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A SMOOTHED RESIDUAL BASED GOODNESS-OF-FIT STATISTIC 
FOR NEST-SURVIVAL MODELS

RODNEY X. STURDIVANT, JAY J. ROTELLA, AND ROBIN E. RUSSELL

Abstract. Estimating nest success and identifying important factors related to nest-survival rates is an 
essential goal for many wildlife researchers interested in understanding avian population dynam-
ics. Advances in statistical methods have led to a number of estimation methods and approaches 
to modeling this problem. Recently developed models allow researchers to include a covariate that 
varies by individual and time. These techniques improve the realism of the models, but they suffer 
from a lack of available diagnostic tools to assess their adequacy. The PROC NLMIXED procedure in 
SAS offers a particularly useful approach to modeling nest survival. This procedure uses Gaussian 
quadrature to estimate the parameters of a generalized linear mixed model. Using the SAS GLMMIX 
macro, we extend a goodness-of-fi t measure that has demonstrated desirable properties for use in set-
tings where quasi-likelihood estimation is used. The statistic is an unweighted sum of squares of the 
kernel-smoothed model residuals. We fi rst verify the proposed distribution under the null hypothesis 
that the model is correctly specifi ed using the new estimation procedure through simulation studies. 
We then illustrate the use of the statistic through an example analysis of daily nest-survival rates. 

Key Words: binary response, generalized linear mixed model (GLMM), goodness-of-fi t, kernel 
smoothing, logistic regression, nest survival.

UNA ESTADÍSITICA BASADA EN AJUSTE DE CALIDAD RESIDUAL 
SUAVIZADA PARA MODELOS DE SOBREVIVENCIA DE NIDO
Resumen. Estimar el éxito de nido e identifi car factores importantes relacionados a las tasas de 
sobrevivencia de nido es una meta esencial para muchos investigadores de vida silvestre interesados en 
el entendimiento de las dinámicas poblacionales de aves Avances en métodos estadísticos han dirigido 
a un número de métodos de estimación y acercamiento para modelar este problema. Recientemente, 
modelos que han sido desarrollados permiten a los investigadores incluir una covariante que varia 
por individuo y tiempo. Estas técnicas mejoran la realidad de los modelos, pero padecen de la falta de 
disponibilidad de herramientas de diagnóstico para valorar qué tan adecuadas son. El procedimiento 
PROC NLMIXED en SAS ofrece un acercamiento particularmente útil para modelar la sobrevivencia 
de nido. Este procedimiento utiliza cuadratura Gaussiana para estimar los parámetros de un modelo 
generalizado linear mezclado. Usando el SAS GLMMIX macro aumentamos la medida de calidad de 
ajuste, la cual ha demostrado propiedades deseables para utilizar en ajustes donde la estimación de 
probabilidad aparente es utilizada. La estadística es una suma no cargada de cuadrados de residuos 
del modelo suavizado kernel. Primero verifi camos la distribución propuesta bajo la hipótesis nula de 
que el modelo está correctamente especifi cado, utilizando el nuevo procedimiento de estimación a 
través de estudios de simulación. Después ilustramos el uso de la estadística por medio de un ejemplo 
de análisis de tasas de sobrevivencia de nido diarias.
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Dinsmore et al. (2002), Stephens (2003), and 
Shaffer (2004a) concurrently developed meth-
ods for modeling daily nest-survival rates as 
a function of nest, group, and/or time-specifi c 
covariates using a generalized linear model 
(McCullagh and Nelder 1989) with binomial 
likelihood (see Rotella et al. [2004] for review). 
All of the methods use the likelihood presented 
by Dinsmore et al. (2002) and extend the model 
of Bart and Robson (1982). As with the com-
monly used Mayfi eld estimate (Mayfi eld 1975), 
overall nest success is estimated by raising daily 
survival rates to the power of n, where n is the 
number of days in the nesting cycle. 

The model likelihood involves the probabil-
ity a nest survives from day i to i + 1, denoted 
Si (the daily survival rate). As an example, con-
sider a nest found on day k, and active when 

revisited on day l, and last checked on day m 
(k < l < m). The nest survived the fi rst interval 
and therefore contributes SkSk+1…Sl–1 to the 
likelihood. The probability the nest failed would 
be one minus the product so that the likelihood 
is proportional to the product of probabilities 
of observed events for all nests in the sample 
(Dinsmore et. al. 2002). 

Using the logit link, the daily survival rate of 
a nest on day i is modeled:

  (1)

where we let πi denote the daily probability 
of nest survival and the xik are values of the K 
covariates. The outcome is modeled as a series 



STUDIES IN AVIAN BIOLOGY46 NO. 34

of Bernoulli trials, where the number of trials is 
t for a nest surviving an interval of t days, and 
one for a nest failing within the interval (Rotella 
et al. 2004). Stephens (2003) implements nest-
survival models in PROC NLMIXED of SAS 
(SAS Institute 2004) using programming state-
ments within the procedure to perform iterative 
logistic regression for each day in an interval. 
This implementation allows the modeler to 
include random as well as fi xed effects, as do 
recent implementations (Dinsmore et al. 2002) 
of program MARK (White and Burnham 1999).

The random-effects logistic-regression model 
accounts for clustering structures inherent in 
the data. Variables whose observations can be 
thought of as random samples from the popula-
tion of interest are candidates for inclusion into 
the model as random effects (Pinheiro and Bates 
2000). Examples of covariates in nest-survival 
studies that might be treated as random effects 
are study site, year, or individual nest. In this 
case, with two levels, we might suppose that 
either or both coeffi cients (intercept and slope 
of the linear logit expression) vary randomly 
across groups. Suppose for simplicity that we 
have a single covariate. If we treat the intercept 
and slope as random, the logistic model of  (1) 
becomes:

  (2)

with β0j = β0 + µ0j, and β1j = β1 + µ1j. The random 
effects are typically assumed to have a normal 
distribution so that µ0j ∼ N(0, σ0

2) and µ1j ∼ 
N(0, σ1

2). Further, the random effects need 
not be uncorrelated so we have, in general, 
Cov(µ0j, µ1j) = σ01.

Substituting the random effects into expres-
sion (2) and rearranging terms, the model is:

(3)

The model in (3) suggests a general matrix 
representation for the random effects logistic-
regression model given by:

y = π + ε

where y is an N × 1 vector of the binary out-
comes (survived or not), π the vector of prob-
abilities, and ε the vector of errors. 

The response is related to the data through 
the link function:

 logit(π) = Xβ + Zµ (4)

Here, X is a design matrix for the fi xed effects. 
For the model given in expression (4) this is 
an N × 2 matrix with fi rst column of ones and 
the second column the vector of values for the 
predictor variable xij. The vector β is the cor-
responding p × 1 vector of parameters for the 
fi xed portion of the model. In our example this 
is the 2 × 1 vector (β0, β1)’. Under the BIN(π) 
assumption (BIN referring to the binomial dis-
tribution), the vector of level-one errors, ε, has 
mean zero and variance given by the diagonal 
matrix of binomial variances: Var(ε) = W = 
diag[πij(1 – πij)].

The term Zµ in (4) introduces random 
effects and represents the difference between 
the random effects and standard logistic-
regression models. The matrix Z is the design 
matrix for the random effects. In the example 
in (3), Z is an N × 2J matrix as there are two 
random effects. The matrix is block diagonal, 
with the blocks corresponding to the groups 
in the hierarchy (in this example, the level two 
groups indexed from j = 1 to J). The vector µ 
is a 2J × 1 vector of coeffi cients correspond-
ing to the random effects. The elements are 
the random intercept and random slope for 
each group in the hierarchy. The vector has 
assumed distribution µ ∼ N(0, Ω) with block 
diagonal covariance matrix.

Several methods are available for estimat-
ing the parameters of the hierarchical logistic-
regression model (Snijders and Bosker 1999). 
The methods include numerical integration 
(Rabe-Hesketh et al. 2002), use of the E-M 
algorithm (Dempster et al. 1977) or Bayesian 
techniques to optimize the likelihood (Longford 
1993), and quasi-likelihood estimation (Breslow 
and Clayton 1993).

By conditioning on the random effects 
and then integrating them out, an expres-
sion for the maximum likelihood is available. 
Although this integral is diffi cult to evaluate, 
estimation techniques involving numeri-
cal integration, such as adaptive Gaussian 
quadrature, recently have been implemented 
in many software packages including SAS 
PROC NLMIXED (SAS Institute 2004). These 
methods are computationally intensive and do 
not always result in a solution. As a result, in 
most cases, the technique cannot handle larger 
models (such as data with more than two hier-
archical levels or a large number of groups or 
random effects). 

In this paper, we wish to extend the good-
ness-of-fi t measure introduced in the next sec-
tion beyond the quasi-likelihood estimation 
approach (Breslow and Clayton 1993) used in its 
development and testing. Specifi cally, the SAS 
GLMMIX (SAS Institute 2004) macro was used 



GOODNESS-OF-FIT FOR SURVIVAL MODELS—Sturdivant et al. 47

in simulation studies to verify the theoretical 
distribution of the statistic (note that since that 
study, SAS has implemented the SAS GLMMIX 
procedure which can be used to obtain the same 
results). SAS GLMMIX implements a version of 
quasi-likelihood estimation which SAS refers 
to as PL or pseudo-likelihood (Wolfi nger and 
O’Connell 1993). For the logistic-hierarchical 
model, a Taylor approximation is used to linear-
ize the model. The estimation is then iterative 
between fi xed and random parameters. These 
procedures suffer from known bias in param-
eter estimates (Rodriguez and Goldman 1995). 
In this paper, we extend the statistic to the 
less biased estimation approach of Gaussian 
quadrature available in PROC NLMIXED (SAS 
Institute 2004). 

THE GOODNESS-OF-FIT MEASURE

Various goodness-of-fi t statistics are avail-
able for use in the standard logistic-regression 
setting, but none have been developed for use 
in the random effects version of the model. 
Recently, two approaches have been proposed 
that might extend to the nest-survival models 
discussed above. Pan and Lin (2005) suggest 
statistics to test each fi xed effect and the link 
function in generalized linear mixed models 
(GLMM) which, taken together, would address 
overall model fi t. Studying their approach in 
this setting is worthy of future research. The 
approach we examine here is a single sta-
tistic designed to measure overall model fi t 
outlined by Sturdivant (2005) and Sturdivant 
and Hosmer (in press). They extend a residual 
based goodness-of-fi t statistic used in standard 
logistic models to the case of the hierarchical 
logistic model. This statistic is based on the 
unweighted sum of squares (USS) statistic 
proposed by Copas (1989) for the standard 
logistic-regression model. 

In the random effects logistic model, the 
statistic uses kernel-smoothed residuals. These 
smoothed residuals are a weighted average of 
the residuals given by:

,

where Λ is the matrix of smoothing weights:

.

The weights, λij, produced using the kernel 
density are:

  (5)

where K(ξ) is the Kernel density function and h 
is the bandwidth.

Previous research has explored three kernel-
density functions commonly used in studies 
of standard logistic-regression models, and 
all three densities produced acceptable results 
(Sturdivant 2005, Sturdivant and Hosmer, in 
press). The uniform density used in a study of 
a goodness-of-fi t measure in standard logistic 
regression (le Cessie and van Houwelingen 
1991) is defi ned as:

A second choice used in standard logistic stud-
ies involving smoothing in the y-space (Hosmer 
et. al. 1997, Fowlkes 1987) is the cubic kernel 
given by:

The fi nal choice was the Gaussian kernel den-
sity (Wand and Jones 1995) defi ned:

The choice of kernel function is considered 
less critical than that of the bandwidth (Hardle 
1990). The bandwidth, h, controls the number 
of observations weighted in the case of the uni-
form and cubic densities. The choice of band-
width for the kernel-smoothed USS statistic is 
related, as well, to the number of subjects per 
cluster. Previous studies suggest a bandwidth 
weighting  of the n residuals for relatively 
large clusters (>20 subjects) and weighting only 

 for situations with smaller cluster sizes 
(Sturdivant 2005). For the Gaussian density, all 
observations are weighted. However, observa-
tions that are 2–3 SE outside of the mean effec-
tively receive zero weight. The bandwidth then 
determines how many residuals are effectively 
given zero weight in the Gaussian case. Thus, 
the bandwidth choices for the Gaussian ker-
nel place the selected number of observations 
within two standard deviations of the mean of 
the N(0,1) density. 
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Regardless of the bandwidth criteria, a dif-
ferent bandwidth hi is used for each  (Fowlkes 
1987). The weights are then standardized so that 
they sum to one for each  by dividing by the 
total weights for the observation as shown in 
expression (5). 

The goodness-of-fi t statistic is then the USS 
statistic but using the smoothed rather than raw 
residuals:

The distribution of this statistic is extremely 
complicated due to the smoothing and the com-
plexity of the hierarchical logistic model. Using 
an approach similar to that of Hosmer et. al. 
(1997), Sturdivant (2005) produced expressions 
to approximate the moments of the statistic. 
These moments are used to form a standardized 
statistic which, under the null hypothesis that 
the model is correctly specifi ed, should have an 
asymptotic standard normal distribution:

  (6)

where:

 
and:

In these expressions , 
, M = WQ[Q’WQ + R]–1Q’ 

and g = WQ[Q’WQ + R]–1Rδ. Further, Q = 
[X Z] is the design matrix for both fi xed and 
random effects, and 

 

the vector of estimated fi xed and random effects. 
The other matrix in the expression involves the 
estimated random-parameter covariances and 
is defi ned:

While complicated, the matrix expressions 
are easily implemented in standard statistical 

software packages using output of the ran-
dom effects estimation (Sturdivant et al. 2006; 
Appendix 1).

To test model fi t, the moments are evaluated 
using the estimated quantities from the model 
where necessary in expression (6). The standard-
ized statistic is compared to the standard normal 
distribution. A large (absolute) value leads to 
rejecting the null hypothesis and calls into ques-
tion the correctness of the specifi ed model.

The asymptotic distribution is complicated 
but expected to be standard normal under 
a central-limit-theorem argument. Previous 
simulations studies have shown that the distri-
bution holds under the null distribution not just 
for large samples, but for smaller samples likely 
to occur in practice (to include small cluster 
sizes) (Sturdivant 2005, Sturdivant and Hosmer, 
in press).

SIMULATION STUDY RESULTS

The proposed goodness-of-fi t statistic was 
developed and tested in hierarchical logistic-
regression models fi t using penalized quasi-
likelihood (PQL) estimation. Stephens (2003) 
implements nest-survival models in PROC 
NLMIXED (SAS Institute 2004) using program-
ming statements within the procedure to per-
form iterative logistic regression for each day 
in an interval. Rotella et al. (2004) demonstrate 
the value of this approach as it accounts for the 
time-varying covariates, in essence performing a 
discrete-time survival analysis. In addition, the 
estimation uses the less biased Gaussian quadra-
ture estimation approach (SAS NLMIXED pro-
cedure) rather than PQL estimation. 

Before accepting the kernel-smoothed USS 
statistic for use in such models, we performed 
simulations to validate its use with the dif-
ferent estimation schemes and in models 
with time-varying covariates. Theoretically, a 
residual-based goodness-of-fi t measure would 
not be affected by the form of the model or the 
estimation method. However, the complexity of 
the models and the statistic, particularly in the 
presence of random effects and clustering, leads 
to the need to validate the theory when using a 
different procedure.

We were interested in examining the rejec-
tion rates of the statistic in settings similar to 
those of nest survival data for which Rotella et 
al. (2004) propose using PROC NLMIXED (SAS 
Institute 2004). Previous extensive simulations 
using the GLMMIX macro have shown that 
the statistic rejects at the desired signifi cance 
(Sturdivant 2005). Here, we wish to confi rm that 
this continues in the new setting and estimation 
scheme.
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The simulations involve models typical of 
those found in nest-survival studies. In particu-
lar, the simulated data included a standard con-
tinuous fi xed effect as well as a time- varying 
fi xed effect. For nest-survival models, a random 
intercept or, in some instances, a random slope 
for the time varying covariate may be deemed 
appropriate. Thus, we simulated both situa-
tions. In each case, we created 1,000 replicates 
using a data structure with 20 clusters (sites) 
each including 20 subjects (nests). The simu-
lated time intervals between nest visits were 
5–8 d (chosen at random from a uniform distri-
bution). The kernel-smoothed statistic was cal-
culated using the cubic kernel and a bandwidth 
weighting  of the residuals (the choice of 
bandwidth is discussed in the section on the 
goodness-of-fi t measure). In this case, with N 
= 400 subjects (20 clusters of 20 subjects), this 
bandwidth choice means that 10 observations 
were weighted to produce each smoothed 
residual value.

The estimated moments for the statistic 
from the two simulation runs approximate the 
observed moments of the simulated statistical 
values (Table 1). Further, the empirical rejec-
tion rates at the 0.01, 0.05, and 0.10 signifi cance 
levels are similar. The 95% confi dence regions 
for the rejection rates at these three signifi cance 
levels are 0.6%, 1.4%, and 1.9%, respectively. 
Only in the case of the 0.01 signifi cance level 
for the random-slope model is the observed 
rejection rate outside of this interval. In that 
instance, the statistic rejects slightly more often 
than expected. 

The case where the statistic appears to reject 
slightly too often deserves several comments. 
First, when the results of the goodness-of-fi t test 
indicate a lack of model fi t, the analyst should 
be prompted to further investigate the data and 
model, and not necessarily reject the model 
outright. Therefore, the slightly higher than 
expected rejection rate merely results in peri-
odically investigating model fi t under circum-
stances when researchers might not ordinarily 
do so. Further, the actual number of models 
used in the simulation of the random-slope 

model was 470 (of the 1,000 replications)—the 
NLMIXED procedure failed to converge (a well 
documented issue with the Gaussian quadra-
ture estimation scheme in practice and not 
related to the goodness of fi t). Thus, it is possi-
ble that with more simulations the actual rejec-
tion rate would converge to a value within the 
confi dence region. In fact, the 95% confi dence 
interval with only 470 replications is wider 
(0.9%) so that the observed rejection rate is even 
less; for a very sensitive rejection rate (0.01).

We conclude that the simulation results 
reported here confi rm earlier papers (Sturdivant 
2005, Sturdivant and Hosmer, in press) and sug-
gest that the change in estimation method and 
the inclusion of time-varying covariate does not 
hurt the performance of the kernel smoothed 
USS statistic.

EXAMPLE

To illustrate the use of the statistic in a fi tted 
model, we use data for Mallard (Anas platy-
rhynchos) nests monitored in 2000 in the Coteau 
region of North Dakota (Rotella et al. 2004). The 
data set we used contains 1,585 observations 
of 565 nests collected as part of a larger study. 
Rotella et al. (2004) analyzed the data using vari-
ous techniques to account for the time varying 
covariates, in essence performing a discrete-time 
survival analysis. They estimated parameters for 
random effects models using Gaussian quadra-
ture in PROC NLMIXED (SAS Institute 2004). 
We fi t the same models and produced the ker-
nel-smoothed USS statistic to measure overall 
model fi t (Sturdivant et al. 2006; Appendix 1). 
The fi xed effects of interest here include: nest 
age (1–35 d) and the proportion of grassland 
cover on the site containing the nest. The clus-
ters or groups in this case are the 18 sites moni-
tored during a 90-d nesting season. 

The best random-effects model (Rotella et. 
al. 2004) included both nest age (treated as time 
varying) and proportion of grassland cover with 
a random intercept. With 18 nest sites (clusters) 
and 1,585 total observations, the bandwidth 
weighting more observations  is 

TABLE 1. SIMULATION STUDY RESULTS USING PROC NLMIXED WITH TIME VARYING COVARIATES (N = 1,000 REPLICATIONS FOR 
RANDOM INTERCEPT AND 470 FOR RANDOM SLOPE) AND CUBIC KERNEL USS STATISTIC. 

 Kernel-smoothed statistic Moment estimates 

Model Mean SD a EV b SD c Rejection rates c

     0.01 0.05 0.10
Random Intercept 12.5 2.0 12.1. 1.8 0.013 0.047 0.105
Random Slope 2.3 0.8 2.3 0.7 0.021 0.045 0.085
a SD = standard deviation.
b EV = expected value.
c Signifi cance levels.
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preferred. Using this bandwidth and the cubic 
kernel, the calculated statistic and moments are 
as follows:  = 15.3, E( ) = 13.8, Var( ) = 1.8, 

 = 0.80, and P-value = 0.423. 
Comparing the statistic to the standard nor-

mal distribution, we fail to reject the hypothesis 
of model fi t (P = 0.42). Thus, we can conclude 
that the overall model specifi cation has no prob-
lems and that this model is reasonable in terms 
of goodness-of-fi t. Clearly, other possible con-
siderations are possible in fi tting models (such 
as the best model). The goodness-of-fi t statistic 
is useful as shown in this example when the 
model building exercise is complete and the 
analyst wishes to verify the appropriateness of 
the fi nal model selected. Note that, if desired, 
the goodness-of-fi t statistic can be used as one 
would any other such statistic. For example, 
one might use it to evaluate the fi t of the global 
model—such a procedure is often recom-
mended when using an information-theoretic 
approach to model selection, and especially 
when model-averaging is done, in which case 
there may not be a clear choice of the model for 
which fi t should be evaluated (Burnham and 
Anderson 2002). As discussed by Burnham and 
Anderson (2004), goodness-of-fi t theory about 
the selected best model is a subject that has 
been almost totally ignored in the model-selec-
tion literature. In particular, if the global model 
fi ts the data, does the selected model also fi t? 
Burnham and Anderson (2004) explored this 
question and provide evidence that in the case 
of AIC-based model selection that the selected 
best model typically does fi t if the global model 
fi ts. However, they also point out that results 
can vary with the information criterion used to 
select among models as well as other particulars 
of the study in question. The goodness-of-fi t 
statistic provided here should prove useful to 
future development of goodness-of-fi t theory 
with regards to nest-survival data. 

DISCUSSION

Our results suggest that the kernel-smoothed 
USS statistic is a reasonable measure of overall 
model fi t in random effects logistic-regression 

models involving time-varying covariates and 
using Gaussian quadrature for estimation. This 
work is an important extension demonstrating 
that the USS statistic is valid in settings beyond 
the PQL procedures used in its development. 
Further, no other available tools exist to assess 
overall model fi t in models which offer great 
value to wildlife researchers modeling nest 
survival. This statistic is easily implemented 
in software packages and is currently available 
for use with PROC NLMIXED (SAS Institute 
2004) as well as the GLMMIX macro (SAS 
Institute 2004).

The power of the USS statistic deserves 
further exploration (Sturdivant and Hosmer, 
in press); this statistic has reasonable power 
to detect issues of fi xed-effect specifi cation in 
the presence of random effects (Sturdivant and 
Hosmer, in press). However, exactly how much 
power and what sort of model misspecifi cation 
is detected is an area of current research.

Goodness-of-fi t measures are designed to 
warn of potential problems with the selected 
model. However in using our methods, if the 
model fi t is rejected it is currently not clear 
what an analyst should do to address issues 
with the model. In practice, the analyst should 
re-examine the model and the data to identify 
reasons (such as outliers or inaccurate data) 
for why the null hypothesis of model fi t was 
rejected. This exploration will often offer 
insights leading to a more appropriate model. 
The use of the statistic in studies which fi t a 
variety of models will provide information 
regarding the causes of null hypothesis rejec-
tion, and allow researchers to develop meth-
ods for improving model fi t.
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APPENDIX 1. SAS CODE FOR THE EXAMPLE DATA ANALYSIS USED IN THIS PAPER IS AVAILABLE (STURDIVANT ET AL. 2006).

* MACRO used to produce the USS kernel-smoothed statistic ;
%MACRO u1kern1 ;
PROC IML ;
 USE piest ;
  read all var {ifate} into yvec ;   * RESPONSE VARIABLE NAME HERE ;
  read all var {pred} into pihat ;
 CLOSE piest ;
 USE west ;
  read all var {pred} into wvec ;
 CLOSE west ;

 ehat = yvec-pihat ;
 what = diag(wvec) ;
 n = nrow(pihat) ;
 getwt =  ceil(0.5*sqrt(n))+1 ;   * SELECT THE BANDWIDTH HERE ;

*  KERNEL SMOOTH ROUTINE ;
 
 wtmat = J(n,n) ;
 rx=J(n,1) ;
 do i=1 to n ;
   x = abs(pihat[i] - pihat);
   rx[rank(x)]=x;
   bw = rx[getwt] ;
   if bw = 0 then do ;
    bw = 0.0000000000001 ;
   end ;
   wtmat[,i] = x / bw ;
 end ;
 * Get Kernel density values and weights;
  * UNIFORM (-a,a) ;
 ukern = t(wtmat<1) ;
 icolsum = 1/ukern[,+] ;
 uwt = ukern # icolsum ;

  * CUBIC  ;
 ctemp = 1 - (t(wtmat))##3 ;
 ckern = ukern # ctemp ;
 icolsum = 1/ckern[,+] ;
 cwt = ckern # icolsum ;

  * NORMAL ;
 nkern = pdf(‘norm’,t(2*wtmat)) ;
 icolsum = 1/nkern[,+] ;
 nwt = nkern # icolsum ;

* MOMENTS and TEST STATISTICS;

 USE mall ;  * NAMES OF FIXED DESIGN MATRIX HERE and data set ;
  read all var{lv3 sage PctGr4} into x ;   * Note: here lv3 is all ones so
    used as int ;
  read all var {site} into groups ; * NAME OF LEVEL2 VARIABLE HERE ;
 CLOSE mall ;
 zmat = design(groups) ;
 Q = x||zmat ;

 USE betahat ;
  read all var {Estimate} into betahat ;  
 CLOSE betahat ;
 USE Randeff ;
  read all var {estimate} into muhat ;  
 CLOSE Randeff ;
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 USE Sigmahat ;
  read all var {estimate} into cov2 ; 
 CLOSE Sigmahat ;
 icov2 = 1/cov2 ;
 icov2d=diag(icov2) ;
 icov2a = BLOCK(icov2d,icov2d,icov2d) ;
 icovbl2 = BLOCK(icov2a,icov2a,icov2a,icov2a,icov2a,icov2a); 
* BLOCKS SAME NUMBER AS GROUPS ;
  
 faketop = j(ncol(x),ncol(x)+ncol(zmat),0) ;  
 fakeleft = j(ncol(zmat),ncol(x),0) ;   
 comb1 = fakeleft||icovbl2 ;
 R = faketop//comb1 ;

 dhat = betahat//muhat ;

 * CREATE g vector and M matrix ;

 mymat = inv( t(Q)*what*Q + R ) ;

 g = what * Q * mymat * R * dhat ;
 M = what * Q * mymat * t(Q) ;
 
 * CALCULATE TEST STATISTICS;
 
 im = I(nrow(M))-M ;

 midunif = t(uwt)*uwt ;
 midcube = t(cwt)*cwt ;
 midnorm = t(nwt)*nwt ;

 aunif = t(im)*midunif*im ;
 acube = t(im)*midcube*im ;
 anorm = t(im)*midnorm*im ;

 bunif = 2*t(im)*midunif*g ;
 bcube = 2*t(im)*midcube*g ;
 bnorm = 2*t(im)*midnorm*g ;

 Tuni = t(ehat)*midunif*ehat ;
 Tc = t(ehat)*midcube*ehat ;
 Tn = t(ehat)*midnorm*ehat ;

 * CALCULATE EXPECTED VALUES ;
 eunif = trace( aunif*what) + t(g)*midunif*g ;
 ecube = trace( acube*what) + t(g)*midcube*g ;
 enorm = trace( anorm*what) + t(g)*midnorm*g ;

 * CALCULATE VARIANCE ;
 temp1 = wvec#(1-6*wvec) ;
 temp3 = pihat#(1-pihat)#(1-2*pihat) ;

 tempu = (vecdiag(aunif))##2 ;
 tempc = (vecdiag(acube))##2 ;
 tempn = (vecdiag(anorm))##2 ;

 v1unif = sum(tempu#temp1) ;
 v2unif = 2* trace(aunif*what*aunif*what) ;
 v3unif = t(bunif)*what*bunif ;
 v4unif = 2*sum( (vecdiag(aunif))#bunif#temp3 ) ;

 v1cube = sum(tempc#temp1) ;
 v2cube = 2* trace(acube*what*acube*what) ;
 v3cube = t(bcube)*what*bcube ;
 v4cube = 2*sum( (vecdiag(acube))#bcube#temp3 ) ;
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 v1norm = sum(tempn#temp1) ;
 v2norm = 2* trace(anorm*what*anorm*what) ;
 v3norm = t(bnorm)*what*bnorm ;
 v4norm = 2*sum( (vecdiag(anorm))#bnorm#temp3 ) ;

 vunif = v1unif + v2unif + v3unif + v4unif ;
 vcube = v1cube + v2cube + v3cube + v4cube ;
 vnorm = v1norm + v2norm + v3norm + v4norm ;

 cubestat = (Tc-ecube)/sqrt(vcube) ;
 normstat = (Tn-enorm)/sqrt(vnorm) ;
 unifstat = (Tuni-eunif)/sqrt(vunif) ;

 punif = 2*(1-probnorm(abs(unifstat))) ;
 pcube = 2*(1-probnorm(abs(cubestat))) ;
 pnorm = 2*(1-probnorm(abs(normstat))) ;

 print Tc ecube vcube cubestat pcube ;
 print Tn enorm vnorm normstat pnorm ;
 print Tuni eunif vunif unifstat punif ;
 
quit ; run ;
%MEND ;

* NEST DATA ;

data Mall; set Nests.mall2000nd;
 LV3 =1 ;                             * ADD A COLUMN OF ONES FOR INTERCEPT ;
 if ifate=0 then ness+1;
 else if ifate=1 then ness+t;
/* create indicator variables for different nesting habitats */
    if hab=1 then NatGr=1; else NatGr=0;            /* Native Grassland */
    if hab=2 or hab=3 or hab=9 then CRP=1; else CRP=0;     /* CRP & similar    */
    if hab=7 or hab=22 then Wetl=1; else Wetl=0;           /* Wetland sites    */
    if hab=20 then Road=1; else Road=0;         /* Roadside sites   */
run;

Proc Sort data=Mall;
by site; run;

* FIT MODEL USING PROC NLMIXED;

PROC NLMIXED DATA=Mall tech=quanew method=gauss maxiter=1000;
parms B0=2.42, B2=0.019, B4=0.38, s2u=0.1;
 p=1;
    do i=0 TO t-1;
    if i=0 then Ob=1;
    else Ob=0;
        logit=(B0+u)+B2*(sage+i)+B4*PctGr4 ;
       p=p*(exp(logit)/(1+exp(logit)));
    end;
model ifate~binary(p);
random u~normal(0,s2u) subject=site out=randeff;
predict p*(1-p) out=west;
predict p out=piest ;
ods output ParameterEstimates=betahat
    (where=(Parameter=:”B”)) ;
ods output ParameterEstimates=sigmahat
    (where=(Parameter=:”s2”)) ;
ods output ParameterEstimates=B0Hat
    (where=(Parameter=’B0’) rename=(Estimate=Est_B0));
ods output ParameterEstimates=B1Hat
    (where=(Parameter=’B1’) rename=(Estimate=Est_B1));
ods output ParameterEstimates=B2Hat
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    (where=(Parameter=’B2’) rename=(Estimate=Est_B2));
ods output ParameterEstimates=s2uhat
    (where=(Parameter=’s2u’) rename=(Estimate=Est_s2u));
run ;

%u1kern1 ;  * CALL KERNEL SMOOTHED STATISTIC MACRO ;




