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WILD 502 

The Binomial Distribution 

The binomial distribution is a finite discrete distribution. The binomial distribution arises in situations 
where one is observing a sequence of what are known as Bernoulli trials. A Bernoulli trial is an 
experiment which has exactly two possible outcomes: success and failure. Further the probability of 
success is a fixed number p which does not change no matter how many times you conduct the 
experiment. A binomial distributed variable counts the number of successes in a sequence of N 
independent Bernoulli trials.  The probability of a success (head) is denoted by p.  For N trials you can 
obtain between 0 and N successes. 
 
A representative example of a binomial density function is plotted below for the case of p = 0.3, N=12 
trials, and for values of k heads = -1, 0, …, 12. Note, as expected, there is 0 probability of obtaining fewer 
than 0 heads or more than 12 heads! And, the probability density is at a peak for the case where we 
observe 3 or 4 heads in 12 trials. 

 
 
 
 
 

 

 

 

 

 

The density function for a quantity having a binomial distribution is given by: 

݂ሺݕ|ܰ, ሻ݌ ൌ !ݕ!ܰ ∙ ሺܰ െ !ሻݕ ∙ ௬݌ ∙ ሺ1 െ 0	݂݅	ሻேି௬݌ ൑ ݕ ൑ ܰ,  ݁ݏ݅ݓݎ݄݁ݐ݋	0

Here y and N are positive integers and 0<p<1 is a probability. The numbers N and p determine the 
distribution, N representing the number of trials and p the probability of success in each trial.  The 
number f(y,N,p) represents the probability of exactly y successes out of N trials. It makes sense then that 
this probability is only nonzero for y =0,1,2,....,N.  Here, I’ve used y for the number of successes but you 
might see books or lecture notes use k and sometimes you’ll see n also. 

The Binomial Coefficient calculates how many ways a sample size of y heads can be taken from a 
population of N coins without replacement.  The remainder of the equation calculates how probable any 
such an outcome is. 
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So, if we know that adult female red foxes in the Northern Range of Yellowstone National Park have a 
true underlying survival rate of 0.65, we can calculate the probability that different numbers of females 
will survive.  Imagine that there are 25 adult females in the population at the start of the year.  What’s 
the probability that 0, 1, 2, …, 25 will survive?  In R, we can calculate this easily with the following 
command ‘dbinom(seq(0,25,1),25,0.65)’.  Or, to be more organized, we can type in the following: 

> x=seq(0,25) 
> y=dbinom(x,25,0.65) 
> out=cbind(x,y) 
> round(out,3) 
       x     y 
 [1,]  0 0.000 
 [2,]  1 0.000 
 [3,]  2 0.000 
 [4,]  3 0.000 
 [5,]  4 0.000 
 [6,]  5 0.000 
 [7,]  6 0.000 
 [8,]  7 0.000 
 [9,]  8 0.001 
[10,]  9 0.002 
[11,] 10 0.006 
[12,] 11 0.016 
[13,] 12 0.035 
[14,] 13 0.065 
[15,] 14 0.103 
[16,] 15 0.141 
[17,] 16 0.163 
[18,] 17 0.161 
[19,] 18 0.133 
[20,] 19 0.091 
[21,] 20 0.051 
[22,] 21 0.022 
[23,] 22 0.008 
[24,] 23 0.002 
[25,] 24 0.000 
[26,] 25 0.000 
> sum(y) 
[1] 1 
 

So, we can see that the most likely outcome is for 16 or 17 to survive but that other numbers are also 
fairly probable.  We also see that the probabilities sum to 1. 

If we want to simulate outcomes for this population, we can do so easily using the command ‘rbinom’ 
and providing it numbers, e.g, type ‘rbinom(1,25,.65)’, which yields the outcome of one simulated 
dataset with 25 individuals and a probability of success of 0.65. When I executed the code, I obtained 14 
survivors.  Repeating the command will provide additional simulations: when I did 4 more simulations, I 
obtained 12, 14, 17, & 18. 

We can do many simulations by issuing a command like ‘rbinom(100, 25, .65)’, which is 100 simulations 
with 25 trials in each & where every trial has a probability of success of 0.65.  When I did this, I obtained: 

  [1] 10 18 14 15 17 17 13 14 18 18 12 14 17 14 21 18 13 20 14 15 18 22 20 15 20 
 [26] 14 17 14 20 17 18 12 16 17 14 19 18 17 17 19 16 19 12 16 19 16 20 18 20 17 
 [51] 15 17 16 17 14 12 17 18 15 15 16 17 16 19 18 18 13 16 17 18 15 16 16 15 12 
 [76] 15 15 19 17 13 16 21 17 21 21 14 12 13 14 19 18 15 15 19 16 12 19 16 13 17 
 

Where the minimum was 10, the maximum was 22, the mean was 16.34, and the variance was 6.34. 
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Maximum Likelihood Estimation – the Binomial Distribution 
 
This is all very good if you are working in a situation where you know the parameter value for p, e.g., the 
fox survival rate.  And, it’s useful when simulating population dynamics, too.  But, in this course, we’ll be 
estimating the parameters from data rather than generating data from known parameters.  So, … 
Estimating binomial probability from data with Maximum Likelihood 
 
,ݕ|݌ሺܮ  ܰሻ ൌ !ݕ!ܰ ∙ ሺܰ െ !ሻݕ ∙ ௬݌ ∙ ሺ1 െ 0	݂݅	ሻேି௬݌ ൑ ݕ ൑ ܰ,  ݁ݏ݅ݓݎ݄݁ݐ݋	0

 
Now, we’re estimating how likely various values of p are given the observed data.  Imagine that you 
radio-collared 20 of the female foxes, studied their survival for 1 year, and found that 6 of 20 survived.  
What would your guess be for survival rate?  I think that it would be 6/20 or 0.3?  Let’s see if the 
likelihood equation supports that guess. 
 
We can do this in R easily enough with the following commands: 
 
 
> p=seq(0,1,.01) 
> N=20 
> y=6 
> 
bc=factorial(N)/(factorial(y)*factorial(N-
y)) 
> Lp=bc*p^y*(1-p)^(N-y) 
> plot(p,Lp) 
 
 
 
 

 
Our guess is supported as the most likely estimate of p (̂݌) is 0.30.  And … it turns out that the 
peakedness of that likelihood surface also gives us information on how likely other values of ̂݌ are as 
well.  As you read through the Cooch and White reading for Maximum Likelihood with binomials you’ll 
see that we can use derivatives to get the variance of ̂݌.  And, once we have that we can build 
confidence intervals, etc.   
 
It turns out that we typically work with log-Likelihoods (or lnL) largely because of analytical advantages 
that come about when we take logs of these equations. 
 
For the binomial likelihood, we obtain: ln ܮ ሺݕ|݌, ܰሻ ൌ lnሺܥሻ ൅ ݕ ∙ lnሺ݌ሻ ൅ ሺܰ െ ሻݕ ∙ ln	ሺ1 െ  ሻ, where C is a constant representing the binomial݌
coefficient’s value (it’s often removed for simplicity as it’s truly just a constant). 
 
We can actually obtain closed-form estimators for ̂݌ from the binomial likelihood equation in its log 
form.  The steps are provided and explained in Chapter 1 (Section 1.3) of Cooch and White.  Do study 
that section of the chapter carefully.  The most likely value of ̂݌ = y/N and the MLE for the variance of ̂݌ 
is ̂݌ ∙ ሺ1 െ  ሻ/ܰ.  From this pair of equations you can see that (1) the variance decreases as N increaseŝ݌
and (2) the variance for a given N is largest when 0.5 = ̂݌. 
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Appendix to lecture for those interested in deriving the estimators 
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You can use R to obtain the derivatives if you want: 

> D(expression(y*log(p)),'p') 
y * (1/p) 
> D(expression((N-y)*log(1-p)),'p') 
-((N - y) * (1/(1 - p))) 
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Next, take the 2nd derivatives as 1st step in obtaining equation for variance 
 
You can again use R to obtain the derivatives (take the derivative of the 1st derivative) 
 
> D(expression(y/p-(N-y)/(1-p)),'p') 
-(y/p^2 + (N - y)/(1 - p)^2) 
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Now substitute y/N for one of the p’s each time it appears 
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Then rewrite (N-y) as (N)(1-y/N) to obtain: 
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The 2nd derivative of the log-likelihood evaluated at p̂ provides us with the Hessian.  That’s useful 
because the negative inverse of the Hessian provides us with a maximum likelihood estimator for the 
variance of p̂ .  Here, that estimator is −(1 )p p

N . 
 
By the way, when the likelihood involves more parameters, then you work with the relevant partial 
derivatives of the likelihood or log(L) to get the MLE’s for each of the parameters, the variances of the 
estimated parameters, and the estimated covariances of the estimated parameters. 
 
 


