A QUICK TOUR OF RSTUDIO
Conservation Biology, BIOE 440R/521
Scott Creel

3 September 2019

There are 4 panels or panes visible when you run RStudio in its default configuration.

Each panel has more than one tab, and clicking the tabs determines what the panel is used for.

= =] 3
0. O e
) HFLmap_wdR ™ Environment History Connections =
Sourcensave | X, - whun | o import Damnser = | o
1 . b Gics! Emiranment -
2 m(list=1s0)
3 semwd("C:/Users/g23b661/Desktop/Human Footprint Map/Dryadv3/Maps” Data
4 hfp2003 Formal class RasterLayer
; Hg'r;x'?gz‘:gr. za Formal class RasterLayer
Tibrary(rodal 7ac formal class RasterLayer
& Tlibrary(ggplot2 values
13 ¥look at the the GOAL information for the husan Fotprint 2009 geatiFf srl “epraj=moll +lon_0=0 +x_0=0 +y_0=0 +e11ps=wGS84 +units=m +no_d
11 GDN.N‘n-fu ‘-‘HI:P.;“D'},H.;"I : : : o
12
13 #read it into a raster object and exa
14 hfp2009 <- raster("MFP2009.tiF")
15 hfp2009
16 #summary(hfp2009)
=
18 Fcrop the HEP raster to get Zambia
19 za <-shapefile("ZMB_adn0.shp"
20 za <- raster(za)
21 za -
22 o Fles Plots Packages Help Viewsr =B
1 op Lev R Seript nstal st
Comsale Terminal © Jobs =0
User Library

= #sunmary (hfp2009)

» #crop the HEP raster to get Zambia
> za <-shapefile("ZME_adn0.shp")

> za <- raster(za)

- za ate 15
class : RasterLayer

dimensions : 10, 10, 100 (nrow, ncol, ncell) 0416
resolution : 1.170633, 0.9855 x, ¥) e
extent 1 21.99937, 33.7057, -18.07947, -B.22436__ (xmin, xmax, ymin, ymax)
coord. ref. : sproj=longlat +datum=nGssd +no_defs +e11ps=wGSB4 +towgs84=0.0,0 szt
0313
proj=moll +1on_0=0 +x_0=0 +y_0=0 +e11ps=wGS84 sunits=m +no_defs" 11
) 0.3-4
21

ojectRaster(za, crs = sr
e
aster(za, crs = sr1) : from' has no cell values

class RasterLayer

dimensions : 12, 13, 156 (arow, ncol, ncell)

resolution : 115000, 121000 (x,

extent 1 2021943, 3516943, -2346561, -894561.2 (xmin, xmax, ymin, ymax)
coord. ref. : sproj=moll +lon_0=0 +x_0=0 +y_0=0 +e11ps=WGS84 +units=nm -no_defs

The TOP LEFT panel is primarily the SCRIPT EDITOR, where you write (or paste) lines of code, run them,
and save them as an R ‘script’ or program (with a .R extension on the filename) using the file tab on the
menu at the very top. Once you have saved a script as a file with the .R extension, you can re-open it
and re-run it, or modify it and save it with a new name. Save often when writing code, especially right
after you’ve written and run a line or set of lines that work correctly.

To run one LINE of code, put the cursor in that line and press CTRL-ENTER. When you are not sure
everything is OK or you are getting error messages, running code one line at a time and using the other
panels (see below) to understand is a good idea.

To run a BLOCK of code, highlight it by dragging, and then press CTRL-ENTER to run the highlighted
block.

To run an entire SCRIPT (all the lines, in order), press CTRL-A (for ‘all’), to the entire script is highlighted,
and then press CRTL-ENTER.

A line that starts with # is a COMMENT. Running a comment line does not create any OBJECTS (see
below) or make anything else happen. Use comments to explain to yourself and others what a line or
block of code does. Bothering to write clear comments makes a script MUCH easier to understand,
especially when you have put it aside and returned to it.

The top left panel can also be used to examine OBJECTS that your code creates, especially DATA
FRAMES. More on this when discussing the top right panel below.

The BOTTOM LEFT panel is the CONSOLE, where the R code runs, showing each line that is executed and
the output of that line, in order. You can type lines of code directly in the console and press enter to run
them, but they will not be part of your script. This can be useful when error checking or debugging,
though | recommend that you just make the habit of writing your code in the script editor and running
sections to make sure it is OK using the console (and other panels, see below). Working only in the
console basically equivalent to running R without RStudio.

There are two other tabs in this panel, but you will probably never use them.

The TOP RIGHT panel is primarily used with the ENVIRONMENT tab. This gives you a list of all the
OBIJECTS your that the lines of code you have run have created. Just writing a line of code in the script
editor does not create an object — you have to run the code. Objects include variables, vectors,
matrices, data frames and many other types once you get to more complex R packages.

A DATA FRAME is like an excel spreadsheet. It has variables (columns) and observations (rows). A data
frame is also like a matrix (because it is data organized in rows and columns), but a matrix can only hold
numeric data, but the variables in a data frame (the columns) can be of different types (character,
numeric, factor).

In the screenshot below, some code has been run that created an object named hfp2009c_df. Clicking
on that object in the ENVIRONMENT tab in the top right panel causes it to appear in the viewer in the
top left panel. You can see that there are multiple tabs open in the TOP LEFT panel now — one with the
script that I’'m working on, and one with the dataframe hfp2009c_df, which is open in this screenshot.
hfp2009c_df

O HFlmap_wid R ip200% o hip2008 = — Environment History Connections -

Data
hfp2009 Formal class RasterLayer
hfp2003c Large RasterLayer (2170740 elements, 16.6 ¥b)
hfp2009c_df 2170740 obs. of 3 variables
z Formal class RasterLayer
zac Formal class RasterLayer
values
sr1 “sproj=moll +1on_0=0 +x_0=0 +y_0=0 +€11ps=wGSB4 +units=m +no_d

T Files Plots Packages Help Viewer
ostsd | @ Upaste

Console Terminal % Jabs _
User Library
dimensions : 1452, 1485, 2170740 (nrow, ncol, ncell) - abind
resolution : 1000, 1000 (x, y) scepc

2021906, 3516906, -2347043, -895042.9 (xmin, xmax, ymin, ymax) dea
coord. ref. : +proj=moll +lon_0=0 +x_0=0 +y_0=0 +e11ps=wGS84 +units=m +no_defs -
data source : in memory

nanes HEP2009

values : 0, 46 (min, max)

> summary (hfp2009c)
H

Min. 0.000000

1st Qu. 3.318684
wedian 5.250208 adehabit
3rd Qu. 7000000 !
Max 46.000000 .

NA's 44681.000000
> image Chfp2009c)

> sconvert raster object to regular dataframe
> hfp2 f <- as.data.frame(hfp2009c, xy = TRUE)
df)

Checking the environment tab to make sure that an object was indeed created, is of the type you
intended, and has the dimensions (rows and columns) you expected is critical to checking a script as you
write it. Clicking on dataframes in the top right to view them in the top left is a major part of this —
makes sure that each stage of a script is OK before moving on to the next step. Save it each time you
see that you’ve made progress.

Remember that the objects in memory (in the environment tab) depend on the lines of code that ave
been run. Always starting with the top line of code and running the code in the order it appears in the
script is therefore a good idea. If you run code one line at a time but jump up and down the script, code
that would otherwise run might not run because an object that is needed to run line 120 does not exist
(or has the wrong contents) because you didn’t yet run line 119. Even if nothing is wrong with the
script, this can create errors.

It also is good practice to have the line
rm(list=Is())

at the top of every script. This removes everything from memory (i.e., the environment tab at top right
will have nothing in it) so you are starting fresh and creating the objects you need to do the task you are
doing.

It is also good practice when you start a new script to use the ‘set working directory option’ and select
‘to source file location’ using the ‘session’ tab on the top menu. In the console, you see the line of code
that sets the working directory to the location where you are saving your script

setwd("C:/Users/g23b661/Desktop/Human Footprint Map/Dryadv3/Maps")

If you then copy this from the console and paste it in the script as the second line, when you save the

script it will automatically be written to the same directory location, so you avoid ending up with

multiple versions of a script saved in different places.

The BOTTOM RIGHT panel has three tabs that you’ll jump between often. In the screenshot at the
bottom of the previous page, the PACKAGES tab is open. You can use the sub-menu that appears to
INSTALL packages (which provide FUNCTIONS that are R code written by others and made available by
CRAN). Click the install button, write the name of the package you want to install, make sure the ‘install
dependencies’ box is checked (which will install any other packages you need to run this package) and
click install. That package will now appear in the list of installed packages seen in the screenshot above.

The R exercises in this class will have you install quite a few useful packages.

Once a package is installed, you have the functions in that package for future use, but you have to LOAD
it in each script that will use it. You load a package by writing a line of code with the library() function

and running it:

library(ggplot2)

will load the ggplot2 package, if it has been installed. It will give an error message (in the console) if that

package is not installed.

You can also load a package by clicking the check box next to it in the bottom right panel. If you do that,
you’ll see the library() function run in the console, but that line of code will NOT be in your script. Itis
therefore good practice to write the line of code into the script, rather than just using the check boxes.

In the screenshot just below, the bottom right panel is set to the HELP tab

0 . >
0 HrLms hip2005
F = whun e
%9
100 spca.wd read. csv(“"AWD_SCPA. csv"
T “ 1885455 obs. of 3
102 List of 9
103
o List of 9
105 mean(spca.wdSLatitude Formal class RasterLayer
106 spca.wdSLatitude[spca.wdSLongitude > 30 & spca.wd$Latitude 13.6 13.1 96 obs. of 4 variables
}{?g 9786 obs. of 8 variables
109 Large TransitionLayer (742.7 Kb)
110 Large TransitionLayer (742.7 Kb)
111
112 t Files Plots Packages Help Viewer
113 write.csv(spca.wd[,1:3], file _points_cs.csv =
114 O
115 R: Arithmetic Mean =
116
117 mean [base)
118 e 1
119 : : ; : ; -))
10, M. . Arithmetic Mean
Console Terminal « Jobs = Deaciplion

Generic function for the (tnmmed) anthmetic mean

: 0.101, 0.0817 (x, y)
: 20.22368, 36.48468, -19.2071, -7.197205 (xmin, xmax, ymin, ywax)
roj=longlat +datum=#GS84 +no_defs +e11ps=wGS84 +towgs84=0,0,0 Usage

resolution
extent

coord. ref.

values nductance

matrix cl tri

> #downs cond ice rather than resistance, so take inverse of this transition

Arguments

> plot(raster(trl), colNA='st
ance distortion
geoCorrection(trl, type="c", multpl=TRUE, scl=TRUE)
Cormmatri srin
Faake two Bteixiof paint location na.zm alogical value indicating whether
wd.points <- as.matrix(spca.wd[,2:3]
ate further arguments passed to o from other methods
Value

length one. If x ts rx
* awaming

f +xiz is zero (the default), the arthmetic mean of the values in x is computed, as a nu
ot logical (coerced to numeric), numeric (including integer) or comple:

R Documentation

alues should be stripped before the computation proceeds

This is extremely useful to learn how any function works when you are first using it. A FUNCTION inr is
a command that runs hidden, lower-level code that was used to create the function. An example is

mean()

This is a function that will determine the arithmetic mean of the data used as one of the ARGUMENTS of
the function. Arguments are the pieces of information that a function needs, or can optionally use but
does not necessarily need, to produce its output.

If you put the cursor in a function in the script editor (TOP LEFT) and press F1, the HELP tab in the
BOTTOM RIGHT will explain the function, tell you what arguments it requires, and explain any additional
arguments that are optional but can be used to tweak how the function works.

| use this all the time.

The screenshot below shows the third main use of the bottom right panel. Some code (visible in the
script editor at top left) has been run (in the console, and creating an object named p1 visible in the
environment tab at top right) to make a plot. The PLOTS tab shows the output plot, which can be
copied, saved or exported using the export tab. (That can also be done using a line of code in the script

itself.)

= [& =
0 . 0pl "
© | HFL_mep_wd. 92009 £y - Environment History Connections -
/- #Run %% i Source - /
122
123 #need t the f jable eor aster to HEF) if th is an H asemap 3 e G
- i o o i ok . hfp2009¢_df 1885455 obs. of 3 variables
126 pl < ggpl pl List of 9
127 geom ras(er data - hfp2009T df, aesix - X, y - y, £ - hfi_cs_cum curnap 2 List of 9
128 # y = =
B formal class Rast
129 scale fill_viridis_c(na.value teelbiue’, name - ‘WFPI\ncurrent’ plasma’, Tesistancs o | Class Rasteriayer
130 alpha = 0.9, guide = "Colourbar", breaks- c(0,35), " obeis- et ton’, "High' spca.wd 96 obs. of 4 variables
131 xWab "Longi subs_union_t 9786 obs. of 8 variables
B2 she’ : o s ; o trl Large TransitionLayer (742.7 Kb)
ggl v nan Footprint Index Conductance = o
134 geom_j ua(h data gubs union_ (aes X loug y = lat, group = group),color = 'greyd0’, size = 1) tric Large TransitionLayer (742.7 kb)
135 geom point(data-spca.ud, aes(x-Longitude, y-Latitude, color-EV1),alpha = 0.5, size = 4
136 scale_color.viridis_c(nane = "sPCA\EVI", guide-"colourbar’ Files Plots Packages Help Viewer =0
137 # . 7 hi - wi y ride=" urbar com | Moo O S Publish ~
138 theme_bw 2o e e
139 Human Foolpnnt Index
140 pl
141
142 #t 1
143
P Le
Comsole Terminal - Jobs S
resolution : 0. 101 0.0817 (x, y)
extent : 20.22368, 36.48468, -19.2071, -7.197205 Cxmin, xmax, ymin, ymax)
coord. ref. : +proj=longlat +datum=+GS84 +no_defs +e11ps=WGS84 +towgs84=0,0,0 Human
values : conductance Footprint
Index

matrix class: dsQMatrix
> #downstream, gdistance expects conductance rather than resistance, so take inverse of this transition
» #matrix based on HFI
(tr1/50)
Error: cannot allocate vector of size 4.2 Gb

40

30
20
10
0

Latitude

> plot(raster(trl), colNA='steelblue')

> #correct distance distortion
> CorrMatrix <- geoCorrection(trl, type="c", multpl=TRUE, sc1=TRUE)
> triC <- trl * CorrMatrix

» #make two column matrix of point locations
> wd.points <- as.matrix(spca.wd[,2:3])

> #obtain resistance distance
> Tibrary(igraph)

> x <- costDistance(x=trlC, wd.points)
ths [index, index

Longitude

