
Using the Leslie Matrix to Project Population Dynamics

There are four steps involved in making a basic stochastic projection model.

1. Collect demographic data
2. Analyse the data to obtain age- and sex-specific survivorship and fecundity
3. Use age-specific survivorship and fecundity to project population dynamics using

Leslie matrix.
4. Incorporate variance to shift from deterministic to stochastic model.
5. This basic stochastic projection model (Nt = N0λt) assumes exponential growth: the

next step is to incorporate limiting factors.  Step five is the subject of the case study
lectures that follow.

BASIC DEMOGRAPHIC  DATA - getting lx and mx curves.

A Population is a group of individuals of the 1same species, 2living sufficiently close
together that 3intermating is possible, and therefore 4sharing a common gene pool.

Study of population parameters is also called demography, from Greek root for
population, ‘deme’.

Difficulties with defining a population:

1. In practice, can be hard to identify a population; often a study area is defined and this
defines a ‘study population’.  Care is needed when a population is defined in this way, b/c
immigration and emigration can affect estimates of survival and reproduction. (open vs.
closed populations).  Especially a problem for animals that live at low density, large
ranges.
2.  Population size and geographic extent vary through time
3.  Definition cannot be applied to asexual organisms - for these, the focus is on
proximity

Population-level variables depend on the properties of individuals that compose the
population.  The two most basic parameters of a population are an individual’s likelihood
of surviving and an individual’s likelihood of breeding.  A quick  glance at the world
reveals that both of these depend on the individual’s age, in most species.  (E.g. very
young and very old individuals often don’t breed, and very young individuals often have
high odds of dying.)

These basic parameters are combined in a life-table, as age-specific survivorship and
age-specific fecundity.  From these two parameters, we can derive considerable
information, which falls into two categories:

1.  Demographic information allows measurement of  the rate of population growth and
projection of future population sizes.



2.  Demographic information allows analysis of ‘life-history tactics’.  For example, some
species breed once and die, while other breed many times.  Some species mature quickly
while others wait years before reproducing.  Demographic data allows quantitative
analyses of the fitness trade-offs involved in the evolution of life-history tactics.

Continuous vs. Discrete events.  Many life-history processes are continuous, but are
broken into discrete units for the purpose of demographic analysis.  Example is aging.
Age is a continuous variable, but it is generally broken into discrete age-classes in
demographic analyses.

(Fig. 3.1 Gotelli)

As long as the discrete units are not too long, this approach usually works well.  E.g.
most vertebrates have a distinct annual breeding seasons, so life-tables for vertebrates are
based on discrete one-year age-classes, each potentially including a bout of reproduction.

In this class, all of the equations are given in the discrete form that is most widely used.
However, all of these equations can be written in continuous form using integration rather
than summation  - that is the only real difference.

First step in life table is determining age-classes to be used.  Age class (x) is the first
column of life table.

Survivorship Schedule or lx curve

Describes the probability of surviving (or dying, equivalently)  through each age class.
Can be determined in two basic ways.

Cohort method is to observe a set of individuals through time, from birth to death,
recording how many still alive in each age class (at beginning of class usually, but can
also be at mid-point of age class).  E.g. Start with 500 newborns.  N0 = 500.  400 still
alive at age 1, so N1 = 400.  200 still alive at age 2 so N2 = 200.  Continue until all are
dead, Nω = 0.    ω (omega) is typical symbol for oldest age attained.

Static method (Pianka calls this segment method) is to record # of individuals of each age
class present in population at one time. N0 = 500 juveniles, N1 = 400 1-year olds, N2 =
200 2-year olds, etc.  As Gottelli notes, this method assumes that the population has a
stable age distribution.

(Fig. 8.1 Pianka)



Age class
x

Number in
age class:  Nx

Survivorship
from birth:  lx

Age-specific
survival: sx

0 500 1.00 0.80
1 400 0.80 0.50
2 200 0.40 0.25
3 50 0.10 0.00
4 0 0.00 ---

Survivorship from birth to age-class x, is denoted lx.  (l for life)

lx = Nx/N0   (N for number)

This is the likelihood of living to a given age.  Interesting for some questions, but for
others we want to know the probability of dying during a specific age-class, or sx.

Age-specific survival is denoted sx.  (s for survival)

sx = Nx+1/Nx      (= lx+1/lx)

lx decreases continually through age classes, but this does not mean that old animals are
more likely to die than young animals.  Use sx values to compare the risk of death for
different age classes.

But need to use lx to ask questions about benefit of reproducing at different ages (because
it is lx that determines whether an individual will be alive to reproduce at a given age).

Survivorship curves: three general types are often described (Deevey 1947), based on
shape of log-linear plot of Nx vs x.

Type II is a straight line: constant probability of death (birds)
Type I: survive well until senescence (large mammals, humans)
Type III: heavy juvenile mortality (inverts, fish, plants)

Though theses types are useful descriptors, real survivorship curves are often more
complex in shape, and there are MANY exceptions to the general pattern.  Knowing the
types is useful, but it is not safe to assume (for example) that a bird population will have
type II survival.

(Fig. 8.3 and 8.4 Pianka)



For example, mammals are often said to have Type I survival, but many mammals also
have big pulse of mortality among juveniles, giving curve like that for Dall sheep in Fig.
8.3 Pianka).  Other mammals have Type II constant mortality, as in dwarf mongooses:

(Fig 20.2 Waser et al.)

Good example of practical  problems with measuring lx comes from fish, where
differences in catchability of age-classes makes early survival almost impossible to
measure in ordinary ways.

(Fig. 2.1 Ricker - numbers apparently increase across early age classes, which is
impossible)

Fecundity Schedule or mx curve.

mx = 1/2 number of  offspring born to parent of age x.

For each offspring produced, male and female parent each credited with  1/2 of an
offspring produced.  To see the logic of this, remember that in sexual organism, each
individual must leave 2 offspring for exact replacement.

In practice, mx is usually measured as female offspring per female of age x (m for
maternity).   This is simply because paternity is usually unknown, so numbers of
offspring per male can’t be measured.  In some cases, male reproduction is known, and
mx is measured as 1/2 of total # offspring for each parent.

α (alpha) → typical symbol for age at which breeding begins.

ω (omega) →  typical symobol for age at which breeding ends
(Fig 20.2 Waser et al: typical mx curves for mammal that breeds repeatedly - iteroparous)

Can combine mx and lx schedules to determine several measures of population growth:

x Nx lx mx lxmx xlxmx
0 500 1 0 0 0
1 400 0.80 2 1.6 1.6
2 200 0.40 3 1.2 2.4
3 50 0.10 1 0.1 0.3
4 0 0 0 0.0 0.0

Σmx=6 Σlxmx=2.9   Σxlxmx=4.3
(GRR) (R0)

Gross reproductive rate = Σmx.  Total lifetime reproduction in the absence of mortality.
This is the average lifetime reproduction of an individual that lives to senescence, useful
in considering potential population growth if all ecological limits (predation, competitors,



disease, starvation) were removed for a population.   GRR is rarely if ever attained in
nature, but useful to consider how far below this a population is held by ecological limits.

Net reproductive rate, R0 = Σ lxmx.  Average number of offspring produced by an
individual in its lifetime, taking normal mortality into account.  lx is the odds of living to
age x, mx is the average # of kids produced at that age, so the product lxmx is the average
number of kids produced by individuals of age x.  Summed across all ages, this is average
lifetime reproduction.

R0 is also called the replacement rate:

R0 < 1 individuals not fully replacing themselves, population shrinking
R0 = 1 individual exactly replacing themselves, population size stable
R0 > 1  individuals more than replacing themselves, population growing

The schedule of reproduction (mx curve) can be used to determine the generation time, T.
Need to know generation time in order to convert R0 into a population growth rate
measured in time units such as years (or days, etc)

Semelparous species = big bang breeders, which breed only once in life (e.g. salmon,
many insects)  T = egg to egg time, or newborn to newborn time (obviously).

But in iteroparous species, T is more complex.

T = Σxlxmx = 4.3/2.9 = 1.48
Σlxmx

To understand this, think first about the numerator.  lxmx is the average number of
offspring born to female at age x, as discussed above.  If we weight each offspring by the
age of the mother, x, and then sum across all ages, then we have the mother's age when
each offspring was born, summed across all offspring born in her life.

The denominator (Σlxmx) is equal to the total number of offspring born.  Dividing the
numerator by the denominator gives the mean age of a female when each of her children
was born.  In other words, the whole expression is just a weighted average — if most
offspring are produced when mothers are young, T will be short; if most offsrping are
produced when mothers are old, T will be long.

The denominator is equal to R0.  In a stable population, R0 = 1, so the denominator has no
effect on generation time. In a growing population, R0 > 1 and T is decreased, because it
takes less time for a cohort to ‘replace’ itself.  In a shrinking population, R0 <1 and T is
increased, because it takes longer for a cohort to ‘replace’ itself.

Relationship of net reproductive rate (R0) to intrinsic rate of increase, (r):



Defined population growth in terms of R0 above.  But R0 measures reproduction on the
basis of individual lifetimes (offspring produced per individual per lifetime), and most
models of population growth measure growth on the basis of births - deaths per unit time,
where time doesn’t have to be a generation - often years are the units.  The most common
measure of population growth is the intrinsic rate of increase, r.

lnR0

r ≈ = ln(2.9)/1.48 = 0.72 individuals/individual/year (growing rapidly)
  T

when R0 = 1, r = 0,  stable population
R0 < 1, r < 0, shrinking
R0 > 1, r > 0, growing

remember that r = b - d  where b = births/unit time and d = deaths/unit time.  So units of r
are individuals produced per unit time.

The equation r ≈ lnR0/T only give accurate results when R0 ≈1 (r ≈ 0).  The exact solution
comes from Euler’s equation.

1 = Σ e-rx lx mx

This is solved by iteration, a polite way of saying ‘hunt and peck’.  Many computer
packages (including MS Excel) have numerical 'solvers' that will do this for you → the
following explains what these 'solvers' do.

1. Use the approximate solution to get a close estimate of r.

lnR0
r ≈ = ln(2.9)/1.48 = 0.72 individuals/individual/year

  T

2. Make an e-rx column.

3.  Make an e-rxlxmx column and sum it.

x Nx lx mx lxmx xlxmx e-rx e-rxlxmx

0 500 1 0 0 0 1 0
1 400 0.80 2 1.6 1.6 0.487 0.779
2 200 0.40 3 1.2 2.4 0.237 0.284
3 50 0.10 1 0.1 0.3 0.115 0.012
4 0 0 0 0.0 0.0 0.056 0

                                               Σ=1.075



4. Σe-rxlxmx = 1.075, so first estimate of r  =0.72 is too small. (We are summing terms
raised to a negative exponent of r, so ↑r will ↓ sum).   Adjust estimate of r and try again.
As a guess, try  r = 0.75

x Nx lx mx lxmx xlxmx e-rx e-rxlxmx

0 500 1 0 0 0 1 0
1 400 0.80 2 1.6 1.6 0.472 0.755
2 200 0.40 3 1.2 2.4 0.223 0.268
3 50 0.10 1 0.1 0.3 0.105 0.011
4 0 0 0 0.0 0.0 0.050 0

        Σ =1.034

5. Σe-rxlxmx = 1.034, so estimate of r  (0.75) is still too small.  Increase it and try again.
By repeating this process, will home in on r = 0.776, which gives Σe-rxlxmx = 1

x Nx lx mx lxmx xlxmx e-rx e-rxlxmx

0 500 1 0 0 0 1 0
1 400 0.80 2 1.6 1.6 0.460 0.736
2 200 0.40 3 1.2 2.4 0.212 0.254
3 50 0.10 1 0.1 0.3 0.097 0.010
4 0 0 0 0.0 0.0 0.045 0

        Σ =1.000

The true intrinsic rate of increase is r = 0.78, compared with original estimate of r = 0.72.
This is a difference of 8%, which is big enough to matter in practical applications.


