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Lecture 14:  Population growth. 
 

Outline 

 

Exponential growth described by R0, λ and r 

  Ro - Discrete breeding seasons, nonoverlapping generations, semelparous life history 

  λ - Discrete breeding seasons, overlapping generations, iteroparous life history 

  r - Continuous breeding seasons, overlapping generations, iteroparous life history 

 

General properties of exponential growth models 

Consequences of exponential growth 

 

Density-independent and density-dependent limiting factors 

 

Density dependent population growth: logistic equation 

 Continuous breeding seasons, linear density dependence  (Verhulst-Pearl eqn) 

 Discrete breeding seasons, linear density dependence 

 Discrete breeding seasons, nonlinear density dependence 

  Compensation, overcompensation, undercompensation 

 

Limitations, assumptions, usefulness of these models 

 

 

Introduction 
 

The primary goal of this section is to understand the processes that cause changes in 

population size through time.  A second goal is to understand simple mathematical 

models that describe population growth.  We’ll start with the simplest models for single 

species, and add to them to become progressively more realistic (adding effects of 

intraspecific competition, interspecific competition & predation).  A lot of the theory 

underlying ecology and population biology is based on extensions of these models, so it 

is critical to understand them well. 

 

 

Exponential population growth 

 

(Pianka Fig. 9.1) 

 

The simplest type of population growth is exponential, as shown by reindeer on Pribilof 

Islands for 30 years after introduction.  Exponential growth occurs when a single species 

is not limited by other species (no predation, parasitism, competitors), resources are not 

limited, and the environment is constant.  These conditions called an ‘ecological 

vacuum’, and this does not often occur (for  long) in nature.  But colonizations like the 

reindeer example, or recovery of a population after a large-scale disturbance (fires, crash 

from disease) can allow exponential growth for a period. 
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How do we build a model of exponential population growth?  

 

1.  Consider an animal like Antechinus, Australian marsupial mouse.  Antechinus are 

seasonal breeders that mature at age 1 year.  Males mature, fight like mad, mate like mad, 

and all die (due to a huge pulse of the stress hormone corticosterone).  Females live a few 

weeks longer, but just long enough to raise a litter, then die after weaning. 

 

This life history shows: 

- discrete breeding seasons 

- nonoverlapping generations 

- semelparous life history 

 

How do you know if  an Antechinus population is growing or not? From demography 

lectures, R0 =  lxmx. R0 is the average number of offspring produced by an individual 

in its lifetime, called the net reproductive rate, or the net replacement rate.  As long as 

survivorship (lx) and fecundity (mx) stay the same, R0 can be used to project the number 

of mice in the population one generation from now: 

 

N0 = number in population now 

N1 = number in population one generation later 

 

N1 = N0R0 

 

In turn, the population of N1 will grow by the same rule (initial population size * R0) over 

the next generation: 

 

N2 = N1R0 

 

Substituting for N1 gives: 

 

N2 = N0R0
2
    

 

Generalizing: 

 

Nt = N0R0
t
   

 

Which gives the population size t generations in the future.  This is the most basic 

discrete population growth model, from which all others are derived.  It models 

exponential growth because it assumes that R0 is constant  it assumes that survival and 

fecundity do not decrease (or increase, for that matter) as the population gets larger. 

 

2.  The marsupial mouse has unusual life-history for a mammal (though it’s common 

among invertebrates).  A more typical mammalian life history is shown by African wild 

dogs, which breed one a year (in the dry season, when prey is more easily caught), but 

individuals breed repeatedly in a lifetime, and have overlapping generations. 
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This life history shows: 

- discrete breeding seasons 

- overlapping generations 

- iteroparous life history 
 

Modify the population growth model, by projecting population size t breeding seasons in 

the future, rather than t generations in the future: 

 

Nt = N0
t
 

 

The only change from previous model is that change in population size is measured in 

units of time (years, for wild dogs) rather than units of generations.  R0, a measure of 

change per generation, is replaced by λ, a measure of change per year (or other unit of 

absolute time). 

 

λ is called the fundamental reproductive rate.  To calculate λ  from life table data: 

 

ln() = ln(R0)/T     where T is length of a generation, described in an earlier lecture 

ln(λ) =  r 

λ = e
r
 

 

3.  Another common life-history for mammals is similar to the wild dogs’ but individuals 

breed continuously, rather than in discrete breeding seasons.  For example, white footed 

mice in much of the midwest breed continuously through the spring and summer, so that 

a mother continues to breed without a pause even after her daughters have matured and 

are breeding. 

 

This life history shows: 

- continuous breeding 

- overlapping generations 

- iteroparous life history 
 

Continuous population growth models are easiest to understand by starting with the rate 

of population change, rather than population size itself. 

 

dN/dt  = change in # of animals/change in time 

 =  (Nt - N0)/(t-0) 

 = ‘recruitment rate’ 

  

The recruitment rate of an exponentially growing population is influenced by two things: 

 

i.   r  the intrinsic rate of increase  

 

r = (b + i) - (d + e).  
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Where b = per-capita birth rate/time, d = per-capita death rate/time, i = immigrants per 

individual/time, e = emigrants/individual/time.  If population is closed: 

 

r = b - d. 

 

Relationship of r to R0 is: 

 

r = lnR0/T 

 

Also, r = ln() and  -= e
r
 

 

The units of r are individuals gained or lost/individual/time, which reduces to simply 

1/time. 

 

ii. N   In addition to the per-capita growth rate (r),the recruitment rate dN/dt is 

also affected by the number of individuals already present to reproduce and die (N); 

population of 10 individuals growing at r = 0.1 individuals gained/individual/year will 

increase by 1 individual/year, but 100 individuals growing at r = 0.1 will increase by 10 

individuals/year 

 

dN/dt = rN 

 

Integrate both sides of this equation, 

 

Nt = N0e
rt
  (e is the base of natural logarithm, 2.78116)

 

 

 

Properties of exponential population growth models. 
 

The discrete and continuous population growth models described above are similar in 

four important ways: 

 

1) λ and r are both net measures of an individual’s contribution to population growth.  

Both are influenced by births (b, mx) and by deaths (d, lx).   

 

2) λand r are both per-capita measures, of individual contribution to population growth. 

(dN/dt, recruitment, is a population measure). 

 

3)  λ and r are constants, in these simple models.  In these simple models of exponential 

growth, birth and death rates stay the same through time, regardless of population size.  

They are density-independent.  This will be modified as we deal with intraspecific 

competition, which creates density-dependent population growth. 
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Consequences of exponential population growth. 

 

How long does an exponentially growing population take to double?  This is equivalent 

to asking how long t is, when Nt = 2N0.  

 

Using exponential growth equation, 

 

Nt = N0e
rt
, substitute 2N0 for Nt, 

 

2N0 = N0e
rt
 

 

ln2 = rt 

 

t = ln2/r 

 

doubling time = 0.7/r 
 

This equation for doubling time works for any process of exponential growth.  Some 

everyday examples: 

 

3.5% inflation means that prices will double (value of dollar will halve) in 0.7/0.035 = 20 

years. 

 

Typical credit card debt has annual interest (APR) of 18%.  The amount you owe doubles 

in .07/0.18  4 years (!) 

 

Human energy use has been increasing at 5% per year.  In the next 0.7/0.05 = 14 years, 

energy use will double.   

 

Atmospheric CO2  is increasing at about 1% per year, so the atmospheric CO2 

concentration will double in about 0.7/0.01 = 70 years. 

 

2.  Point 1 makes it clear that exponential quickly growth accelerates to become 

extremely rapid.  Because of this, exponential growth is always temporary, and depends 

on the existence of an ‘ecological vacuum’.  As a population grows, it will eventually be 

limited by one or more ecological factors (e.g. shortage of food). 

 

 

Density-dependent and density-independent limits on population growth 

 

What stops exponential growth, or prevents it from beginning at all?    Remember that 

exponential growth models assume that birth and death rates are constant (r or R 

constant).  In the real world, birth and death rates change over time, and these changes 

can limit population growth. 

 
Two general classes of limiting factors: 
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Density-independent limiting factors: reduce population growth regardless of population size.  

 

Density-independent limiting factors: 

 

1.  Are usually physical in nature (hard winters, failure of rainy season). 

 

2.  Are more important for small organisms, because small organisms are not as well buffered against 

physical environment. 

 

3.  Are more important in extreme or highly seasonal environments than in mild, stable environments. 

 

4.  Can interrupt exponential growth or cause declines, but cannot regulate a population at a stable 

population size.   

 

 

 

 

 

 

 

 

 

 

Density-dependent limiting factors: reduce population growth with an impact that depends on current 

population size.  

 

Examples: 

 

(Fig 2-11 Gotelli)  survival and reproduction decrease as population size increases in Song Sparrows on 

Mandarte Island 

 

(Tables 17-2 and 17-3 Ricklefs)  reproduction in w-t deer declines as population density increases 

 

(Fig 17-7 Ricklefs)  experimental example: mortality increases as density increases in grain beetles. 

 

For all of these examples, the density-dependent limiting factor is probably intraspecific competition for 

limited food. 

 

Density-dependent limiting factors: 

 

1.  Are usually biological in nature  (competition, disease, predation). 

 

2.  Are more important for large organisms (which are buffered from physical environment). 

 

3.  Are more important in physically benign and constant environments. 

 

4. Can interrupt exponential growth or cause declines, and CAN regulate a population near a stable 

population size. 

 

 

Density-dependent population growth. 
 

A (closed) population is growing when births exceed deaths:  r = b - d > 0. 

 

Population Size, 

N 

Time, t 
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If birth or death rates are affected by density dependent factors, plotting b and d against population size 

predicts where per-capita birth and death rates will exactly balance and population size will stabilize (dN/dt 

= 0).  The stable point is called the carrying capacity, K. 

 

 

 

Per capita 

birth rate, b 

death rate, d 

 

 

 

 

    

Population Size, N 

 

Viewing this in terms of number of individuals, rather than per-capita rates, see that density dependent 

growth follows an S-shaped “logistic”, “sigmoid” curve. 

 

 

 

 

 

 

 

 

Logistic growth curves are common in nature. 

 

Logistic population growth models 
 

How do we modify exponential growth models to take account of density-dependent limits on growth? 

 

1.  This is easiest to show for continuous breeding seasons. 

 

The exponential growth model for continuous breeding is: 

 

dN/dt = rN 

 

Simplest way to incorporate density dependence is to assume that b declines and/or d increases in straight 

line fashion as N increases. 

 

(see two figs previous) 

 

In this case (linear density dependence), 

 

 

 

 

 

 

 

 

 

 

 

actual per-capita rate of increase  r when  N = 1 

K dmin 

bmax 

1. birth rate b declines as N increases 

2. death rate d increases an N increases 

3. when b=d, growth rate r =0: this is the 

carrying capacity, K 

N 

t 

K 

dN/dt/N 

or  

realized 

growth rate, 

(ra) 

N 

N= K 

dN/dt/N = rmax 
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actual per-capita rate of increase = 0 when N = K 

 

dN/dt = rN[(K - N)/K] 

 

Linear decline in the actual per-capita rate of increase is incorporated via a new term,  

 

(K - N)/K, which is the proportion of the habitat’s carrying capacity that is not being used. 

 

When N is near 0, (K-N)/K is near 1 and growth (dN/dt) is nearly exponential (rN). 

When N is near K, (K-N)/K is near 0 and growth (dN/dt) nearly stops. 

 

2.  For discrete breeding seasons, the equation for linear density dependent population growth is slightly 

different, but has the same property of slowing growth as population size increases. 

 

Nt+1 = 
t

t

 aN

RN

1
 

 

Logic of this equation similar to Verhulst-Pearl equation.  This equation also models linear density 

dependence, with population growth, R, slowed by a factor (1+aNt), as N increases. 

 

For a population with weak density dependence, a  0, (1+aNt)  1, growth nearly exponential (RNt) 

 

 For a population with strong density-dependent effects on growth, a is large.  As Nt increases, aNt 

increases, and slows the growth rate. 

 

3.  The equation for density dependent growth with discrete breeding seasons can be modified to deal with 

non-linear density dependence. 

 

Up to now, we’ve assumed that birth rates decline or death rates increase in a linear manner as population 

size increases 

(Fig. 9.5 Pianka) 

Often, the density-dependence won’t actually be linear. E.g. 

 

 

 

  Birth rate 

 

 

 

 

 

 

        Population size 

 

This kind of non-linear density dependent population growth can be modeled with a minor revision to the 

equation: 

 

       NtR 

Nt+1 =  

    1 + (aNt)
b
 

 

b = 1, then density dependence is linear: ‘compensating’ density dependence   

b<1, ‘undercompensating’ density dependence 

b> 1, ‘overcompensating’ density dependence 
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Compensating density dependence  increase in death rate and/or decrease in birth rate exactly offsets any 

change in population size, so that the population stays at the same size. 

 

Undercompensating  death rate increases and/or birth rate decreases as population size goes up, but the 

change is not great enough to keep population from continuing to grow. 

 

Overcompensating  death rate increases and/or birth rate decreases as population size goes up, so 

strongly that an initial increase in population size will result in a population decline.  (E.g. overeating 

resources) 

 

 

Assumptions of these models 
 

1.  Constant carrying capacity. 

2.  All individuals are identical (intraspecific competition has same effect on everyone). 

3.  Linear density dependence (in the Verhulst Pearl equation for continuous breeding seasons; modified 

this in discrete equation). 

4.  No impact of other species on population growth (can modify this). 

5.  No time lag in effect of density on population growth (can modify this). 

 

  


