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Demography and Age-Structured Populations 
 
Outline 
 
Population parameters 
Discrete vs. continuous events, ages vs age-classes. 
Life Tables 
 Cohort vs. Static (segment) 
 Survivorship: lx and sx 
 Fecundity: mx 
 Net reproductive rate: R0 
 Generation time: T 
 Intrinsic rate of increase: r 
 Reproductive value: vx 
  Residual reproductive value 
  Trade-offs and optimal life-histories 
 Assumptions and limitations 
  Age distributions 
 
Recall from lecture 1, a Population is a group of individuals of the same species, living 
sufficiently close together than intermating is possible, and therefore sharing a common 
gene pool. 
 
Study of population parameters is also called demography, from Greek root for 
population, ‘deme’. 
 
Difficulties with defining a population: 
 
1. In practice, can be hard to identify a population; often a study area is defined and this 
defines a ‘study population’.  Care is needed when a population is defined in this way, 
b/c immigration and emigration can affect estimates of survival and reproduction. (Open 
vs. closed populations).  Especially a problem for animals that live at low density, large 
ranges.  
2.  Population size and geographic extent vary through time 
3.  Definition cannot be applied to asexual organisms - for these, the focus is on 
proximity 
 
Population-level variables depend on the properties of individuals that compose the 
population.  The two most basic parameters of a population are an individual’s likelihood 
of surviving and an individual’s likelihood of breeding.  A quick  glance at the world 
reveals that both of these depend on the individual’s age, in most species.  (E.g. very 
young and very old individuals often don’t breed, and very young individuals often have 
high odds of dying.) 
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These basic parameters are combined in a life-table, as age-specific survivorship and 
age-specific fecundity.  From these two parameters, we can derive considerable 
information, which falls into two categories: 
 
1.  Demographic information allows measurement of  the rate of population growth and 
projection of future population sizes. 
 
2.  Demographic information allows analysis of ‘life-history tactics’.  For example, some 
species breed once and die, while other breed many times.  Some species mature quickly 
while others wait years before reproducing.  Demographic data allows quantitative 
analyses of the fitness trade-offs involved in the evolution of life-history tactics. 
 
Continuous vs. Discrete events.  Many life-history processes are continuous, but are 
broken into discrete units for the purpose of demographic analysis.  Example is aging.  
Age is a continuous variable, but it is generally broken into discrete age-classes in 
demographic analyses.   
 
(Fig. 3.1 Gotelli) 
 
As long as the discrete units are not too long, this approach usually works well.  E.g. 
most vertebrates have a distinct annual breeding seasons, so life-tables for vertebrates are 
based on discrete one-year age-classes, each potentially including a bout of reproduction.  
 
In Pianka Chapter 8, all of the equations are given in the discrete form that is most widely 
used, and in continuous form using integration rather than summation  - that is the only 
difference. 
 
First step in life table is determining age-classes to be used.  Age class (x) is the first 
column of life table. 
 
Survivorship Schedule. 
 
Describes the probability of surviving (or dying, equivalently)  through each age class.  
Can be determined in two basic ways.   
 
Cohort method is to observe a set of individuals through time, from birth to death, 
recording how many still alive in each age class (at beginning of class usually, but can 
also be at mid-point of age class).  E.g. Start with 500 newborns.  N0 = 500.  400 still 
alive at age 1, so N1 = 400.  200 still alive at age 2 so N2 = 200.  Continue until all are 
dead, Nω = 0.    ω (omega) is typical symbol for oldest age attained. 
 
Static method (Pianka calls this segment method) is to record # of individuals of each age 
class present in population at one time. N0 = 500 juveniles, N1 = 400 1-year olds, N2 = 
200 2-year olds, etc. 
 
(Fig. 8.1 Pianka) 
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Age class  
x 

Number in 
age class:  Nx 

Survivorship 
from birth:  lx 

Age-specific 
survival: sx 

0 500 1.00 0.80 
1 400 0.80 0.50 
2 200 0.40 0.25 
3 50 0.10 0.00 
4 0 0.00 --- 
 
 
Survivorship from birth to age-class x, is denoted lx.  (l for life) 
 
lx  = Nx/N0   (N for number) 
 
This is the likelihood of living to a given age.  Interesting for some questions, but for 
others we want to know the probability of dying during a specific age-class, or sx. 
 
Age-specific survival is denoted sx.  (s for survival) 
 
sx  = Nx+1/Nx      (= lx+1/lx) 
 
lx decreases continually through age classes, but this does not mean that old animals are 
more likely to die than young animals.  Use sx values to compare the risk of death for 
different age classes. 
  
But need to use lx to ask questions about benefit of reproducing at different ages (because 
it is lx that determines whether an individual will be alive to reproduce at a given age). 
 
Survivorship curves: three general types are often described (Deevey 1947), based on 
shape of log-linear plot of Nx vs x. 
 
Type II is a straight line: constant probability of death (birds) 
Type I: survive well until senescence (large mammals, humans) 
Type III: heavy juvenile mortality (inverts, fish, plants) 
 
(Fig 4.12 Begon et al.) 
 
Though theses types are useful descriptors, real survivorship curves are often more 
complex in shape, and there are MANY exceptions to the general pattern.  Knowing the 
types is useful, but it is not safe to assume (for example) that a bird population will have 
type II survival. 
 
(Fig. 8.3 and 8.4 Pianka)   
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For example, mammals are often said to have Type I survival, but many mammals also 
have big pulse of mortality among juveniles, giving curve like that for Dall sheep in Fig. 
8.3 Pianka).  Other mammals have Type II constant mortality, as in dwarf mongooses: 
 
(Fig 20.2 Waser et al.) 
 
Good example of practical  problems with measuring lx comes from fish, where 
differences in catchability of age-classes makes early survival almost impossible to 
measure in ordinary ways. 
 
(Fig. 2.1 Ricker - numbers apparently increase across early age classes, which is 
impossible) 
 
Survivorship (lx) tables can be used to calculate life expectancy, Ex, which is the average 
lifespan remaining for an individual of age x.   
 ω 
 Σ ly 
Ex =    y=x  
   lx 
 
Example of calculation:   E0 = (1 + 0.80 + 0.40 + 0.10)/1 = 2.30 years 
    E1 = (0.80 + 0.40 + 0.10)/0.8 = 1.63 years 
 
Fecundity Schedule. 
 
mx  = 1/2 number of  offspring born to parent of age x.   
 
 For each offspring produced, male and female parent each credited with  1/2 of an 
offspring produced.  To see the logic of this, remember that in sexual organism, each 
individual must leave 2 offspring for exact replacement. 
 
 In practice, mx is usually measured as female offspring per female of age x (m for 
maternity).   This is simply because paternity is usually unknown, so numbers of 
offspring per male can’t be measured.  In some cases, male reproduction is known, and 
mx is measured as 1/2 of total # offspring for each parent. 
 
α (alpha) =  typical symbol for age at which breeding begins. 
 
(Fig 20.2 Waser et al: typical mx curves for mammal that breeds repeatedly - iteroparous)
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Can combine mx and lx schedules to determine several measures of population growth: 
 
x Nx lx mx lxmx xlxmx 
0 500 1 0 0 0 
1 400 0.80 2 1.6 1.6 
2 200 0.40 3 1.2 2.4 
3 50 0.10 1 0.1 0.3 
4 0 0 0 0.0 0.0 
 
      Σmx=6  Σlxmx=2.9    Σxlxmx=4.3 
      (GRR)  (R0) 
 
Gross reproductive rate = Σmx.  Total lifetime reproduction in the absence of mortality. 
This is the average lifetime reproduction of an individual that lives to senescence, useful 
in considering potential population growth if all ecological limits (predation, competitors, 
disease, starvation) were removed for a population.   GRR is rarely if ever attained in 
nature, but useful to consider how far below this a population is held by ecological limits. 
 
Net reproductive rate, R0 = Σ lxmx.  Average number of offspring produced by an 
individual in its lifetime, taking normal mortality into account.  lx is the odds of living to 
age x, mx is the average # of kids produced at that age, so the product lxmx is the average 
number of kids produced by individuals of age x.  Summed across all ages, this is average 
lifetime reproduction. 
 
R0 is also called the replacement rate: 
 
R0 < 1  individuals not fully replacing themselves, population shrinking 
R0 = 1  individual exactly replacing themselves, population size stable 
R0 > 1   individuals more than replacing themselves, population growing 
 
The schedule of reproduction (mx curve) can be used to determine the generation time, T. 
 
Semelparous species = big bang breeders, which breed only once in life (e.g. salmon, 
many insects)  T = egg to egg time, or newborn to newborn time (obviously). 
 
But in iteroparous species, T is more complex. 
 
T = Σxlxmx  = 4.3/2.9 = 1.48 
 Σlxmx 
 
To understand this, think first about the numerator.  lxmx is the average number of 
offspring born to female at age x, as discussed above.  If we weight each offspring by the 
age of the mother, x, and then sum across all ages, then we have the mother's age when 
each offspring was born, summed across all offspring born in her life. 
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The denominator (Σlxmx) is equal to the total number of offspring born.  Dividing the 
numerator by the denominator gives the mean age of a female when each of her children 
was born.  In other words, the whole expression is just a weighted average — if most 
offspring are produced when mothers are young, T will be short; if most offsrping are 
produced when mothers are old, T will be long. 
 
The denominator is equal to R0.  In a stable population, R0 = 1, so the denominator has no 
effect on generation time. In a growing population, R0 > 1 and T is decreased, because it 
takes less time for a cohort to ‘replace’ itself.  In a shrinking population, R0 <1 and T is 
increased, because it takes longer for a cohort to ‘replace’ itself. 
 
Relationship of net reproductive rate (R0) to intrinsic rate of increase, (r): 
 
Defined population growth in terms of R0 above.  But R0 measures reproduction on the 
basis of individual lifetimes (offspring produced per individual per lifetime), and most 
models of population growth measure growth on the basis of births - deaths per unit time, 
where time doesn’t have to be a generation - often years are the units.  The most common 
measure of population growth is the intrinsic rate of increase, r. 
 
 
 lnR0 
r ≈   = ln(2.9)/1.48 = 0.72 individuals/individual/year (growing rapidly) 
   T 
 
when  R0 = 1, r = 0,   stable population 
 R0 < 1, r < 0,  shrinking 
 R0 > 1, r > 0, growing 
  
remember that r = b - d  where b = births/unit time and d = deaths/unit time.  So units of r 
are individuals produced per unit time. 
 
The equation r ≈ lnR0/T only give accurate results when R0 ≈1 (r ≈ 0).  The exact solution 
comes from Euler’s equation. 
 
1 = Σ e-rx lx mx 

 
This is solved by iteration, a polite way of saying ‘hunt and peck’. 
 
1. Use the approximate solution to get a close estimate of r. 
 
 lnR0 
r ≈   = ln(2.9)/1.48 = 0.72 individuals/individual/year 
   T 
 
2. Make an e-rx column. 
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3.  Make an e-rxlxmx column and sum it. 
 
x Nx lx mx lxmx xlxmx e-rx e-rxlxmx 
0 500 1 0 0 0 1 0 
1 400 0.80 2 1.6 1.6 0.487 0.779 
2 200 0.40 3 1.2 2.4 0.237 0.284 
3 50 0.10 1 0.1 0.3 0.115 0.012 
4 0 0 0 0.0 0.0 0.056 0 
                                                       Σ=1.075 
4. Σe-rxlxmx = 1.075, so first estimate of r  =0.72 is too small. (We are summing terms 
raised to a negative exponent of r, so ↑r will ↓ sum).   Adjust estimate of r and try again.   
As a guess, try  r = 0.75 
 
x Nx lx mx lxmx xlxmx e-rx e-rxlxmx 
0 500 1 0 0 0 1 0 
1 400 0.80 2 1.6 1.6 0.472 0.755 
2 200 0.40 3 1.2 2.4 0.223 0.268 
3 50 0.10 1 0.1 0.3 0.105 0.011 
4 0 0 0 0.0 0.0 0.050 0 
                  Σ =1.034 
 
5. Σe-rxlxmx = 1.034, so estimate of r  (0.75) is still too small.  Increase it and try again.   
By repeating this process, will home in on r = 0.776, which gives Σe-rxlxmx = 1  
 
x Nx lx mx lxmx xlxmx e-rx e-rxlxmx 
0 500 1 0 0 0 1 0 
1 400 0.80 2 1.6 1.6 0.460 0.736 
2 200 0.40 3 1.2 2.4 0.212 0.254 
3 50 0.10 1 0.1 0.3 0.097 0.010 
4 0 0 0 0.0 0.0 0.045 0 
                  Σ =1.000 
            
 
The true intrinsic rate of increase is r = 0.78, compared with original estimate of r = 0.72.  
This is a difference of 8%, which is big enough to matter in practical applications. 
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Reproductive Value, residual reproductive value and life-history tactics 
 
Life expectancy is the average life-span expected for an individual of age x.  Extending 
this idea, one can ask what is the expected current and future reproductive output for an 
individual of age x, which is termed reproductive value, vx. 
        ω 
vx = Σ  [(lt/lx) mt] 
       t=x 

 
The term lt/lx gives the probability of living from age x to age t, and mt  is the number of 
offspring produced by those that survive to age t.   
 
Reproductive value initially increases with age, because each pre-reproductive year that 
an individual survives increases the probability that it will survive to reproductive age.  
RV usually peaks near the age of first reproduction (α), for two reasons:  (1) At age α, an 
individual has its entire reproductive span yet to come.  A postreproductive animal has 
RV of 0, and RV usually declines more-or-less linearly from the peak to 0.  (2)  In 
addition to having fewer reproductive years to come as it ages, an individual’s fecundity 
(mx) tends to decrease with age (as Pianka notes on page 154, but Pianka does not 
mention that, in mammals, fecundity usually increases for several years, then decreases 
until senescence). 
 
(Fig 20.2 Waser et al. - mx curves for dwarf mongooses) 
 
In many fish, relationship of RV to age is even more complex, because fecundity depends 
on size, and they grow indeterminately, so mx just keeps going up with age.  (This does 
not apply to big-bang breeders.) 
 
(Fig 169 Zale - example with blue tilapia) 
 
Life-histories evolve.  For example, as body size increases, the age of first reproduction 
usually shifts to a later age, to allow growth to finish before reproduction begins.  In 
other words, selection would act against individuals that retained the tendency to breed 
young, if selection was also favoring longer or faster growth (because there would not be 
enough energy available to grow, reproduce and survive - the principle of allocation 
discussed in earlier lecture).   
 
In general there are trade-offs between: 
 
1.  Reproduction and survival.  A change in the mx curve will affect the lx curve, and vice-
versa.  
2.  Current reproduction and future reproduction.  An increase in current reproduction 
will decrease later reproduction. 
3.  Number of offspring and quality of offspring.  Can produce 1-2 offspring at a time 
(like ungulates), a handful (like carnivores), thousands (like many fish) or millions (like 
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redwoods).  The more produced, the more likely they are to die quickly, because little is 
invested in each. 
 
Basically, an animal can gather only so much energy in a lifetime, and the optimal life-
history allocates energy to (growth) survival and reproduction in a way that maximizes 
lifetime reproductive success.   
 
To analyze the first two trade-offs simultaneously, one can partition reproductive value 
into current reproduction and residual reproductive value. 
         ω 
 vx  =  mx  +  Σ (lt/lx)mt 
        t=x+1 
 
            RV = current reproduction + expected future reproduction. 
 
If there was no cost in terms of survival or future reproduction, it would obviously pay to 
breed early and often.  But there are costs: 
 
1.  Increased reproduction reduces survival 
 
(Fig 8.10 Pianka - example with rotifer) 
 
2.  Increased reproduction reduces later reproduction 
 
(Figure 8.9 Pianka - example with hens) 
(Figure 8.11 Pianka - example with rotifer) 
 
For an individual of specific age, the optimal trade-off between current and future 
reproduction can be determined graphically by plotting residual reproductive value 
vs.current reproductive effort (mx), and finding point tangent to line with slope of -1.  
[This assumes that the population is stable, so that current and future offspring are 
equally valuable.  In a growing population, current offspring are more valuable than 
future offspring, because each offspring forms a bigger percentage of the (currently 
small) population than it would later, in a bigger population] 
 
(Fig. 8.12 Pianka) 
 
 
  Residual 
  reproductive 
  value 
            2  
 
 
             3  
    Current reproductive effort (mx) 

Concave down curve favors 
iteroparity (reproduce more 
than once) 3 now and two later. 
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  Residual 
  reproductive 
  value 
 
 
           5 
       Current reproductive effort (mx) 
 
 
Over an entire lifetime, the approach is the same for each age, but there is a series of 
relationships (graphs) like these, one for each age.  For each age, determine the optimal 
trade-off as just described.  Then connect those optimal points across ages, to get the 
optimal life history, which maximizes lifetime reproductive success. 
 
(Fig. 8.13 Pianka - iteroparous) 
(Fig 8.14 Pianka - semelparous) 
 
Optimal clutch or litter size 
 
Final trade-off to consider is number vs. quality of offspring.  The more offspring 
produced, the lower the fitness of each individual offspring. 
 
(Fig 8.17 Pianka - example with great tits) 
 
(Fig. 8.16 Pianka) 
 
If fitness of each offspring decreases as number of offspring goes up, there will be an 
optimal trade-off that maximizes the number of offspring that survive to reproduce.  
Plotting (#offspring*offspring fitness) vs litter size gives the optimum number to 
produce.  Of course, each individual offspring would do better if it got ALL the parental 
resources, so there is parent-offspring conflict with respect to allocation of resources. 
 
 
Assumptions of life-table analysis. 
 
1. Closed population.  If population is open to immigration and emigration, then must 
correct for this before calculating lx and mx.  E.g. undetected emigration would cause 
estimated mortality to be erroneously high; undetected immigration could cause 
estimated mortality to be too low, or estimated reproduction to be too high. 

Concave up curve favors 
semelparity (reproduce only 
once in life) 5 now 
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2.  Stable age distribution ⇒ the proportion of individuals in each age class is constant 
through time. 
 
(Fig 4.24 Begon et al) 
 
3.  Mortality and fecundity curves are constant through time. 
 
Most of these assumptions are not met perfectly in nature; for example, it is unusual for 
juvenile survival to be the same year after year - there are good years and bad yers, 
dependant on weather, food availability, predators, epidemics.  But violations of 
assumptions often small enough to have little effect on projections from life tables. 
 
The exercise below is optional. 
 
Populus Simulation of Life Tables and Demography:  Stable Age Distributions 
 
Use the age-structured population growth module in Populus, to show how constant lx and mx tables 
determine the age distribution at which populations stabilize.  The Populus program is in the Biology 405 
folder on the network drive. (See the Using Network Drives handout.)  Copy the Populus folder to drive C, 
then run the program from drive C. 
 
1. Select ‘Population Growth’ from the main menu. 
2. Select ‘Age-Structured Population Growth’ from the pop-up menu. 
3. Read the pop-up notes. 
4. Modify the number of time intervals to be run, from 6 to 20 (or more). Accept  the default values for 

all other variables.  It does not matter which display you select in the data entry panel, because (after 
running the simulation), you can use the space bar to switch between displays, to examine all of them.   

 
5. Write down the initial age-distribution, which is in the table under the column labeled Nx0.  This 

column gives the Number of individuals of age x at time 0.  When the simulation is run, it will fill in 
columns for Nx1, Nx2 .... Nx20.  These columns are the age distributions projected for the 20 time 
intervals, and they show how the age-distribution changes through time, for a given set of lx and mx 
schedules.  (You'll examine these data using a graph, rather than the table itself.) 

 
6. Run the simulation by hitting ‘Enter’.  Use the space bar to view all the available graphs, but pay 

particular attention to the 3-D plot that shows how the proportion of the population aged x changes 
through time.  By time interval 20, the age distribution has stopped changing.  Look at the age 
distribution for time interval 20, and write down the proportion of the population that is in each age 
class. 

 
7. Hit ESC to return to the data entry panel. 
 
8. Leaving all other settings the same (keeping the same lx and mx curves), change the initial age 

distribution (in the Nx0 column).  Write down your new starting age distribution. 
 
9. Run the simulation.  Once again, pay particular attention to the 3-D plot that shows how the proportion 

of the population aged x changes through time.  As in step 6, write down the proportion of the 
population of each age at time interval 20. 

 
10. Compare the final age distributions for the 2 runs.  How do they compare?  What does this mean?  If 

this result surprises you, try several more initial age distributions and see what happens.  Try strange 
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initial distributions, e.g. with more old individuals than young ones.  (How would a population get an 
age distribution with more individuals in old age classes than in young ones?) 

 
11. What happens to the stable age distribution if you alter the lx and/or mx schedule? 
 
 


