
                                           Known Fate Models

This class of models is important because they provide a theory for estimation of survival probability
and other parameters from radio-tagged animals.  The focus of known fate models is the estimation
of survival probability , the probability of surviving an interval between sampling occasions.  TheseS
are models where it can be assumed that the sampling probabilities are 1.  That is, the status of each
tagged animal is known at each sampling occasion.  For this reason, precision is typically quite high,
even in cases where sample size is often fairly small.  The only disadvantages might be the cost of
radios and possible effects of the radio on the animal or its behavior.  The model is a product of
simple binomial likelihoods.

Studies of egg mortality in nests and studies of sessile organisms (mollusks) have also be treated as
known fate data.  PIT (passive integrated transponders) tags can be used to provide known fate data
and have been very widely used in fisheries studies on the Columbia River system.   Smith et al.
(1994) provide additional details on these models.

The Kaplan-Meier Method

The Kaplan-Meier (1958) estimate is based on observed data at a series of time points, where
animals are marked and released only at time 1.  The K-M estimator is
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where  is the number of animals alive and at risk at time ,  is the number known dead at time ,n i d i3 3

and the summation is over  up to the  time period.  Critical here is that  is the number knowni t n>2
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alive at time  minus those individuals known dead or censored during the interval.  It is rare that ai
survival study will observe the time of death of every individual in the study.  Animals are “lost" (i.e.,
censored) due to radio failure or other reasons.  The treatment of such censored animals is often
important.  These K-M estimates produce a survival function (see White and Garrott 1990).

If there are no animals that are censored, then the survival function (empirical survival function or
ESF) is merely,
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This is the same as the intuitive estimator where not censoring is occurring;



The K-M method is an estimate of this survival function in the presence of censoring.  Expressions for
the variance of these estimates can be found in White and Garrott (1990).

A simple example of this method can be illustrated using the data from Conroy et al. (1989) on 48
radio-tagged black ducks.  The data are

Week               1      2      3      4      5      6      7      8
Number alive at start  48     47     45     39     34     28     25     24
Number dying            1      2      2      5      3      3      1      0
Number alive at end    47     45     39     34     28     25     24     24
Number censored  0      0      4      0      2      0      0      0

Thus,

S  " = 47/48 = 0.979

S#  = 45/47 = 0.957

S$  = 39/41 = 0.951  (note, only 41 because 4 were censored)

S%  = 34/39 = 0.872

S&  = 28/32 = 0.875  (note, only 32 because 2 were censored)

S'  = 25/28 = 0.893

S(  = 24/25 = 0.960

S)  = 24/24 = 1.000.

Here one estimates 8 parameters (call this model ( )); one could seek a more parsimonious model inS t
several ways.  First, perhaps all the parameters were nearly constant; thus a model with a single
survival probability might suffice (i.e., (.))  If something was known about the time intervals (similarS
to the flood years for the European dipper data) one could model these with one parameter and
denote the other periods with a second survival parameter.  Finally, one might consider fitting some
smooth function across the time periods and, thus, have perhaps only one intercept and one slope
parameters (instead of 8 parameters).  Still other possibilities exist for both parsimonious modeling
and probable heterogeneity of survival probability across animals.

Pollock's Staggered Entry Design



The Kaplan-Meier method assumes that all animals are released at time 1 and they are followed
during the study until they die or are censored.  Often new animals are released at each time period
(say, weekly); we say this entry is “staggered" (Pollock et al. 1989).  Assume, as before, that animals
are fitted with radios and that these do not affect the animals survival probability.  This staggered
entry fits easily into the K-M framework by merely redefining the  to include the number of newn3
animals released at time .  Therefore, conceptually, the addition of new animals into the markedi
population causes no difficulties in data analysis.

The Binomial Model

Smith et al. (1994) note that there are 3 possible scenarios under the known fate model: for each
tagged animal it

 1.  survives to end of study and is detected at each sampling occasion after its release

 2.  dies sometime during the study and its carcass is found on the first sampling
        occasion after its death

 3.  survives up to the point at which time it is censored.

Note, for purposes of estimating survival probabilities, there is no difference between an animal seen
alive and then removed from the population at occasion  vs. an animal alive at occasion  and thenk k
censored due to radio failure or whatever.

The binomial/multinomial model assumes the capture histories are mutually exclusive and exhaustive,
that animals are independent, and all animals have the same underlying parameters (homogeneity
across individuals).

Radio tagging data can be modeled by a product of binomials.  In the black duck example,  = 48n"
and  = 47 and the likelihood isn#
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Clearly, one could find the MLE, , for this expression.  Of course, the other binomial terms areŜ"
multiplicative; e.g., survival during the following interval is based on  = 47 and  = 45,n n# $
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The likelihood function for the entire set of black duck data is the product of these individual
likelihoods.  The log-likelihood the the sum of terms such as

                                   log( ( )) =  log(Prob.).-_ S n n  3 ± !3

Consider the following (paired, live () and dead ( ) encounter histories:l d

History    Probability   Number Observed

10 10 10 10     17S S S S" # $ %             
Tagged at time 1 and survived until the end of the study

10 10 11 00     21S S S" #(1 – )         $

Tagged at time 1 and died during the third interval

10 11 00 00     24S S"(1 – )             #

Tagged at time 1 and died during the second interval

11 00 00 00     43 (1 – )               S"
Tagged at time 1 and died during the first interval

Estimation of survival probabilities is based on a release (1) and a death (1); if the animal then was
censored, it does not provide information about .S3

More on Binomial Likelihood Functions

Before we move into models for individual covariates, some quick review of the binomial likelihood
might be helpful.  Consider the usual  flips of a coin where,n

: œ probability the coin lands heads;
; œ � : œ1 probability the coin lands tails.

Let  = 16 flips (trials).  We often write the likelihood in a compact form asn
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where number of heads.  If we observe  = 5, theny yœ
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Alternatively, we could write the likelihood for each individual outcome and take the product of these
terms as the likelihood function.  One alternative is to merely write the likelihood as (using the
convention that  = (1 ),q � :
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Alternatively, we could write this as,
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Finally, we could define an indicator variable to denote head or tail; let 1 if heads, 0 if tails.y œ
Then the likelihood can be written for the flip asi  >2
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It these last three forms, each outcome has a term in the likelihood.  The likelihood is the product of
these individual terms.  These formulations ares useful in understanding the modeling of individual
covariates.

Individual Covariates

A number of people have suggested modeling of the individual animals, allowing covariates that vary
by individual (e.g., White and Garrott, Smith et al. 1994, Pollock ___   ).  This approach is very
useful in the biological sciences.  In the black duck example,  = 48 and  = 47 and the binomialn n" #

likelihood for the survival probability during the first week (i.e., ) can be written asS"
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This can be expressed (omitting the multinomial coefficient) as



                                 ( )  (1 – ),-_ S n S   S" 3 3± œ #n
n

n
#

#

"

i i = 1 = +1

† #

where the subscript  is over ducks (48 ducks in the study).  Thus, the first term in the likelihood is thei
product of the survival probability over 47 ducks, while the second term in the product of (1– ), theS
ducks that died during the first week (in this examples only a single duck died).  So, a final expression
of this likelihood is
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Now we consider  the survival probability of these individuals as a nonlinear function ofmodeling
some covariate that varies for each individual animal.  The natural choice is the logistic model

                                   = S3
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with link function
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where  is the value of the covariate for the  individual.  Of course, other functions could be usedX i3
>2

(log, log-log, complementary log-log, etc.).  More than one covariate can also be measured and used
with this general approach.  If we substitute the logistic submodel and its individual covariate into the
likelihood above, the expression  messy, but is conceptually familiar,looks
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Thus, the MLEs for  and  (the intercept and slope, respectively) are the focus of the estimation." "! "

Of course, additional binomial terms could be multiplied for the parameters  in theS , S , ..., S# $ )

black duck example.

There are two notions to think clearly about:

    (1)  the survival probabilities are replaced by a logistic (sub)model of the individual
          covariate .  Conceptually, every animal  has its own survival probability andX i3

          this may be related to the covariate .X3

    (2)  during the analysis, the covariate of the  animal must correspond to thei>2

          survival probability of that animal.  Program  handles this detail.MARK
          Note, in the last expression of the likelihood (above) we assume it is the
          48  duck that died and this corresponds to the 48  covariate, .>2 >2

%)X

An Example of the Application

Assume a biologist has found 88 active nests of the red-cockaded woodpecker in which nest
initiation occurred on the same day.  She selects a single nestling from each of the 88 nests and
measures 3 covariates on each of these 88 nestlings.  The covariates measured are the number of
ectoparasites found, the number of hatchlings in the nest, and the weight at hatching.  The “first"
occasion is actually on day 3 following hatching.  Each bird is tagged uniquely with a colored leg band
to allow it to be identified and its fate determined visually be daily inspection of the nest.  Birds are
followed for 12 days (while they are still in the nest; they typically start to leave the nest after 15
days) and their fate is determined daily.  Thus, the data follow the known fate scenario, even though
animals are not fitted with radios.  Overdispersion should not be a factor as only one bird in each nest
is the subject of the study.  Sample size is 88 (no staggered entry) and there are 12 occasions (days
3, 4, ..., 15).

If the data were modeled without an occasion effect (i.e., without model ), one might potentiallyS>
include the model with all three covariates for each individual (), asi



where,
  is the number of ectoparasites on day 3 (= occasion 1)E3

  is the number of nest mates on day 3H3

  is the weight of the nesting on day 3.W3

Note the interaction term between weight and number of nest mates on day 3.  Of course, other a
priori models would be considered in making inferences from these data, this is just an example.

The estimation would focus on the  parameters, but the would be interesting.  For"  interpretation 
example, one might look at the mean of the  given that all the covariates were held at their averageS3
values.  Then this mean might be compared with means for low vs. high values of weight and the
number of nest mates.  One could compute the values of  for a range of ecoparasites, while holdingS
the other covariates at their mean values.  Other possibilities exist and could be explored for the
selected model.

Now, one can see that individual covariates can be used in the band recovery models and the open
capture-recapture models.  Too few biologists are taking full advantage of the information
contained in individual covariates.

Note, there are problems if the covariate changes through time in the band recovery and open C-R
models.  For example, if weight changes throughout the study period, one only has weights for those
animals recaptured at various times.  Thus, when animals are not captured (e.g., the “never
recaptured" animals) then the value of their covariate at that time is not known!


