’ve done your best at developing a good general model.  You now need to complete 2 tasks: 
(1) adjust your AIC values so that your model-selection results are appropriate, and (2) inflate 
your variance estimates.   
 

 Model Selection based on QAICc or AICc/ ĉ :  If overdispersion has been identified, then 
model selection should be based on QAIC or QAICc.  This is easily accomplished by simply 
dividing the –2ln(L) value used to calculate AIC or AICc values by c-hat, i.e.,  
 

2ln 2 ( 1)
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When ĉ  is >1, then the contribution to the QAICc value from the model likelihood declines 
relative to the penalty term for a given model.  Thus, QAICc will tend to favor simpler models as 

ĉ  increases. 
 

Variance Inflation - It turns out that it’s easy to inflate your variance estimates.  It’s 

simply ˆˆ var( )c  .  Similarly, you could multiply the estimated sampling standard error of each 

parameter estimate by the square root of ĉ : ˆˆ ( )c se  .  If ĉ  is close to 1, then there is little 

effect.  Be sure to estimate ĉ from your global model. 
 

Final thoughts:  Your value of ĉ may be >1 because the global model is structurally inadequate, 
i.e., there is no overdispersion.  That is, in reality, had you obtained better covariates and better 
understood curvilinearities and interactions, you could have come up with a good model.  With 
that model, the parameter values are constant within the constraints of the model. Further, you 
may truly have independent observations. Thus, in reality you could have a model in which no 
overdispersion exists.  It will, of course, often be the case that you can’t tell whether you 

estimate ĉ >1 because of correctable model inadequacy (GOF problems), lack of independence, 
underlying heterogeneity in parameters (you can’t measure covariates related to the 
heterogeneity and model it), or combinations of all of these.   The good news is, that even in the 

face of not knowing why ĉ is >1, incorporating ĉ  into model selection and variance inflation at 
least leads to conservative inference. 


