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Abstract. Strong interest in nest success has led to advancement in the analysis of nest-survival data. 
New approaches allow researchers greater fl exibility in modeling nest-survival data and provide 
methods for relaxing assumptions and accounting for potentially important sources of variation. The 
most fl exible method uses linear-logistic models with a random-effects framework to both incorporate 
potential covariate effects and model remaining heterogeneity. With the goal of increasing the use of 
more fl exible methods, we provide additional detail regarding linear-logistic mixed models and 
their implementation. We use an example dataset to (1) demonstrate data preparation for analysis 
in PROC NLMIXED of SAS, (2) describe the use of code for evaluating competing models, (3) 
illustrate implementation of models with and without random effects and that evaluate potential 
effects of observer visits to nests, and (4) present methods of obtaining estimates of nest-survival rate 
for various covariate conditions of interest. We also conduct Monte Carlo simulations to evaluate 
the performance of linear-logistic mixed models of nest-survival data. We present the results of 
evaluation for one scenario and show that the estimation procedure as implemented in PROC 
NLMIXED is effective and that simulation can be used to gain insights into the advantages and 
disadvantages of various study designs. We encourage the development of further advancements 
that will allow greater fl exibility in modeling.
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AMPLIACIÓN DE MÉTODOS PARA MODELAR LA HETEROGENEIDAD 
DE DATOS DE SOBREVIVENCIA DE NIDO UTILIZANDO MODELOS 
GENERALIZADOS MEZCLADOS
Resumen. El fuerte interés respecto a al éxito de nido, ha llevado al avance del análisis de datos de 
sobrevivencia de nido. Nuevos enfoques permiten a los investigadores tener mayor fl exibilidad en el 
modelaje de datos de sobrevivencia de nido, y proveer métodos para suavizar las suposiciones y el 
conteo de fuentes potenciales importantes de variación. El método más fl exible utiliza modelos lineares 
logísticos con un marco de efectos al azar, tanto para incorporar efectos covariantes potenciales, como 
para modelar la heterogeneidad restante. Con el objeto de incrementar la utilización de métodos más 
fl exibles, proporcionamos detalle adicional respecto a modelos lineares logísticos mezclados y su 
implementación. Utilizamos un ejemplo de conjunto de datos para (1) demostrar la preparación de 
datos para el análisis en PROC NLMIXED de SAS, (2) describir la utilización del código para evaluar 
modelos competentes, (3) ilustrar la implementación de modelos con o sin efectos al azar y que 
evalúan potenciales efectos de visitas observadas a nidos, y (4) presentar métodos de estimaciones 
obtenidos de tasas de sobrevivencia de nido para varias condiciones covariantes de interés. También 
condujimos simulaciones Monte Carlo para evaluar el desempeño de modelos lineares logísticos 
mezclados de datos de sobrevivencia de nido. Presentamos los resultados de la evaluación para 
un escenario y mostramos que el procedimiento de estimación como el implementado en PROC 
NLMIXED es efectivo, y que la simulación puede ser utilizada para aumentar la penetración en las 
ventajas y desventajas de varios diseños de estudios. Promovemos el desarrollo de futuros adelantos 
que permitan mayor fl exibilidad en el modelaje.
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Methods for estimating nest survival rate 
have received considerable attention (Mayfi eld 
1961, Johnson 1979, Bart and Robson 1982, 
Natarajan and McCulloch 1999, Farnsworth 
et al. 2000, Dinsmore et al. 2002). Williams et 
al. (2002) provide a useful review of historical 
development, available approaches, and estima-
tion programs. Information regarding how 
daily survival rates and overall nest success are 
calculated is provided by Dinsmore et al. (2002).

The Mayfi eld (1961) method, either in its 
original form or as expanded by Johnson 
(1979) and Bart and Robson (1982), requires 

the assumption of a constant daily survival rate 
for all nests in a sample over the time period 
being considered. However, heterogeneity in 
daily survival rates among members of the 
study population can cause estimates of nest 
success and, in some cases, daily survival rate 
to be biased (Farnsworth et al. 2000, Rotella et 
al. 2000).

To allow greater fl exibility in modeling nest-
survival data in the presence of heterogeneity, 
numerous publications have presented 
methods for relaxing assumptions and account 
for potentially important sources of variation 
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(Dinsmore et al. 2002, Rotella et al. 2004, 
Stanley 2004a). Most troubling has been the 
assumption of the absence of overdispersion. 
Overdispersion occurs when the variance of 
the response variable exceeds the nominal 
variance. Overdispersion can be caused by 
lack of independence among animals and 
heterogeneity in the probabilities beyond that 
specifi ed by the model. Overdispersion in count-
based models can have profound inferential 
consequences. If not adjusted for, overdispersed 
count data will lead to inter-related problems: 
(1) model-selection procedures selecting over-
parameterized models, (2) hypothesis tests that 
are too liberal, and (3) parameter confi dence 
intervals that are too short (Lebreton et al. 1992, 
Fitzmaurice 1997, Ennis 1998). Lebreton et al. 
(1992) introduced a quasi-likelihood-based 
adjustment of a generalized variance-infl ation 
factor. This adjustment infl uences both model 
identifi cation and parameter confi dence 
intervals but not parameter estimates (Lebreton 
et al. 1992). 

Quasi-likelihood is not the only device for 
coping with overdispersion. An alternative 
approach is to model explicitly the random 
effects generating the overdispersion (Hinde 
and Demetrio 1998, Lee and Nelder 2000). 
The most fl exible methods explicitly for nest-
survival analysis were linear-logistic models 
that use covariate-based fi xed effects and 
random effects to incorporate overdispersion 
(Natarajan and McCulloch 1999). Their 
approach can also incorporate nest-encounter 
probabilities (Pollock and Cornelius 1988, 
Bromaghin and McDonald 1993a, McPherson 
et al. 2003). 

Explicitly modeling fi xed and random 
effects in a generalized mixed model is an 
attractive way of addressing overdispersion. 
First, because the random effects are estimated 
jointly with the fi xed effects, there will be a 
reduction in bias of the estimated fi xed effects. 
As with normal mixed models, this effect is 
generally small (Cox 1983, McCullagh and 
Nelder 1989), but on occasion, as with normal 
mixed models, more substantial differences 
can occur. Secondly, comparisons of models 
incorporating random effects in a variety of 
ways yield greater biological insight into the 
genesis of the overdispersion than does the 
calculation of a single overarching variance-
infl ation factor. Such insight may lead to the 
inclusion of further covariates in the fi xed 
effects that reduce the overdispersion. Williams 
et al. (2002:349) concluded that the approach 
is a reasonable and natural way to view nest 
survival, but also noted that, at present, the 
complexity of the computations may limit 

the ability of many biologists to apply this 
approach. To date, this impairment appears 
real, because we are unaware of any published 
study that has implemented the full approach. 

Despite the computational complexities of 
mixed models, several benefi ts can be gained 
from using mixed models when they are 
appropriate. In some situations, the precision 
of estimates will be increased. Incorporation of 
random effects can allow one to make broader 
inferences. For example, if a random effect of 
study site is present and mixed models are 
used, inferences can be made about the actual 
population of study sites from which samples 
were drawn. In contrast, if fi xed-effects-only 
models were used and each study site were 
treated as a fi xed effect, then inferences would 
be limited to only those specifi c sites used in 
the study. Finally, information about random 
effects can motivate thinking about the process 
underlying the structure of the data and missing 
covariates that could be measured in the future 
to explain the random effects. 

Mixed models are appropriate if levels of 
some covariates represent all possible levels, 
or at least the levels for which inferences 
are desired (these are fi xed factors), whereas 
for others covariates, the levels observed 
are only a random sample of a larger set of 
potential levels of interest (these are random 
factors; Breslow and Clayton 1993, Littell et 
al. 1996, Pinheiro and Bates 2000). Examples 
of covariates that might be treated as random 
effects are study site or individual. This is 
true because it will often be the case that the 
particular experimental units such as the sites 
or individuals studied are selected at random 
from the population of sites or individuals, 
which are of interest. Pinheiro and Bates (2000:
8) stated that they are random effects because 
they represent a deviation from an overall 
mean. Thus, the effect of choosing a particular 
site, year, or individual may be a shift in the 
expected response value for observations made 
on that experimental unit relative to those made 
on other experimental units experiencing the 
same levels for the fi xed effects. In other words, 
multiple observations made on the same site, 
year, or individual may be correlated, and if so, 
this should be accounted for in the analysis. 

In a broad discussion of data analysis, 
Littell et al. (1996) stated they believe that valid 
statistical analysis of most data sets requires 
mixed-model methodology. Given the potential 
utility of such an approach, our objective here 
is to provide further details of the method 
beyond those presented previously (Rotella et 
al. 2004, Shaffer 2004a, Stephens et al. 2005). 
Although some material presented here has 
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been presented previously (Rotella et al. 2004), 
we repeat it here to provide a more coherent 
treatment of the subject. We also provide 
additional information of how to implement 
the technique by analyzing an example dataset. 
In so doing, we review the programming 
statements written that can be used with SAS 
(SAS Institute 2004) for conducting necessary 
computations for a suite of candidate models, 
and consider a variety of important aspects of 
interpreting the output from generalized mixed 
models of daily survival rates. Sturdivant et al. 
(this volume) developed a goodness-of-fi t test 
for the nest-survival model reviewed here, and 
they illustrate its implementation with the same 
example dataset used here and in Rotella et al. 
(2004). We conclude by presenting alternative 
analysis approaches that could be used and by 
pointing out the need for future improvements.

A GENERALIZED LINEAR-MIXED-MODELS 
APPROACH FOR NEST SURVIVAL

The nest-survival model employed by 
Stephens et al. (2005) generalizes the model 
described by Bart and Robson (1982). The 
model employs a generalized linear-models 
approach (McCullagh and Nelder 1989) based 
on a binomial likelihood, where daily survival 
rates are modeled as a function of nest-, group-, 
and/or time-specifi c covariates. Daily survival 
rates can then be estimated from the resulting 
model and multiplied together, as appropriate, 
to estimate nest success. 

To illustrate the model likelihood, let Si 
(daily survival rate) denote the probability 
that a nest survives from day i to day i + 1. 
Consider a nest that was found on day k was 
active when revisited on day l, and was last 
checked on day m (k < l < m). Because the nest 
is known to have survived the fi rst interval, its 
contribution to the likelihood for that interval 
is SkSk+1…Sl–1. During the second interval, the 
nest either survives with probability SlSl+1...Sm–1 
or fails with probability (1 – SlSl+1…Sm–1). The 
likelihood is thus proportional to the product of 
probabilities of observed events for all nests in 
the sample (Dinsmore et al. 2002).

A link function is used to characterize the 
relationship between daily survival rate and 
the covariates of interest. A variety of link 
functions can be used (White and Burnham 
1999, Williams et al. 2002). Here, focus will be 
on use of the logit link (and the logistic inverse 
link) as it is the natural link for the binomial 
distribution (McCullagh and Nelder 1989). The 
logit link is frequently used in mark-resighting 
modeling, provides a fl exible form, and bounds 
estimates of survival in the (0, 1) interval. 

Stephens et al. (2005) used the logit link in 
their work, and Lebreton et al. (1992) presented 
methods for estimating confi dence intervals 
and back-transforming to model parameters 
and estimates of their variances and covariances 
when the logit link is used.

With the logit link, daily survival rate of a 
nest on day i is modeled as:

where the xji (j = 1, 2, …, J) are values for J 
covariates on day i and the are coeffi cients to be 
estimated from the data. Logit transformation 
of the above expression yields 

. 
Thus, the relationship between the logit of Si, 
i.e., ln(Si/(1 – Si)), and the covariates is linear, 
whereas the relationship between Si and the 
covariates is logistic or S-shaped. Once the are 
estimated, an estimate of the parameter(s) of 
interest (Si) is generated by solving the regres-
sion equation and then back transforming the 
answer. Note that the above formulation allows 
daily survival rates to vary among groups of 
nests based on group-specifi c covariates, among 
individual nests based on nest-specifi c covari-
ates, and among days based on time-specifi c 
covariates. 

The parameters βj of competing models are 
estimated iteratively by the method of maxi-
mum likelihood using computer code designed 
for generalized linear models. Accordingly, 
a variety of likelihood-based methods are 
available for evaluating competing models. 
Likelihood ratio tests can be used to formally 
test hypotheses about whether specifi c covari-
ates are associated with variation in nest sur-
vival (but see Anderson and Burnham 2002). If 
a set of candidate models is used, then informa-
tion-theoretic measures such as Akaike’s infor-
mation criterion (AIC) and AICc can be used to 
select which model or models to use for infer-
ence (Burnham and Anderson 2002). Model-
selection inference will be most robust if the 
model set is selected a priori, but nevertheless, 
useful inferences of a weaker epistemic stand-
ing can still be made with a post hoc model set 
(Taper and Lele 2004).

Assumptions of the daily nest-survival 
model described here are: (1) homogeneity 
of daily survival rates as modeled (e.g., if the 
model contains nest age and no other covari-
ates, then all nests of a given age are assumed 
to have the same daily survival rate), (2) nest 
fates are correctly determined on each visit after 
the fi rst one, (3) nest discovery and  subsequent 
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nest checks do not infl uence survival (although 
see below for methods of modeling the effects 
of nest visits and relaxing this assumption), (4) 
nest fates are independent or sources of depen-
dency are appropriately modeled, (5) all visits 
to nests are recorded, (6) the age of nests can be 
determined correctly so that the day of hatching, 
or fl edging can be determined correctly, and (7) 
nest checks are conducted independently of 
nest fate. If data are available for more than 
one interval length, an extension of the model 
presented by Rotella et al. (2000) can be used to 
evaluate and possibly relax assumption three. 
Assumption one, by virtue of the fact that daily 
survival rates can be modeled as a function of 
group-, nest-, and time-specifi c covariates, is far 
less restrictive than is necessary for Mayfi eld’s 
(1961) method. If nest age is to be considered 
in models of daily survival rate, then it is also 
assumed that the age of nests can be determined 
correctly when fi rst found (Dinsmore et al. 2002). 
Although it is analytically possible to estimate 
age-specifi c daily survival rates for nests of all 
ages, logistical constraints may prevent this. If 
nests are rarely found early in the laying stage, 
then estimates may be lacking or very imprecise 
for this period. If visits to nests containing older 
nestlings commonly cause nestlings to leave 
their nest prior to the expected fl edging age, 
then it may not be possible to estimate daily 
survival rates for nests beyond some threshold 
age. The method requires no assumptions about 
when nest losses occur during the interval 
between two nest visits. 

DATA INPUT FORMAT

Each row of data input typically contains 
information for one observation interval for 
an individual nest as this allows a complete 
record of all nest observations and nest visits 
to be entered. An observation interval is the 
length of time (t; an integer, typically measured 
in days) between any two successive nest visits. 
Note that for a given nest, different observation 
intervals do not need to be of the same length. 
The minimum data that must be provided are 
the length of the interval (t) and the nest’s fate 
for the interval (Ifate; 1 = successful, 0 = unsuc-
cessful). In addition, individual and group- and 
time-specifi c covariates can be included. For 
example, the date (StartDate) and age of the 
nest (StartAge) at the start of the interval might 
be recorded. If each interval starts with an 
observer visit to the nest, and all visits involve 
similar activities by observers, then information 
about observer visits is not needed even if one 
is interested in estimating observer effects on 
daily survival rate (see below). However, if all 

intervals do not start with a nest visit such as 
when telemetry is used to remotely check nest 
status for many intervals, or, if activities dur-
ing visits differ among occasions, then it may 
be useful to provide information about the 
nature of visits with a covariate (see below). 
Other individual covariates such as habitat 
measures associated with the nest site could be 
included. Covariates associated with a group of 
nests (group covariates) such as weather or year 
could also be included.

To illustrate the data format, we utilize an 
example dataset for Mallard (Anas platyrhyn-
chos) nests that were monitored during 2000 
in the Coteau region of North Dakota as part 
of a larger study (Stephens et al. 2005). The 
example dataset contains nest-, group- and 
time- specifi c covariates and contains infor-
mation from 1,585 observation intervals for 
565 nests monitored on 18 sites during a 90-d 
nesting season. Interval lengths ranged from 
1–18 d and were most commonly 4, 5, or 6 d 
(frequencies of observations for interval lengths 
of 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, and 18 d were 
50, 27, 150, 475, 542, 245, 63, 21, 4, 6, 1, and 1, 
respectively). Here, the following subset of the 
covariates measured by Stephens et al. (2005) 
was considered for each observation interval: 
(1) nest age at the start of the interval (Age, 1–35 
d), (2) day of the nesting season at the start of 
the interval (Date, 1–90), (3) vegetative visual 
obstruction at the nest site (Robel et al. 1970), 
(4) the proportion of the study site (10.4 km2) 
containing the nest that was in grassland cover 
(PpnGr), (5–7) the habitat type in which the nest 
was located (three dummy variables were used 
to distinguish among native grassland (NatGr), 
planted nesting cover (PlCov), wetland vegeta-
tion (Wetl), and roadside right-of-way (Road), 
(8) study site (Site), and (9) nest-visitation status 
on each day of the interval (Ob, a dummy vari-
able coded as 1 on the day a nest was visited 
and 0 otherwise). Nest-visitation status did not 
appear in the original input fi le as this variable 
was created with programming statements dur-
ing the analysis (see below).

Data were originally recorded in inter-
val-specifi c form, and thus, each row of data 
contained information for one observation 
interval for an individual nest (Table 1). All 
analyses that appear below were conducted on 
this dataset and input format. However, it is 
possible to do a great deal of modeling with a 
reduced version of the dataset. If the possible 
observer effects on daily survival rates are not 
of interest, and, if nest age and date are the 
only nest-specifi c time-varying covariates to 
be considered, then the interval-specifi c data 
can be  collapsed with no loss of information. 
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The critical information to retain for each nest 
consists of (1) the age of the nest when it was 
found, (2) the day the nest was found, (3) the 
last day the nest was checked alive, (4) the last 
day the nest was checked, and (5) the fate of 
the nest (successful or unsuccessful) on the last 
visit. For successful nests, the dates in items (3) 
and (4) above will be equal, and the entire set 
of re-visit intervals can be collapsed into one 
interval (one row of data with Ifate = 1). For 
unsuccessful nests, the dates in items (3) and 
(4) above will be different, and data may need 
to be presented as one or two rows of data 
depending on the timing of nest failure. For 
nests that fail by the end of the fi rst re-visit 
interval, the relevant data are contained in a 
single row of data (with Ifate = 0). For nests 
that fail after the end of the fi rst re-visit inter-
val, two rows of data are required: one row of 
data will consist of a successful interval (Ifate 
= 1) starting on the day the nest was found 
(item 2 above) and ending on the last day the 
nest was checked alive (item 3 above); a second 
interval (with Ifate = 0) will start on the last 
day the nest was checked alive (item 3 above) 
and end on the last day the nest was checked 
(item 4 above). Analysis of data in this reduced 
format will not be considered further here 
but can be accomplished with the methods 
described below. It is worth noting that data in 
this reduced format do prevent the evaluation 
of possible visit effects on nest fate.

GENERALIZED MIXED MODELS IN PROC 
NLMIXED

Because interval lengths typically are >1 d, 
it is necessary to use programming statements 
from within NLMIXED to iteratively do the 

logit survival value for each of the days in an 
interval (see below). Through programming 
statements, covariates such as date and age that 
vary across an interval in a predictable fashion 
can be included in each day of an interval. 

Consider a model that includes (1) a covariate 
x1 that does not vary by time, (2) nest age, and 
(3) date. This method models a nest’s fate for a 
given interval as: 

Applying this model to a 2-d observation 
interval that started on the 20th day of the 
nesting season for a nest that was 15-d old at 
the start of the interval and whose value for 
covariate x1 was 10 would yield:

Because the method allows covariates to be 
specifi ed differently on different days within 
an interval, observer effects on nest survival 
can be modeled in a straightforward manner. 
Specifi cally, an index variable (visit) is created 
with programming statements such that it takes 
on a value of one for the fi rst day of an interval 
(day the nest was visited) and zero otherwise. 
This variable can then be used to evaluate 

TABLE 1. INPUT FORMAT FOR INTERVAL-SPECIFIC NEST-SURVIVAL DATA.A

    ID  Species Site  Hab Int t IFate SDate  Sage Robel PpnGr
 1 MALL 14 PlCov  1 5 1   1   1 4.50 0.96
 1 MALL 14 PlCov  2 5 1   6   6 4.50 0.96
 1 MALL 14 PlCov  3 4 1 11 11 4.50 0.96
 1 MALL 14 PlCov  4 6 1 15 15 4.50 0.96
 1 MALL 14 PlCov  5 5 1 21 21 4.50 0.96
 1 MALL 14 PlCov  6 5 1 26 26 4.50 0.96
 1 MALL 14 PlCov  7 4 1 31 31 4.50 0.96
 2 MALL 14 PlCov  1 5 1   1   3 0.88 0.96
 2 MALL 14 PlCov  2 5 1   6   8 0.88 0.96
 2 MALL 14 PlCov  3 4 1 11 13 0.88 0.96
 2 MALL 14 PlCov  4 6 0 15 17 0.88 0.96
 2,206 MALL 16 Road  1 4 1 73 13 6.00 0.80
 2,206 MALL 16 Road  2 5 1 77 17 6.00 0.80
 2,206 MALL 16 Road  3 4 1 82 22 6.00 0.80
 2,206 MALL 16 Road  4 3 1 86 26 6.00 0.80
a (ID—nest number, Species—species code, Site—study site, Hab—habitat code, Int—observation interval, t—interval length (d), Ifate—nest fate for 
the interval, SDate—date at the start of the interval, SAge—nest age at the start of the interval, Robel—vegetative visual obstruction at nest site, and 
PpnGr—proportion of grassland cover on the 10.4-km2 study site.
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whether variation in daily survival rates was 
associated with observer visits. If additional 
covariates contain information on the nature 
of a nest visit, these covariates can be allowed 
to interact with the visit variable to test for 
their potential infl uence on survival rate. To 
illustrate, consider a 2-d interval and a model 
that includes the effect of an observer visit and a 
single covariate (x1) on daily survival rate. 

Thus, procedures in SAS allow for examination 
of a rich collection of models for nest-survival 
data. 

As stated earlier, the NLMIXED procedure 
also allows models to include random effects 
(associated with a single factor) as well as fi xed 
effects; hence, it allows mixed models (SAS 
Institute 2004). The random effects are assumed 
to follow normal distributions, typically with 
zero mean and unknown variances. In the 
NLMIXED procedure, all random effects must 
be associated with a single factor (termed the 
subject variable in PROC NLMIXED) for which 
multiple observations made at the same level of 
the factor may be correlated. For example, study 
site might be considered as a factor having 
random effects on nest survival because fates of 
nests on the same site (same factor level) might 
be correlated to some degree.

Multiple random effects can be modeled 
in PROC NLMIXED as long as they are all 
associated with a single factor, and we now 
consider some of the mixed models that may 
be of interest in studies of nest survival. When 
presenting mixed models below, we follow a 
common convention (Littell et al. 1996) of using 
Greek symbols to refer to regression coeffi cients 
that are assumed to be fi xed effects and using 
Latin symbols to refer to those that are random. 
Because random effects in PROC NLMIXED 
are assumed to follow normal distributions, 
typically with zero mean and unknown 
variances, it is appropriate to consider them 
as a random sample of deviations from some 
population regression model (Littell et al.1996). 
Thus, random effects can be used to model 
deviations in one or more of the fi xed-effect 
coeffi cients (various combinations of the 
intercept and slope terms) associated with 
different levels of the random factor being 
considered. 

To illustrate, consider a 1-d interval and 
a model that includes the effect of a single 

covariate (x1) on daily survival rate. A model 
that also includes a random effect of study site 
on the model’s intercept term would be:

where b0j represents the random effect on the 
intercept term that is associated with the jth 
study site. Alternatively, a model with 

could be used to include a random effect on 
the model’s slope term, (b1j), or both types of 
random effects could be considered: 

PROC NLMIXED will estimate the values for 
each of the elements of the variance-covariance 
matrix of the random effects that are specifi ed in 
the model. For example, if the model included 
both b0j and b1j, the variance of each random 
effect and the covariance between b0j and b1j 
would be estimated.

In the NLMIXED procedure, mixed models 
are fi t by maximizing an approximation 
to the likelihood that is integrated over 
the random effects (SAS Institute 2004). 
Accordingly, calculations may take some time 
and convergence is not guaranteed. Starting 
values are not required for PROC NLMIXED 
but may be helpful, and the procedure has 
tools for implementing a variety of starting 
values. The procedure has a variety of integral 
approximations and alternative optimization 
techniques available, and these may be helpful 
in some cases. Finally, it may be useful to run 
fi xed-effects models prior to mixed models to 
obtain reasonable starting values for the fi xed-
effects parameters of mixed models. 

PROC NLMIXED also enables one to cal-
culate user-specifi ed functions of the param-
eters and to compute the approximate standard 
errors using the delta method (Seber 1982). This 
is useful for estimating daily survival rate and 
nesting success from the parameter estimates 
by back-transformation through the inverse 
or logistic link function (Lebreton et al. 1992). 
If the user specifi ed function only involves 
parameters representing fi xed effects, the calcu-
lation can be made in SAS with an ESTIMATE 
statement. If on the other hand, the specifi ed 
function includes random effects, either alone 
or in combination with fi xed effects, a PREDICT 
statement must be used (SAS Institute 2004). 
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EXAMPLE ANALYSIS OF NEST-SURVIVAL 
DATA IN PROC NLMIXED

Here, we use the example Mallard dataset 
and a brief model list to illustrate the imple-
mentation of the methods described here using 
PROC NLMIXED and simple programming 
statements (Rotella et al. 2006). We analyzed a 
set of 10 fi xed-effects models and two mixed 
models using PROC NLMIXED, where study 
site was considered a random effect in the 
mixed models (Table 2). Models included vari-
ous combinations of nest-, group-, and time-
specifi c covariates. This list included simple 
models that have been commonly employed 
in past studies of nest survival. The simplest 
model was an intercept-only model that held 
Si constant for all groups, nest ages, dates, and 
habitat conditions, and which is similar to that 
of Johnson (1979) and Bart and Robson (1982). 
A model that allowed Si to vary among groups 
(nests in different habitat types in this example) 
was analogous to (but more effi cient than) 
conducting a stratifi ed analysis with methods 
of Johnson (1979) and Bart and Robson (1982) 
and testing for homogeneity among group-spe-
cifi c survival rates with methods of Sauer and 
Williams (1989). For a more thorough analysis 
of the full data set from which this example was 
extracted, see the analysis and results presented 
by Stephens et al. (2005). 

Of the 12 models considered, the two most 
parsimonious models both included a random 
effect of site (Table 2): the site-to-site process 
variance (Burnham et al. 1987) was estimated 
as 0.089 (SE = 0.052) by the better of these two 
models. Stephens et al. (2005) provided possible 
explanations for the presence of the random 
effect in these data, e.g., differing predator com-
munities among sites. The second-most parsi-
monious model (∆AICc = 0.33) provided some 
evidence of a negative effect of observer visits 

on daily survival rate for the day of a nest visit = 
(  = -0.844, SE = 0.629). The point estimate indi-
cates that the effect was potentially of a size that 
is of interest, but the lack of precision makes 
inference diffi cult. For example, on a site with 
50% grassland cover, daily survival for a 15-d 
old nest would be predicted as 0.911 (SE = 0.033, 
95% CI = 0.842–0.981) if it were visited and 
0.960 (SE = 0.010, 95% CI = 0.939–0.981) other-
wise, where the estimates were obtained using 
the ESTIMATE statement (one statement for 
each of the two scenarios) of PROC NLMIXED 
(Rotella et al. 2006). It is noteworthy that models 
that held daily survival rate constant or simply 
allowed it to vary by habitat type, which are the 
only model types that have been used in many 
recent publications on nest survival (see above), 
received no support when compared to the 
models discussed above (∆AICc ≥ 15.10). 

Once one has chosen an approximating 
model of daily survival rate, one is interested 
in using that model and its estimated parameter 
values to obtain estimates of survival over 
multiple days for various covariate conditions. 
For example, one might be interested in 
estimating the probability that a Mallard nest 
on a site with 85% grassland cover would 
survive the 35 d from nest initiation to hatching. 
To do so involves working with functions of 
random variables (the estimated coeffi cients 
of the approximating model). For a model that 
considers nest age and proportion grass on the 
site, one can calculate the probability that a nest 
would survival from age one through age 35 on 
a site with 85% grassland as follows: 

where S35days is the probability of surviving 
35 days. To derive an estimate of the variance 
of the transformation of the three estimated 

TABLE 2. SUMMARY OF MODEL-SELECTION RESULTS OBTAINED IN PROC NLMIXED (SAS INSTITUTE 2004) FOR FIXED-EFFECTS 
AND MIXED MODELS OF DAILY SURVIVAL RATE FOR MALLARD NESTS STUDIED BY STEPHENS ET AL. (2005) IN NORTH DAKOTA.

Model K AICc ∆AICc wi

β0+β1 × Age+β2 × PpnGr+b1 × site 4 1,554.013  0.000 0.529
β0+β1 × Age+β2 × PpnGr+β3 × Ob+b1 × site 5 1,554.340  0.327 0.449
β0+β1 × Age+β2 × PpnGr+β3 × Ob 4 1,562.265  8.252 0.009
β0+β1 × Age+β2 × PpnGr 3 1,563.010  8.996 0.006
β0+β1 × Age 2 1,564.066 10.053 0.003
β0+β1 × Age+β2 × Robel 3 1,565.906 11.892 0.001
β0+β1 × Age+β2NatGr+β3 × CRP+β4 × Wetl 5 1,567.344 13.330 0.001
β0+β1 × PpnGr 2 1,567.368 13.355 0.001
β0 1 1,569.117 15.103 0.000
β0+β1 × Robel 2 1,570.775 16.762 0.000
β0+β1 × Date 2 1,570.826 16.813 0.000
β0+β1 × NatGr+β2 × CRP+β3 × Wetl 4 1,571.957 17.944 0.000
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 coeffi cients (or random variables) in the equa-
tion above random variables, one could use the 
delta method (Seber 1982, Williams et al. 2002) 
or simulation methods such as bootstrapping.

MONTE CARLO SIMULATIONS 
IN PROC NLMIXED

Monte Carlo Simulation (MCS) offers an 
empirical approach to examining a variety of 
characteristics of estimation results from analysis 
procedures (Fan et al. 2003). Distributional char-
acteristics of estimated regression coeffi cients, 
and their associated estimates of precision, are 
of interest here, especially for the random effects, 
as these methods have not been employed for 
nest-survival data previously. MCS is also use-
ful for evaluating the consequences of violat-
ing assumptions and for evaluating different 
potential sampling schemes that may be used 
in future research. Thus, we developed com-
puter code that creates nest-survival data for 
multiple sites in interval-specifi c form according 
to an underlying model of interest (Rotella et al. 
2006). Nests can vary from one another in terms 
of their characteristics, and nest-visitation inter-
vals can vary in length among the samples. Nest 
fates, which can be affected by both fi xed effects 
and a single random factor, are obtained using 
random sampling techniques. The data are then 
analyzed using models of interest, key results are 
stored, the process is repeated many times, and 
summary statistics of interest are calculated. The 
code can be adjusted to accommodate different 
scenarios. 

Here we provide the results for a scenario 
where survival for an interval was modeled as 

In the simulation, the true parameter values 
for the fi xed effects were β0 = 2.0 and β1 = 1.75. 
The random effect of study site was normally 
distributed (mean = 0, variance = 0.25). The 
 covariate x1 was a uniformly distributed nest-

specifi c covariate (range = 0–1.0). For each 
simulation, data were generated for 375 nests 
(25 nests per site for 15 different sites). 

Summary statistics based on 1,000 simula-
tions provide evidence that the method produces 
estimates with little bias and reasonable preci-
sion (Table 3), at least for the scenario described 
above. Coverage for 95% confi dence intervals 
was close to the nominal level for each of the 
parameters estimated. We have reached similar 
conclusions for a variety of scenarios where the 
samples of nests are balanced across sites. 

The design of samples and experiments in a 
mixed model context is a subject in need of both 
further research and communication. But, based 
on the results of our simulation work, it seems 
clear that the bare-minimum data requirements 
of the mixed-models approach described here 
are as follows: data from ≥fi ve levels of the fac-
tor being modeled as a random effect and data 
from ≥20 nests per level of the random factor. 
These are not hard and fast rules. For example, 
if one were to have data from only fi ve study 
sites, then it would likely be best to treat site as 
a fi xed effect as information is likely available 
from too few sites to allow accurate inference to 
the universe from which study sites might have 
been selected. Further, although 20 nests per 
site may be adequate for estimating landscape-
level parameters if a substantial number of sites 
are surveyed, 20 nests per site will not yield an 
accurate estimate of the random effect at any 
given site. If estimating daily survival rate at 
the specifi c sites surveyed is of interest, consid-
erably greater sample sizes will be required. 

Heisey et al. (this volume) provide an impor-
tant caveat regarding estimation in the presence 
of random effects. In typical studies of nest 
survival, data are left-truncated because some 
nests that fail early are not included in the 
sample (Heisey et al., this volume). Under these 
circumstances, it is easy to imagine scenarios for 
which estimates of survival will be biased high 
to some extent because nests in the sample over-
represent nests with higher underlying survival 
rates (Heisey et al., this volume).

TABLE 3. SUMMARY STATISTICS FOR 1,000 a MONTE CARLO SIMULATIONS.

 95% confi dence interval

Parameterb Mean estimate Mean SE Lower bound Upper bound Coverage
β0 2.13 0.19 1.72 2.54 0.98
β1 1.76 0.30 1.17 2.36 0.97
σ2

site 0.24 0.12 –0.02 0.50 0.97
a The general convergence criterion of PROC NLMIXED was satisfi ed for 985 of the 1,000 datasets. The 15 problematic datasets were discarded, 
and results presented are for the remaining 985 datasets. However, based on our experience with this procedure, convergence would likely have 
been achieved for many, if not all, of the remaining 15 datasets had we changed features such as the number of iterations, starting values, etc. (SAS 
Institute 2004). 
b True parameter values were 2.0, 1.75, and 0.25, respectively.
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To illustrate, we use an example where 
study site is a factor that is treated as a random 
effect. Under such a situation, a sample of sites 
having the same values for covariates treated 
as fi xed effects will still vary in terms of their 
underlying survival rates: the unmeasured 
fi xed effects responsible for the random effect 
will cause some of these sites to be better than 
others. All else being equal (nest densities, and 
search effort), sample sizes will be larger for 
those study sites that are associated with higher 
survival rates because nests in such settings are 
expected to survive longer and thus, have a 
greater chance of entering the sample. When the 
sample sizes are positively correlated with sur-
vival rates, estimates of survival will be biased 
high to some extent because nests in the sample 
over-represent nests with higher underlying 
survival rates (Heisey et al., this volume).

Given this fact, we conducted additional 
simulations for a modifi ed version of the 
scenario described above in which the model 
structure and values for the fi xed and random 
effects remained the same but the sample sizes 
varied among sites. Specifi cally, sample size 
per site was a function of the fi xed effect and 
the random effect for the site, which caused a 
site’s sample size to be positively related to a 
study site’s survival rate (number of nests per 
site varied from ∼10 for the poorest sites to 
∼25 on the best sites). We then evaluated the 
performance of two models: the generating 
model (mixed model) and a fi xed-effects only 
model, which did not model the random 
effect. In accordance with statements made by 
Heisey et al. (this volume), estimates from the 
mixed model were biased. For the scenario 
investigated, the estimated parameter values 
were biased such that estimated survival rates 
were too high and the variation associated with 
the random effect of site was too low (true β0 = 
2.0, estimated β0 = 2.5 [SE = 0.19]; true β1 = 1.75, 
estimated β1 = 1.3 [SE = 0.33]; true σ2

random effect = 
0.25, estimated σ2

random effect = 0.14 [SE = 0.10]).
We believe that this result should not be 

interpreted as calling into question the use of 
mixed models for nest-survival data. This point 
is made clearer by considering the estimates 
that were obtained from the fi xed-effects model 
for these simulations. Parameter estimates from 
a fi xed-effects-only model had the same level of 
bias as did the estimates from the mixed model, 
but these estimates were more precise. Thus, if 
one were to avoid the use of mixed models, the 
bias due to analyzing left-truncated data in the 
presence of random effects would still persist. 
But, the inferences about the estimates would 
be falsely made more confi dently, and, because 
the random effect would not be estimated, there 

would be no opportunity to detect the pres-
ence of heterogeneity in the data above and 
beyond the fi xed effects. The primary problem 
is whether random effects are in the data.

Clearly, if random effects might be present 
in left-truncated nest-survival data, the study 
design will have to be carefully considered. 
Simulation work completed to date indicates 
that balanced designs (equal numbers of nests 
found across levels of the covariate being 
treated as a random factor) effectively deals 
with this potential problem. Given that one 
will not typically know prior to data analysis 
whether or not random effects will exist in the 
data, it seems prudent to adjust search effort 
such that balanced samples are achieved. The 
issue of bias from left truncation has received 
little attention, and more work is needed to 
determine the magnitude of the problem under 
typical sampling scenarios.

Optimal study design will, of course, depend 
upon the particulars of each study such as effect 
sizes for factors of interest, process variation 
in system, and complexity of models being 
considered. In planning a study, if one knows 
that great variation is likely among levels of the 
random factor, obtaining data from nests over 
many levels of that factor will be more useful 
than will be obtaining large numbers of nests 
per level of that factor. For example, data from 
many sites with fewer nests/site will be better 
than data from few sites with many nests/site. 
Simulations can be used to gain insights into the 
advantages and disadvantages of various study 
designs, especially if pilot data are available to 
guide the simulation, for example simulation 
code that can be readily modifi ed to suit the 
specifi c circumstances of different studies is 
available (Rotella et al. 2006).

FUTURE DIRECTIONS

The methods reviewed above provide sev-
eral advances over the typical analysis methods 
used for most studies of nest survival. We have 
provided examples of some of the utility of the 
approach, but other innovative uses of existing 
methods will likely be useful. For example, 
survival rates of individual young within nests 
could be investigated with individual nest 
treated as a random effect and covariates such 
as egg (or nestling) size and age considered as 
fi xed effects. However, improvement is pos-
sible. In some studies, it will be desirable to 
examine the relationship between nest survival 
and multiple random factors. For example, in 
studies that are well replicated in space and 
time (>10 sites replicated for >10 yr), it will be 
of interest to estimate the variance components 
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associated with the random effects of both 
study site and year. 

Interest is growing in the consequences of 
individual variation in vital rates (Link et al. 
2002), and results from models that incorporate 
heterogeneity indicate that the consequences on 
population dynamics can be substantial (Cam et 
al. 2002). Further, results show that sources of 
variation among individuals cannot always be 
suffi ciently accounted for by age, year, or envi-
ronmental conditions. That is, it may be neces-
sary to allow each individual to have a unique 
mortality risk (Service 2000). One method of 
doing so is to use the methods described here to 
treat the individual as a random effect, but this 
cannot be done while also considering another 
random factor such as site or year. Thus, it is 
apparent that hierarchical models that permit 
multiple random factors are desirable. 

Heisey et al. (this volume) raised an important 
issue regarding possible bias in estimates made 
from left-truncated data containing overdisper-
sion due to random effects. We suggested above 
that balanced sampling designs may effectively 
deal with the problem. But, the issue of estima-
tion bias from left truncation has received little 
attention, and more work is needed to (1) deter-
mine the magnitude of the problem under vari-
ous sampling scenarios, (2) evaluate possible 
solutions that can be implemented during the 
analysis stage such as equal weighting of data 
from all levels of the random factor regardless 
of sample sizes, and (3) make recommendations 
regarding the appropriate interpretation of esti-
mates from studies of nest-survival data when 
random effects may be present. 

The methods presented here do not consider 
detection probability for nests with differ-
ent characteristics as do some other methods 
(Pollock and Cornelius 1988, Bromaghin and 
McDonald 1993a, McPherson et al. 2003). 
Accordingly, these methods provide estimates 
that are conditional on the data set (Pollock 
and Cornelius 1988, Bromaghin and McDonald 
1993a, McPherson et al. 2003). We note that 
the sample can also be non-representative of 
the entire population because the nature of the 
survey methods, birds, or both is such that nests 
can not be found until they are above some 
minimum age. For example, in some species 
it may be the case that nests can not be found 
prior to incubation because the birds spend little 
time on nests prior to incubation and the birds 
provide the cues used by researchers for fi nding 
nests. Or, for studies of species in which nest 
visits cause premature fl edging, data may not be 
available for nests above some threshold age. 

The methods presented here do not consider 
several other situations that may be encountered 

in nesting studies for some species. For some 
species, nest age will be a covariate of interest 
but be unknown for many nests (Stanley 2004a). 
Also, typical assumptions about the distribu-
tions of hatching and fl edging events may be 
violated in some studies (Etterson and Bennett 
2005). Under such circumstances, it will also be 
diffi cult to know the exact fl edging date for nests 
and to time fi nal nest checks such that nest fates 
can be unambiguously determined (Manolis et 
al. 2000). Given that these circumstances will 
occur regularly for some species of interest, it 
would be valuable to future studies of nest sur-
vival if methods for dealing with ambiguities 
in aging and determining fate (Manolis et al. 
2000; Stanley 2000a, 2004; Etterson and Bennett 
2005) could be incorporated into the methods 
presented here.

It seems clear that the analysis methods 
described here provide improvements but do 
not allow for complete evaluation of possible 
heterogeneity in nest-fate data. Analysis meth-
ods presented by Natarajan and McCullach 
(1999) provide conceptual solutions to the prob-
lem. However, exact solutions of the likelihoods 
presented are computationally intractable for 
modestly complex problems. An approach 
using accurate approximate solutions is essen-
tial, and extensions of work done by Lele and 
Taper (2002) may be useful in the future. Use 
of Markov Chain, Monte Carlo methods in a 
Bayesian approach (Link et al. 2002), may also 
prove useful for solving such complex problems 
with nest-survival data (He et al. 2001, He 2003). 
Bayesian alternatives to the approach described 
here can be implemented in readily available 
software packages such as program MARK 
(White and Burnham 1999) or WinBUGS (Lunn 
et al. 2000). Regardless of the approach used, 
we expect more complex hierarchical models to 
provide logical extensions to the concepts and 
analysis methods presented here. Of course, 
such analyses will require excellent data sets 
resulting from sound sampling designs.

The advances made by Mayfi eld (1961) and 
others (Johnson 1979, Bart and Robson 1982) are 
seminal and pivotal for continued improvement 
in the approaches that we use for analysis. Those 
historic approaches have some restrictive and 
potentially unrealistic assumptions that may 
cause biased estimates and misleading infer-
ences if the investigator is not cautious about 
such pitfalls. Recent advancements in the analy-
sis of nest-survival data and the availability of 
appropriate computer programs have raised 
the standards for assessing this important attri-
bute of avian biology. Investigators that acquire 
nest-fate data collected from properly designed 
studies, which provide a representative sample 
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of nests, should use these analysis tools to 
make reliable inference about nest survival. We 
therefore submit that analysis of nest-survival 
data in the framework provided by programs 
such as MARK (Dinsmore et al. 2002) or SAS 
(Stanley 2000, 2004a; Shaffer 2004a) should be 
a minimum level of analysis for modern, avian 
studies. We hope investigators with specifi c 
interests in the effects of heterogeneity on nest-
survival estimates or those with specifi c ques-
tions about levels of process variation in their 
population will consider some of the advanced 
methods described here and elsewhere.
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