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ABSTRACT
Saltcedar (Tamarix spp.) is an invasive shrub found throughout the northern 
Great Plains, including along the Bighorn River in southeastern Montana. 
Extensive saltcedar infestations have the potential to dramatically alter the 
species composition and hydrology of riparian ecosystems. The need for 
inexpensive and large-area saltcedar mapping necessitates the use of mod-
erate resolution satellite imagery. Flexible management expectations along 
with flexible mapping products are important for overcoming data resolution 
limitations. We demonstrate an approach for mapping saltcedar along 50-km 
of the Bighorn River in Montana using ASTER (Advanced Spaceborne Thermal 
Emission and Reflectance Radiometer) imagery and a Random Forests clas-
sification tree modeling approach. We modeled the continuous probability of 
saltcedar presence and evaluated optimal threshold levels in terms of omis-
sion and commission error. Reasonable classification accuracy was achieved 
for some management purposes. The threshold that optimally balanced 
omission and commission error yielded an overall classification accuracy of 
75%. The flexibility in our approach enables land managers to shift the balance 
between overmapping and undermapping saltcedar occurrence, depending 
upon management needs and budgets.
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InTRodUCTIon
Saltcedar (Tamarix spp.) is an invasive shrub from Europe and Asia that occurs 
widely across the western United States and directly competes with cottonwood 
(Populus spp.), willow (Salix spp.), and other riparian vegetation for water and nu-
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trient resources (Frasier and Johnson, 1991). Extensive saltcedar infestations have 
the potential to radically alter the habitat structure (Hunter et al., 1988), biodiver-
sity (Hughs, 1993), and hydrology (Brotherson and Winkel, 1986) of riparian eco-
systems. In the United States, saltcedar is widely distributed in the southwestern 
states and has long been established in the northern Great Plains, including east-
ern Montana and the Bighorn River (Pearce and Smith, 2007). Saltcedar produces 
small white or pink flowers in the spring and summer and the foliage turns yellow 
to orange in the late summer to early fall in Montana. 

Mapping the distribution of saltcedar is an important yet elusive resource 
management objective. Traditional methods for mapping invasive species, including 
field and aerial surveys, tend to be expensive, difficult to repeat, and more suitable 
for smaller areas (Cooksey and Sheley, 1998). Aerial photo mapping approaches 
have successfully distinguished saltcedar from surrounding vegetation during 
certain seasons but are costly for large area coverage (Everitt and Deloach, 1990; 
Ge et al., 2006). A number of saltcedar mapping applications have emerged more 
recently that rely on high spatial resolution (Akasheh et al., 2008) or hyperspectral 
(Hamada et al., 2007) remote sensing methods. These applications, while promising, 
also tend to be hampered by data availability, cost, and areal coverage. Moderate-
resolution satellite remote sensing offers promise, despite known limitations, for 
some invasive species mapping applications due to the pressing need for inexpensive, 
repeatable, and large-area monitoring efforts. Published applications of moderate-
resolution imagery for saltcedar mapping in particular, however, are few. Saltcedar 
was mapped in Colorado using multispectral Landsat imagery, and it was found 
that winter leaf-off imagery aided classification (Groeneveld and Watson, 2008). 
Landsat TM imagery and ancillary GIS data have also been used to map saltcedar 
distribution in Nevada (Sengupta et al., 2005). Saltcedar defoliation by beetles has 
also been mapped in Utah using ASTER (Advanced Spaceborne Thermal Emission 
and Reflectance Radiometer) imagery (Dennison et al., 2009).

Early detection of saltcedar invasion, before it attains dominance in an eco-
system, is critical for management purposes. This heightens the challenge of accu-
rate mapping with moderate resolution imagery because of the sporadic and het-
erogeneous nature of early saltcedar invasion patterns. Resource managers must 
have flexible expectations to address this challenge and recognize that some forms 
of classification error might be more tolerable than others. A flexible map product 
might allow for such shifting management objectives. Reasonable levels of commis-
sion error, or overmapping of saltcedar, might be a more acceptable type of error 
than omission error, or missing saltcedar patches altogether, for some management 
needs. For example, a land manager might be willing to travel to some locations 
where saltcedar was mapped but is not present as the cost of reducing the likelihood 
of missing infestations. A flexible map can tilt the balance between the two forms 
of error if, conversely, more certainty is required for field visitation or eradication 
purposes. The resource management expectations, therefore, are extremely impor-
tant in helping to ameliorate the limitations of mapping with moderate resolution 
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imagery. Our objective in this study was to demonstrate a straightforward approach 
for flexible mapping of saltcedar occurrence along the Bighorn River in Montana 
using moderate-resolution ASTER satellite imagery and Random Forests statisti-
cal modeling. We chose to use ASTER imagery because it has better spectral and 
spatial resolution than Landsat imagery and, therefore, might be better suited for 
mapping small patches of saltcedar. ASTER imagery has been widely used for eco-
logical applications and has demonstrated similar classification results to Landsat 
imagery (Powell et al., 2007). Random Forests regression trees were selected as the 
modeling approach because they are non-parametric, are robust to over-fitting, 
obviate the need for separate validation data, and are accurate for a wide variety of 
applications (Cutler et al., 2007). 

STUdy AReA
The study area is an approximately 50-km length of the Bighorn River in south-
eastern Montana near the town of Hardin (Figure 1). This low-gradient, largely 
agricultural stretch of the Bighorn River begins on the Crow Indian Reservation 
downstream of the Bighorn Canyon National Recreation Area and ends short of the 
confluence with the Yellowstone River. We constrained the study area to a 500-m 
buffer zone on either side of the river to approximate the extent of the field obser-
vations and the expected distribution of saltcedar. The riparian vegetation along 
this length of the Bighorn River, in addition to saltcedar (Tamarix spp.), is domi-
nated by scattered stands of cottonwood (Populus spp.), Russian olive (Elaeagnus 
angustifolia), willow (Salix spp.), and sagebrush (Artemesia spp.), interspersed with 
a variety of grasses, shrubs, agricultural crops, and rangeland.

methods
Field data were collected via canoe during the summer of 2006 and field verified 
in the fall of 2008. A total of 72 saltcedar stands were recorded by location, stand 
diameter, estimated canopy coverage, growth stage (sapling, pole, or mature), and 
phenology (flowering or non-flowering). Other vegetation types were recorded at 
170 locations, including agriculture, cottonwood, grass, Russian olive, sagebrush, 
rabbitbrush (Chrysothamnus viscidiflorus), willow, and bare soil. We identified an 
additional 122 observations of water, conifer, fallow-agriculture, and green-agri-
culture using high-resolution digital aerial photos. We consolidated all reference 
data into six classes: saltcedar (n=72), forest (n=121), grass (n=50), bare/fallow 
(n=37), shrub (n=40), and water (n=44).

The satellite imagery that we used for this study consisted of two ASTER im-
ages from August 19, 2006. The adjacent ASTER images were acquired with Level 
1B processing (registered radiance at sensor) and then were geometrically corrected 
using Digital Orthophoto Quarter Quads (DOQQs). For the northerly image we 
used 22 ground control points (GCPs) and for the southerly image we used 18 GCPs. 
For both images, first order polynomials with RMSE < 0.5 pixels were calculated. 
The images were then mosaiced together and clipped using a 500-m buffer on either 
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side of the river. We extracted for each reference plot location the spectral values 
for each of two 15-m visible bands (green and red), one 15-m near-infrared band 
(3N – nadir), and six 30-m shortwave-infrared bands (Table 1).

170 locations, including agriculture, cottonwood, grass, Russian olive, sagebrush, 
rabbitbrush (Chrysothamnus viscidiflorus), willow, and bare soil.  We identified 
an additional 122 observations of water, conifer, fallow-agriculture, and green-
agriculture using high-resolution digital aerial photos.  We consolidated all 
reference data into six classes: saltcedar (n=72), forest (n=121), grass (n=50), 
bare/fallow (n=37), shrub (n=40), and water (n=44). 

The satellite imagery that we used for this study consisted of two ASTER 
images from August 19, 2006.  The adjacent ASTER images were acquired with 
Level 1B processing (registered radiance at sensor) and then were geometrically 
corrected using Digital Orthophoto Quarter Quads (DOQQs).  For the northerly 
image we used 22 ground control points (GCPs) and for the southerly image we 
used 18 GCPs.  For both images, first order polynomials with RMSE < 0.5 pixels 
were calculated.  The images were then mosaiced together and clipped using a 
500-m buffer on either side of the river.  We extracted for each reference plot 
location the spectral values for each of two 15-m visible bands (green and red), 
one 15-m near-infrared band (3N – nadir), and six 30-m shortwave-infrared bands 
(Table 1). 

Table 1. ASTER band specifications. 

Sub-System Band Number Spectral Range (µm) Spatial Resolution 
visible and 
near-
infrared 
(VNIR) 

1
2
3N (nadir) 
3B (backward) 

0.52-0.60 
0.63-0.69 
0.78-0.86 
0.78-0.86 

15 m 

shortwave-
infrared 
(SWIR) 

4
5
6
7
8
9

1.60-1.70 
2.15-2.19 
2.19-2.23 
2.24-2.29 
2.30-2.37 
2.36-2.43 

30 m 

thermal 
infrared 
(TIR) 

10
11
12
13
14

8.13-8.48 
8.48-8.83 
8.93-9.28 
10.25-10.95 
10.95-11.65 

90 m 

We opted not to use the 90-m thermal bands due to spatial resolution constraints 
with the reference data.  We then plotted the reference data in two-dimensional 
spectral space to visually examine the spectral separability of saltcedar with 
respect to the other vegetation types. 

We opted not to use the 90-m thermal bands due to spatial resolution con-
straints with the reference data. We then plotted the reference data in two-dimen-
sional spectral space to visually examine the spectral separability of saltcedar with 
respect to the other vegetation types.

We modeled the distribution of saltcedar as a binary presence/absence re-
sponse variable (saltcedar presence = 1 [n=72] versus saltcedar absence = 0 [n=292]), 
using Random Forests (Breiman, 2001) classification trees and “out-of-bag” (OOB) 
error estimation, implemented through the R package ModelMap (Freeman, 2009; 
Freeman et al., in review). Random Forests is an increasingly popular statistical 
modeling approach for ecological applications (Cutler et al., 2007), including in-
vasive species classification and mapping (Lawrence et al., 2006). Random Forests 
is a non-parametric ensemble modeling approach that constructs numerous small 
classification trees that vote on predictions, and is considered to be robust to over-
fitting (Breiman, 2001). Each tree is constructed with a random subset of the data, 
and the remaining data are used for OOB error estimation. OOB estimation has 
been shown to be unbiased and practical for eliminating the need for independent 
validation data (Lawrence et al., 2006). Classification error was evaluated with the 
aid of the PresenceAbsence package in R (Freeman, 2007). The relative importance 
of each of the potential predictor variables was assessed in terms of the mean de-
crease in accuracy with and without a given variable.

Random Forests and PresenceAbsence provide information with respect to 
the probability that an observation will be a member of a target class. In the case 
of a binary classification the output is similar to that of a logistic regression. In this 
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case, we estimated the probability of a pixel being saltcedar. This enabled us to ex-
amine the continuum of probability thresholds between 0 and 100% for saltcedar 
presence to evaluate the error tradeoffs. We evaluated a suite of four threshold op-
timization criteria, including several premised on the notions of model sensitivity 
and specificity. In this context, sensitivity is akin to the model’s ability to correctly 
predict observed presence, or put another way, it is equivalent to the inverse of 
saltcedar omission error. Specificity is akin to the model’s ability to correctly pre-
dict observed absence, or equivalent to the inverse of absence omission error. The 
four optimization criteria identified the threshold: (1) that maximized the sum of 
sensitivity and specificity (MaxSens+Spec), (2) where sensitivity equaled specific-
ity (Sens=Spec), (3) that maximized overall accuracy (Max Overall), and (4) that 
maximized K

hat
 (Max K

hat
).

Based upon these four criteria, we selected an optimum threshold for further 
error evaluation. We reclassified the continuous predictions into a binary saltcedar 
presence/absence map using the 25% probability threshold, and calculated omission 
and commission error rates, as well as overall classification accuracy and K

hat
.

ReSUlTS And dISCUSSIon
An examination of the reference data in two-dimensional spectral space plots re-
vealed significant spectral overlap between saltcedar and other vegetation types, 
especially shrub and to a lesser extent forest (Figure 2). There was considerably less 
spectral overlap between saltcedar and water, grass, and bare soil/fallow. The vari-
able importance plot derived from the Random Forests model indicated that the two 
15-m visible bands (green and red) were the most influential predictor variables, 
according to the relative change in accuracy from variable permutations (Figure 
3). This was likely attributable to better spectral separability in the visible bands, 
perhaps as a result of higher spatial resolution in these wavelengths.

Analysis of the continuum of probability thresholds between 0 and 100% 
for saltcedar presence revealed significant tradeoffs in error evaluation (Figure 4). 
Based on the four threshold optimization criteria that we examined, the optimal 
threshold was between 15 and 45% (Table 2).
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less spectral overlap between saltcedar and water, grass, and bare soil/fallow.  The 
variable importance plot derived from the Random Forests model indicated that 
the two 15-m visible bands (green and red) were the most influential predictor 
variables, according to the relative change in accuracy from variable permutations 
(Figure 3).  This was likely attributable to better spectral separability in the visible 
bands, perhaps as a result of higher spatial resolution in these wavelengths. 

Analysis of the continuum of probability thresholds between 0-100% for 
saltcedar presence revealed significant tradeoffs in error evaluation (Figure 4).  
Based on the four threshold optimization criteria that we examined, the optimal 
threshold was between 15-45% (Table 2). 

Table 2. Optimization criteria and probability thresholds, with associated errors. 

Optimization 
Criteria 

Threshold Overall 
Accuracy 

Saltcedar 
Omission 
Error 

Absence 
Omission 
Error 

Khat

MaxSens+Spec 15% 71% 7% 34% 39% 
Sens=Spec 25% 75% 24% 26% 39% 
Max Khat 45% 82% 53% 9% 40% 
Max Overall 45% 82% 53% 9% 40% 

Overall accuracy increased as the threshold level increased.  Higher thresholds, 
however, equated to higher saltcedar omission error, meaning that saltcedar would 
likely be undermapped at these thresholds.  The lower thresholds, with lower 
saltcedar omission error, conversely, had higher absence omission error, implying 
that saltcedar would likely be overmapped at these thresholds.  Khat changed little 
by threshold level (between 15-45%), reflecting the shortcomings of this statistic 
for binary classifications (since predicted chance agreement can be high in these 
classifications).  

The 25% probability threshold was identified based upon the optimization 
criterion where sensitivity equaled specificity (Figure 4).  This criterion balances 
the competing demands of presence and absence omission errors.  The saltcedar 
omission error at this threshold (24%) was nearly equivalent to the absence 
omission error (26%), and the overall classification accuracy was 75% (Table 3).

Table 3. Classification accuracies for the 25% probability threshold for saltcedar presence. 

25% Probability 
Threshold 

Predicted   

  absence saltcedar total 
Observed absence 217 75 292 
 saltcedar 17 55 72 

Overall accuracy increased as the threshold level increased. Higher thresh-
olds, however, equated to higher saltcedar omission error, meaning that saltcedar 
would likely be undermapped at these thresholds. The lower thresholds, with lower 
saltcedar omission error, conversely, had higher absence omission error, implying 
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that saltcedar would likely be overmapped at these thresholds. K

hat
 changed little 

by threshold level (between 15 and 45%), reflecting the shortcomings of this sta-
tistic for binary classifications (since predicted chance agreement can be high in 
these classifications). 

The 25% probability threshold was identified based upon the optimization 
criterion where sensitivity equaled specificity (Figure 4). This criterion balances the 
competing demands of presence and absence omission errors. The saltcedar omis-
sion error at this threshold (24%) was nearly equivalent to the absence omission 
error (26%), and the overall classification accuracy was 75% (Table 3).

Table 3. Classification accuracies for the 25% probability threshold for saltcedar presence. 
25% Probability 
Threshold

Predicted 

  absence saltcedar total 
Observed absence 217 75 292 
 saltcedar 17 55 72 
 total 234 130 364 
saltcedar omission error = 24%; absence omission error = 26% 
saltcedar commission error = 58%; absence commission error = 7% 
overall accuracy = 75% 
Khat= 39% 

We produced a saltcedar continuous probability map, with values ranging 
between 0-1, and saltcedar presence maps derived from the 15%, 25%, and 45% 
probability thresholds (Figure 5), which we overlaid on ASTER false-color 
composite images.  

Our results demonstrate that despite the many limitations to mapping 
saltcedar with moderate resolution satellite imagery, reasonable accuracy can be 
achieved depending on management needs.  The flexibility in the thresholding 
approach from an invasive species management perspective is critical for adapting 
to changing budgets and management needs.  A lower probability threshold will 
optimize for lower saltcedar omission error if, for example, the management goal 
is to produce an accurate map of saltcedar presence given a data set of field 
observations.  At the 15% probability threshold level, we mapped 4,377 ha of 
saltcedar infestation (Figure 5).  A higher probability threshold will optimize for 
lower saltcedar commission error if, conversely, the management goal is to use a 
map in the field for saltcedar eradication purposes, and the budget does not allow 
for numerous false positive field visits.  At the 45% probability threshold level, 
we mapped 1,247 ha of saltcedar infestation (Figure 5).  At the 25% probability 
threshold level, we mapped 3,015 ha of saltcedar infestation.  At this level, 
saltcedar omission error was relatively low (24%), but the saltcedar commission 
error was quite high (58%), suggesting that over half of our mapped predictions 
were inaccurate.  Higher specificity, or absence omission error, could be obtained 
with a higher probability threshold, but this would be at the expense of sensitivity, 
or saltcedar omission error.  The permissibility of these types of errors depends 
largely upon the management strategy. 

The accuracy of our results underscores the challenge of mapping 
saltcedar with moderate resolution remote sensing data.  Saltcedar is a relatively 
minor component of the overall Bighorn River riparian vegetation; therefore the 
stands that were observed in the field were generally small and interspersed with 
other vegetation types.  The majority of field observed saltcedar stands were not 

We produced a saltcedar continuous probability map, with values ranging 
between 0 and 1, and saltcedar presence maps derived from the 15%, 25%, and 
45% probability thresholds (Figure 5), which we overlaid on ASTER false-color 
composite images. 

Our results demonstrate that despite the many limitations to mapping saltce-
dar with moderate resolution satellite imagery, reasonable accuracy can be achieved 
depending on management needs. The flexibility in the thresholding approach from 
an invasive species management perspective is critical for adapting to changing 
budgets and management needs. A lower probability threshold will optimize for 
lower saltcedar omission error if, for example, the management goal is to produce 
an accurate map of saltcedar presence given a dataset of field observations. At the 
15% probability threshold level, we mapped 4,377 ha of saltcedar infestation (Fig-
ure 5). A higher probability threshold will optimize for lower saltcedar commission 
error if, conversely, the management goal is to use a map in the field for saltcedar 
eradication purposes, and the budget does not allow for numerous false positive 
field visits. At the 45% probability threshold level, we mapped 1,247 ha of saltcedar 
infestation (Figure 5). At the 25% probability threshold level, we mapped 3,015 ha of 
saltcedar infestation. At this level, saltcedar omission error was relatively low (24%), 
but the saltcedar commission error was quite high (58%), suggesting that over half 
of our mapped predictions were inaccurate. Higher specificity, or absence omission 
error, could be obtained with a higher probability threshold, but this would be at 
the expense of sensitivity, or saltcedar omission error. The permissibility of these 
types of errors depends largely upon the management strategy.
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The accuracy of our results underscores the challenge of mapping saltcedar 

with moderate-resolution remote sensing data. Saltcedar is a relatively minor com-
ponent of the overall Bighorn River riparian vegetation; therefore the stands that 
were observed in the field were generally small and interspersed with other veg-
etation types. The majority of field observed saltcedar stands were not only mixed 
stands, but spatially smaller than single 15-m VNIR or 30-m SWIR ASTER pixels, 
compounding the challenge of accurate co-location of the reference plots with the 
image data. Moreover, the saltcedar observations were more likely than not mixed 
pixels, for which we had no percent composition information. Finally, our saltce-
dar observations were spectrally indistinguishable from some of the other riparian 
vegetation found along the Bighorn River, namely, willow, further compounding 
our classification challenge. 

Reasonable accuracy was achieved for certain management purposes using 
a simple presence/absence Random Forests statistical model despite these known 
limitations. There are several potential improvements that could be made to likely 
yield higher prediction accuracy. A logical improvement, based on the above dis-
cussion, would be to use a sub-pixel mapping approach to reconcile the patchy dis-
tribution of saltcedar with moderate spatial resolution imagery. Another potential 
improvement would be to use temporally suitable fall satellite imagery when salt-
cedar foliage is more spectrally distinct from surrounding vegetation (Everitt and 
Deloach, 1990). Finally, the inclusion of ancillary GIS predictor variables such as 
soil type and distance from the river might yield additional predictive power. 

RefeRenCeS
Akasheh, O.Z., C.M.U. Neale, and H. Jayanthi. 2008. Detailed mapping of riparian 

vegetation in the middle Rio Grande River using high resolution mulit-spectral 
airborne remote sensing. Journal of Arid Environments 72:1734-1744.

Breiman, L. 2001. Random forests. Machine Learning 45:5-32.
Brotherson, J.D., and V. Winkel. 1986. Habitat relationships of saltcedar (Tamarix 

ramosissima) in Central Utah. Great Basin Naturalist 46:535-541.
Cooksey, D., and R. L. Sheley. 1998. Montana noxious weed survey and mapping 

system. MontGuide 9613, Montana State University Extension Service, 
Bozeman, MT.

Cutler, D.R., T.C. Edwards, K.H. Beard, A. Cutler, and K.T. Hess. 2007. Random 
forests for classification in ecology. Ecology 88:2783-2792.

Dennison, P.E., P.L. Nagler, K.R. Hultine, E.P. Glenn, and J.R. Ehleringer. 2009. 
Remote monitoring of tamarisk defoliation and evapotranspiration following 
saltcedar leaf beetle attack. Remote Sensing of Environment 113:1462-1472.

Everitt, J.H., and C.J. Deloach. 1990. Remote Sensing of Chinese Tamarisk (Tamarix 
chinensis) and associated vegetation. Weed Science 38:273-278.

Frasier, G. W. and T. N. Johnson, Jr. 1991. Saltcedar (Tamarix): Classification, 
distribution, ecology, and control. In L. F. James, J. O. Evans, M. H. Ralphs, 



 A Flexible ApproAch  | 17

The Journal of Terrestrial Observation  |  Volume 2 Number 2 (Spring 2010)

 A Flexible ApproAch  | 17
and R. D. Child, eds. Noxious range weeds, pp. 377-386. Westview Press, 
Boulder, Colorado.

Freeman, E.A. 2007. PresenceAbsence: An R package for presence-absence model 
evaluation. USDA Forest Service, Rocky Mountain Research Station, 507 
25th St., Ogden, Utah. Eafreeman@fs.fed.us, URL:http://cran.rproject.org/
web/packages/PresenceAbsence/index.html.

Freeman, E.A. 2009. ModelMap: An R package for modeling and map production 
using Random Forest and Stochastic Gradient Boosting. USDA Forest Service, 
Rocky Mountain Research Station, 507 25th St., Ogden, Utah. Eafreeman@
fs.fed.us, URL:http://cran.rproject.org/web/packages/ModelMap/index.html

Freeman, E.A., T.S. Frescino, and G.G. Moisen. In review. ModelMap: An 
R package for model creation and map production. Journal of Statistical 
Software.

Ge, S., R. Carruthers, P. Gong, and A. Herrera. 2006. Texture analysis for mapping 
Tamarix Parviflora using aerial photographs along the Cache Creek, California. 
Environmental Monitoring and Assessment 114:65-83.

Groeneveld, D.P., and R.P. Watson. 2008. Near-infrared discrimination of leafless 
saltcedar in wintertime Landsat TM. International Journal of Remote Sensing 
29:3577-3588.

Hamada, Y., D.A. Stow, L.L. Coulter, J.C. Jafolla, and L.W. Hendricks. 2007. 
Detecting tamarisk species (Tamarix spp.) in riparian habitats of Southern 
California using high spatial resolution hyperspectral imagery. Remote Sensing 
of Environment 109:237-248.

Hughs, L.E. 1993. The devils own: Tamarisk. Rangelands 15:151-155.
Hunter, W.C., R.D. Ohmart, and B.W. Anderson. 1988. Use of exotic saltcedar 

(Tamarix chinensis) by birds in arid riparian systems. The Condor 90:113-
123.

Lawrence, R.L., S.D. Wood, and R.L. Sheley. 2006. Mapping invasive plants using 
hyperspectral imagery and Breiman Cutler classifications (RandomForest). 
Remote Sensing of Environment 100:356-362.

Pearce, C.M., and D.G. Smith. 2007. Invasive saltcedar (Tamarix): Its spread from 
the American southwest to the northern Great Plains. Physical Geography 
28:507-530.

Powell, S.L., D. Pflugmacher, A.A. Kirschbaum, Y. Kim, and W.B. Cohen. 2007. 
Moderate resolution remote sensing alternatives: A review of Landsat-like 
sensors and their applications. Journal of Applied Remote Sensing, Volume 1, 
doi: 10.1117/1.2819342.

Sengupta, D., C. Geraci, S. Kolkowitz, Y. Komandyan, and K. Cheng. 2005. 
Assessing tamarisk in Nevada by combining field and remote sensing 
techniques. ASPRS 2005 Annual Conference. March 7-11, 2005. Baltimore, 
Maryland.



18 | powell, lawrence, Austin, and Wood

The Journal of Terrestrial Observation  |  Volume 2 Number 2 (Spring 2010)

 A Flexible ApproAch  | 19 A Flexible ApproAch  | 19
Figure 1. Location of the 50-km length study area of the Bighorn River in rela-
tion to the state of Montana.

Figure 1.  Location of the 50-km length study area of the Bighorn River 
Montana. 
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Figure 2. Reference data plotted in two-dimensional spectral space. The top 
graph plots the six reference classes in SWIR v. Red spectral space, and the bot-
tom graph plots the six reference classes in N-IR v. Red spectral space.

Figure 2.  Reference data plotted in two-dimensional spectral space.  The top graph plots the six 
reference classes in SWIR v. Red spectral space, and the bottom graph plots the six reference 
classes in N-IR v. Red spectral space. 
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Figure 3. Variable importance plot from the Random Forests model.

Figure 3. Variable importance ploture 3. Variable importance plot from the Random Forests model. 
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Figure 4. Graph of the tradeoffs in sensitivity, specificity, and Khat along the continuum of 
probability threshold levels. 

  

Figure 4. Graph of the tradeoffs in sensitivity, specificity, and Khat along the 
continuum of probability threshold levels.
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Figure 5. Final maps of (A) the 
River, scaled between 0 (Low) to 1
probability threshold; C) the saltcedar presence map derived from the 15% probability threshold; 
and D) the saltcedar presence map derived from the 4

the continuous probability of saltcedar presence along the Bighorn 
(Low) to 1 (High); B) the saltcedar presence map derived from the 25% 

probability threshold; C) the saltcedar presence map derived from the 15% probability threshold; 
and D) the saltcedar presence map derived from the 45% probability threshold. 
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Figure 5. Final maps of (A) the continuous probability of saltcedar presence 
along the Bighorn River, scaled between 0 (Low) to 1 (High); B) the saltcedar 
presence map derived from the 25% probability threshold; C) the saltcedar 
presence map derived from the 15% probability threshold; and D) the saltcedar 
presence map derived from the 45% probability threshold.


