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Abstract

A 34 year time series (1972–2006) of Landsat imagery for a portion of Snohomish and King Counties, Washington (the Snohomish Water
Resource Inventory Area (WRIA)) was analyzed to estimate the amount of land that was converted into impervious surface as a result of urban
and residential development. Spectral unmixing was used to determine the fractional composition of vegetation, open, and shadow for each pixel.
Unsupervised and supervised classification techniques were then used to derive preliminary land cover maps for each time period. Digital
orthophotos were used to create agricultural, forest management, high elevation, and riparian masks. In conjunction with established Urban
Growth Areas (UGAs), these masks were utilized for the application of spatial rules that identified impervious surface as a surrogate for urban and
residential development. Temporal rules, that minimized classification error, were developed based on each pixel's classified trajectory over the
time series of imagery. Overall cross-date classification accuracy for impervious v. non-impervious surface was 95%. The results of the analysis
indicate that the area of impervious surface in the Snohomish WRIA increased by 255% over 34 years, from 3285 ha in 1972 to 11,652 ha in 2006.
This approach demonstrates the unique value of the 35 year Landsat archive for monitoring impervious surface trends in rapidly urbanizing areas.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Land cover change is a significant concern in rapidly urban-
izing areas. As land is converted into urban and residential,
fundamental changes occur in the properties of ecosystems,
including how water and nutrients are cycled (Tang et al., 2005)
and how habitat is allocated to flora and fauna (Radeloff et al.,
2005). The area around Seattle, Washington has experienced
rapid land cover change in recent decades. The combined
population of King County and Snohomish County increased
from 1.4 million in 1970 to 2.5 million in 2005 (Washington
Office of Financial Management, 2007). Despite this population
growth, the extent of increase in impervious surface area due to
urban and residential development during recent decades remains

unquantified. We sought to quantify these changes using a time
series of 13 Landsat satellite images (1972–2006) for a near-
ly 500,000 ha area near Seattle, Washington, known as the
Snohomish Water Resource Inventory Area (WRIA).

One of the key challenges in urban remote sensing is to
properly discriminate land cover classes in a heterogeneous con-
text (Cadenasso et al., 2007). Traditional per-pixel, spectrally-
based remote sensing methods have typically been limited in their
applicability to urban environments (Lu & Weng, 2005), largely
because land cover dynamics in urban environments often occur
at the sub-pixel level. For example, a new house might occupy
only a fraction of a Landsat pixel (28.5 m). While there are
alternatives to moderate resolution imagery (e.g. IKONOS
(Small, 2003)), no alternative offers the long term perspective
(35 years) of Landsat imagery, or the practical and inexpensive
coverage of such a large area. Given the benefits of Landsat
imagery, the use of classification techniques that explicitly deal
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with sub-pixel composition may be better suited to the issues of
urban heterogeneity and scale than traditional per-pixel classi-
fiers. Sub-pixel classification techniques enable the quantification
of percent impervious surface, which is a useful surrogate for
urban and residential development (Arnold & Gibbons, 1996; Lu
& Weng, 2006), and includes roads, parking lots, roofs, and a
variety of other non-porous surfaces. Several previous studies
have used regression-tree analysis to quantify sub-pixel imper-
viousness in urban areas (Yang, Huang et al., 2003; Yang, Xian,
et al., 2003; Xian & Crane, 2005). This approach, however, does
not yield information on the non-impervious component of each
pixel.

To adequately characterize urban environments, it is nec-
essary to quantify the impervious and non-impervious compo-
nents of each pixel. Ridd (1995) proposed the vegetation,
impervious surface, and soil (V–I–S) model to facilitate the
classification of urban areas. The V–I–S model has been widely
used for spectral unmixing (Phinn et al., 2002; Wu, 2004), a
technique that enables the decomposition of pixels into
fractional components (or end-members). Wu and Murray
(2003), and Wu (2004) compared several spectral unmixing
models for estimation of impervious surface distribution in
Columbus, OH, and found that the three end-member V–I–S
model (including brightness normalization) was the most effec-
tive. Other studies, however, have demonstrated the effec-
tiveness of a variety of different end-member combinations,
such as high-albedo, low-albedo, and vegetation (Small, 2002),
the inclusion of shade as an end-member (Alberti et al., 2004;
Lu & Weng, 2004), and allowance for variable numbers and
types of end-members (Dennison & Roberts, 2003; Rashed
et al., 2003). Lu and Weng (2004) demonstrated that green
vegetation, shade, and soil or impervious surface were the most
effective end-members for spectral unmixing in Indianapolis,
IN. Selection of these three end-members explicitly acknowl-
edges that impervious surfaces are spectrally similar to bare soil,
sand, or rock, and may be inseparable (Guindon et al., 2004; Lu
& Weng, 2004; Ridd, 1995; Wu & Murray, 2003). Therefore in
addition to spectral information, the spatial and temporal
information derived from pixels are equally important for
accurate discrimination of impervious surface.

Land cover classification is aided by consideration of land-
scape, or spatial context. For example, consider a pixel containing
no vegetation. Spectrally-based remote sensing methods can
accurately identify the lack of vegetation, but cannot accurately
resolve whether the pixel is man-made impervious surface or bare
soil. However, if this pixel is located within an urban setting, we
can assume with some confidence that the land cover is im-
pervious surface. Conversely, if this pixel is identified on a high
mountain ridge, we can assume with some confidence that the
land cover is bare soil or rock. In this manner, spatial context has
been previously incorporated to improve land cover clas-
sifications. Yuan et al. (2005) relied on post-classification refine-
ments, including the use of spatial masks and manual digitizing
from digital orthophotos, to minimize classification error. Like-
wise, Yang (2002) used spatial reclassification procedures, in-
cluding image smoothing and manual digitizing to reduce land
cover confusion. Such contextual reclassification techniques

(Gong & Howard, 1992) draw upon the expert-knowledge of the
analysts, and enable logical stratification andmasking of the study
area.

The inclusion of spatial context is a significant improvement,
but it may not go far enough. Another key factor for classifying
land cover is temporal context. The temporal trajectory of a pixel
through a time series of imagery can yield important clues about
land cover that single images cannot (Liu & Zhou, 2004). For
example, consider an annual time series of land cover clas-
sifications, and a pixel changing back and forth between vege-
tated and non-vegetated classes through the time series. We can
assume with some confidence, in this case, that vegetation
management or phenology are driving the spectral response of
this pixel. Then, considering the spatial context, farmland for
example, we can assume with confidence that the land cover is
cropland. Conversely, consider a pixel classified as non-vege-
tated through the entire time series. Then, considering the spatial
context, within a city for example, we can assume with some
confidence that the land cover is impervious surface.

Incorporating spectral, spatial, and temporal contexts should
enable more accurate quantification of change in impervious
surface than relying on one or two contexts only. This paper
presents methods for quantifying change in impervious surface
over 34 years in the Snohomish WRIA, using all three contexts.
We approached the study in three key stages:

1. Acknowledging the spatial resolution of Landsat imagery,
we employed a spectral unmixing technique for determining
sub-pixel land cover composition.

2. Recognizing the spectral overlap between impervious surface
and soils, we combined spectral-based classification with
spatial knowledge-based classification to identify impervious
surface associated with urban and residential development.

3. Leveraging the temporal information from the 34 year Landsat
time series, we devised a set of temporal rules to reduce
classification error.

2. Methods

The Snohomish WRIA is a complex mixture of forest,
agriculture, residential, and urban components. The focus of this
research was primarily to characterize change in the urban and
residential components, resulting from densification of existing
urban and residential areas, as well as from conversion of forest
and agricultural land. To simplify the analysis, we stratified the
WRIA with spatial masks where expected land-use activities
either excluded or permitted urban and residential development.
Urban Growth Areas (UGAs), delineated by Snohomish and
King Counties, contain the core urban areas, while outside of
these, lower-density residential development is permitted. How-
ever, much of study area outside of UGAs consists of agri-
cultural lands, riparian areas, forest management, high-elevation
mountainous areas, water, snow, and ice, and is largely in-
accessible to urban and residential development.

To map urban and residential growth over 34 years in the
Snohomish WRIA, we used spectral unmixing to discriminate
sub-pixel fractional land cover composition for each of the 13
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dates of Landsat imagery. Then we used both unsupervised and
supervised classification to convert the fractional composition
maps into preliminary land cover maps for each date. Based on
spatial context from the stratification and masking, we iden-
tified impervious surface associated with urban and residential
development. Finally, to minimize classification error, we de-
veloped a technique that identified misclassified pixels by
leveraging the temporal signal from the Landsat time series.

2.1. Study site

The state ofWashington is divided into 62WRIAs. The study
area is a 494,839 ha region northeast of Seattle, WA, delineated
as the Snohomish WRIA (Fig. 1). The WRIA encompasses the
Snoqualmie and Skykomish watersheds, and their convergence
forming the Snohomish River and its outlet into the Puget Sound
at Everett, WA. Elevations within the study area range from sea
level along the Puget Sound to 2408m in the CascadeMountains
along the eastern portions of the WRIA. Urban and residen-
tial areas are concentrated in the lower elevations, primarily
near Everett, WA, and along the valley bottoms following the
Snohomish, Snoqualmie, and Skykomish rivers. Vegetation in

the study area ranges from agriculture and pasture in the lower
elevations, to broadleaf-dominated forests in the middle eleva-
tions, and needleleaf-dominated forests in the higher elevations.
The highest elevations in the study area consist of alpine tundra,
rock, and persistent snow and ice fields.

2.2. Preprocessing

We acquired 13 late-summer Landsat satellite images of the
study area, spanning 34 years (Table 1). The TM and ETM+
images were either acquired with 28.5 m pixel resolution or
resampled to 28.5 m. The MSS images were acquired with
57 m pixel resolution and resampled to 28.5 m to match the TM
and ETM+ resolution. The 1975 (MSS) and 2000 (ETM+)
images were acquired orthorectified, and used as reference
images for geometric co-registration and orthorectification
using an automated tie-point program (Kennedy & Cohen,
2003). All 13 images were co-registered to the UTM (WGS84)
coordinate system with root mean square errors less than 0.5
pixels per image.

The Landsat image time series was then radiometrically
normalized. The year 2000 ETM+ image was acquired in

Fig. 1. Snohomish WRIA 7 study area in relation to the conterminous U.S., and Seattle, Washington. Major towns, highways, and water bodies within WRIA 7 are
shown in the inset.
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calibrated surface reflectance from the Landsat Ecosystem Dis-
turbance Adaptive Processing System (LEDAPS) (Masek et al.,
2006). We used this surface reflectance image as reference for
the Multivariate Alteration and Detection (MAD) relative radio-
metric normalization procedure (Canty et al., 2004). Using band-
wise regression of the six reflective bands, each of the other eight
TM and ETM+ target images were converted to surface reflec-
tance and matched to that common radiometric scale (Schroeder
et al., 2006). Subsequent to normalization, the ETM+ and
TM image were converted to Thematic Mapper Tasseled Cap
brightness, greenness, and wetness using the coefficients for
reflectance factor data (Crist, 1985). To normalize the MSS
imagery with respect to ETM+ and TM, we used the vegetation
indices brightness and greenness (wetness can't be derived from
MSS) with MAD rather than the reflectance bands, using the
original coefficients for MSS Tasseled Cap brightness and
greenness (Kauth & Thomas, 1976). Brightness and greenness
derived from the year 2000 ETM+ surface reflectance image
were used as reference for MAD.

2.3. Spectral unmixing

Spectral unmixing was used to extract sub-pixel fractional
composition. Since urban and residential dynamics can be hetero-
geneous and fine grained, wewanted to use a technique that could
quantify the vegetated and non-vegetated fractions of each pixel.
Linear spectral unmixing presumes that a pixel's reflectance is a
linear combination of a set number of spectral end-members
(Small, 2002). To identify these spectral end-members, we plotted
the two-dimensional distributions of Tasseled Cap brightness v.
greenness, from which end-members were delineated by co-
located examination of imagery and digital orthophotos. We
chose brightness v. greenness plots for end-member selection
for two reasons. First, brightness v. greenness plots are directly
interpretable in terms of relative vegetation and soil amounts
(Crist & Cicone, 1984). Second, as demonstrated in the de-
scription of radiometric normalization, brightness and greenness
are a practical bridge between MSS and TM/ETM+ imagery.
Negative greenness values, i.e., values below the “soil line”, were
not included in the plots as they represented completely non-

vegetated areas and confounded the interpretation of spectral end-
members. Moreover, we assumed with high certainty that pixels
located below the soil line would later “unmix” as 100% non-
vegetated (Crist & Cicone, 1984).

Using the 2006 Landsat TM image, we identified three
spectral end-members representing 1) sunlit soil, rock, or im-
pervious surface (100% open), 2) green vegetation (100%
vegetation), and 3) shadow or water (100% shadow or water)
(Fig. 2). Given radiometric normalization of the full Landsat
time series, we used the 2006 end-member signatures to unmix
the raw TM and ETM+ imagery (bands 1–5, 7) to derive the
pixel-level proportions of the three end-members for each of
the nine TM/ETM+ images. Then, using the 1981 Landsat
MSS image, we identified the same three spectral end-
members. We used these signatures to unmix the raw MSS
imagery (i.e., bands) to derive the pixel-level proportions of the
three end-members for each of the four MSS images. It was
necessary to unmix the raw bands, as opposed to the Tasseled
Cap bands, to have adequate spectral dimensionality for un-
mixing three end-members. The result of the spectral unmixing
was a map for each of the 13 time periods depicting the relative
percentages of open, vegetation, and shadow (or water) for
each pixel.

2.4. Preliminary classification

A first classification was derived to group the fractional end-
member proportions into preliminary land cover classes,
resulting in preliminary maps for each time period. For this we
used unsupervised classification to identify a training data set,
and then performed supervised classification on each year of
imagery using these training data. This preliminary classification
served to separate pixels along a continuum of vegetation
amount from fully vegetated to open. The open amount rep-
resented either impervious surface, bare soil, or rock, depending
upon spatial and temporal context.

Using the 2006 end-member proportions, we performed an
ISODATA unsupervised classification (Jensen, 1996). Through
visual examination of Landsat imagery and digital orthophotos,

Fig. 2. Spectral end-members in Tasseled Cap brightness v. greenness space.

Table 1
Date, WRS path/row, and sensor type for each of the 13 Landsat satellite images
used in the study

Date WRS path/row Sensor

07/29/1972 WRS1 50/27 Landsat 1 MSS
07/23/1975 WRS1 50/27 Landsat 2 MSS
08/03/1978 WRS1 50/27 Landsat 3 MSS
08/23/1981 WRS1 50/27 Landsat 3 MSS
08/23/1985 WRS2 46/27 Landsat 5 TM
08/31/1988 WRS2 46/27 Landsat 5 TM
09/22/1990 WRS2 46/27 Landsat 5 TM
08/29/1993 WRS2 46/27 Landsat 5 TM
08/21/1996 WRS2 46/27 Landsat 5 TM
08/27/1998 WRS2 46/27 Landsat 5 TM
09/25/2000 WRS2 46/27 Landsat 7 ETM+
08/14/2002 WRS2 46/27 Landsat 7 ETM+
09/02/2006 WRS2 46/27 Landsat 5 TM

1898 S.L. Powell et al. / Remote Sensing of Environment 112 (2008) 1895–1908
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we interpreted and reclassified the 50-class output from the
unsupervised classification into five classes ranked from high to
no vegetation amount:

1) high vegetation: broadleaf-dominated
2) high vegetation: needleleaf-dominated
3) moderate vegetation
4) low vegetation
5) no vegetation

Class one represented high vegetation amount dominated by
broadleaf plants (predominantly forest vegetation) containing
low open, moderate shadow, and high vegetation end-member
proportions (Fig. 3). Some pixels in this class contained green
agricultural vegetation, which was not always spectrally distinct
from broadleaf-dominated forest. Class two represented high
vegetation amount, dominated by needleleaf forest. This class
consisted of low open, moderate vegetation, and high shadow
end-member proportions. Classes three through five contained
fractions of open and vegetation components in order of in-
creasing open amount and generally decreasing vegetation
amount. Class three, moderate vegetation, contained moderate

vegetation and shadow proportions, but low open proportion.
Class four, low vegetation, contained lower vegetation propor-
tion, but higher open proportion. Class five, no vegetation,
contained a combination of lowest vegetation and highest open
proportions relative to any other class. As expected, the negative
greenness pixels that were excluded from end-member selection
were virtually all contained in the no vegetation class.

Using these five land cover classes identified on the 2006
image, we incorporated all of the pixels from each class into a
training data set. We then applied this comprehensive training
data set to a maximum likelihood supervised classification on
the fractional end-member images for each Landsat date. The
result was a preliminary land cover map for each of the 13 dates
of Landsat imagery.

2.5. Knowledge-based classification

The preliminary land cover maps represented the extent to
which spectrally-based methods alone could accurately dis-
criminate land cover. To achieve our final objective of quan-
tifying changes in impervious surface associated with urban and
residential development, we incorporated spatial and temporal

Fig. 3. End-member frequency distributions for each of the land cover classes derived from unsupervised classification. X-axes are the end-member fractional
composition; Y-axes are the frequencies.
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context into the analysis. We devised a set of knowledge-based
rules for further resolving land cover classes. To implement
these rules, we delineated five distinct land cover types within
the study area to which different spatial and temporal rules were
applied for classification purposes (Fig. 4).

1) Urban Growth Areas (UGAs) containing the urbanized cities
and towns in the study area, and delineated with Snohomish
County (Snohomish County Cartography/GIS Services
Team, 2007) and King County (King County GIS Center,
2007) UGA polygon layers.

2) Agricultural lands containing no impervious surface. These
were delineated by manual on-screen digitizing using 2005
digital orthophotos as a reference.

3) Riparian areas within or directly adjacent to major river
systems, containing no impervious surface. These were
delineated by manual on-screen digitizing using 2005 digital
orthophotos as a reference.

4) Forest management lands with evidence of recent or on-going
forest management activities, and high-elevation mountain-
ous areas (mostly public lands) containing no impervious
surface. These were delineated by manual on-screen
digitizing using 2005 digital orthophotos as a reference.

5) Unmasked areas containing the remainder of the study area.

In using the 2005 digital orthophotos for digitizing the masks,
we assumed that if impervious surface was absent in 2005, it was
absent in all previous dates (in only the rarest circumstances
would impervious surface revert back to agriculture, etc…). The

masks, therefore, were not intended for analysis of the land cover
that was converted to impervious during the study period.

2.5.1. Spatial rules
We carefully examined the open component of each land

cover class using digital orthophotos. Both the low vegetation
and the no vegetation classes contained a mixture of open
components, including impervious surface, bare soil, and rock.
We devised two spatial rules, to be applied independently to
each date in the time series, for subdividing the low vegetation
and no vegetation classes into impervious and non-impervious
classes.

2.5.1.1. Rule #1. Within the UGAs, we found little soil or rock,
and that the open component of low vegetation and no vegeta-
tion was almost exclusively associated with impervious surface.
Therefore, within theUGAs, we reclassified no vegetation as high
impervious and low vegetation as low impervious.

2.5.1.2. Rule #2. In the unmasked areas, we found that the open
component of the low vegetation class was overwhelmingly
associated with partially impervious surface. Therefore, in the
unmasked areas, we reclassified lowvegetation as low impervious.

2.5.2. Temporal rules
As the spatial rules were applied independently to each image

in the time series, their application resulted in some incongruous
pixel-level temporal trajectories of class labels that could be
largely rectified with simple temporal rules. We analyzed the

Fig. 4. Stratification masks within the study area for spatial and temporal rule application.
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classified trajectory of each pixel over the 13-date Landsat time
series and devised two temporal rules. In doing so, we ac-
knowledged that some errors were more tolerable than others.
Consequently, we attempted to minimize the most egregious
errors by flagging only those pixels that exhibited overwhelming
evidence of misclassification.

2.5.2.1. Rule #3. Pixels exhibiting frequent (more than three
directional-changes in impervious amount) or unlikely changes
(decreases of more than one class of impervious amount) over
the Landsat time series were assumed to be associated with
vegetation management or phenology, and therefore not likely
to be impervious surface. We reclassified these pixels from high
impervious back to no vegetation, and low impervious back to
low vegetation.

2.5.2.2. Rule #4. All remaining impervious pixels were then
subjected to a non-reversal rule. Once a pixel became impervious,
it could not revert to less-impervious or non-impervious through
the remainder of the Landsat time series.

We then made a modification to the classification scheme to
improve the interpretability of the final maps. Since we were
primarily interested in mapping change in impervious surface, we
merged no vegetation, low vegetation, and moderate vegetation
into a single class, called NLM (No, Low, and Moderate vege-
tation). There was significant end-member overlap among these
three classes, andmerging them did not decrease the overall value
of the final map products. Collectively, this single merged class
then represented all bare soil to semi-vegetated areas, including
primarily agricultural fields, clear-cuts, pastures, rock, and alpine
tundra.

To finalize each of the maps, we applied three additional
masks to each year of imagery: 1) a water body mask containing
all ocean, lakes, and major rivers (Washington State Department
of Natural Resources, 2007); 2) a road mask containing all
major highways (Washington State Department of Transporta-
tion, 2007); and 3) a snow and ice mask containing all persistent
glacial ice and snowfields. The road mask was incorporated
directly into the high impervious class. The snow and ice mask
was derived from an unsupervised classification of the Landsat

Fig. 5. Validation component frequency distributions for each of the final land cover classes, derived from aerial photo interpretation. X-axes are the component
fractional composition; Y-axes are the relative frequencies.
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image containing the maximum summer snow and ice extent
(2002). With these masks, we arrived at the final land cover
classification scheme:

1) water
2) high vegetation: broadleaf-dominated
3) high vegetation: needleleaf-dominated
4) no, low, and moderate vegetation (NLM)
5) low impervious
6) high impervious
7) snow and ice

2.6. Calculation of impervious surface area

To estimate the area of impervious surface in each time
period, we weighted the low impervious and high impervious
pixels by their sub-pixel fraction of open, from the end-member
maps. This yielded a per-pixel estimate of impervious surface
area for each date in the time series. To offset year-to-year
variation in end-member composition (due largely to phenol-
ogy), we used a three-year moving average of total impervious
surface area. These final estimates yielded the 34 year trajectory
of total impervious surface area across the Snohomish WRIA.

2.7. Map accuracy assessment

To validate the final maps, we devised a method to quantify
the fractional composition of five interpretable land cover
components from aerial photo interpretation. These land cover
components – conifer forest, broadleaf forest, grass, open, and
impervious – were a quantifiable bridge to the final land cover
classification. We derived a class-defining reference data set
from the 2006 map by sampling 163 plots, 3×3 pixels in size,
located in homogeneous areas (all nine pixels of the same class).
We stratified the sample by the proportional area of each class
within the study area. For each plot, we interpreted the fractional
composition of the five land cover components from year 2005
digital orthophotos.We plotted the frequency distributions of the
five land cover components for each of the final land cover
classes (Fig. 5). The high vegetation: broadleaf-dominated class
contained high broadleaf, moderate needleleaf, and low re-
maining component amounts. The high vegetation: needleleaf
dominated class contained high needleleaf, moderate broadleaf,

and low remaining component amounts. The NLM vegetation
class contained high grass and open proportions, and low other
component amounts. The high impervious class contained high
impervious and low other component amounts. The low im-
pervious class contained high impervious, moderate grass
and open, and low other component proportions. With these
reference data, we performed a discriminant function analysis to
derive a function with which to predict class membership for
independent validation data.

We then derived an independent validation data set using 214
plots across six dates (1985, 1990, 1998, 2000, 2002, and
2006). We selected these dates because they corresponded to the
dates of digital orthophotos and hardcopy aerial photographs
that we had obtained. For each of the six image dates (out of 13),
we collected approximately 35 sample plots, 3×3 pixels in
size, located in purely homogeneous areas, stratified by the
proportional area of each class within the spatial overlap of the
photos and the map. For each plot, we interpreted the fractional
composition of the five land cover components (conifer forest,
broadleaf forest, grass, open, and impervious) from the cor-
responding photo. Then, using the discriminant functions
derived from the class-defining reference data, we predicted
the class membership for each independent validation plot. We
then compared observed class membership to predicted class
membership and derived traditional measures of accuracy in-
cluding omission error, commission error, overall accuracy, and
the Kappa statistic.

3. Results and discussion

3.1. Spatial and temporal rules

The inclusion of both spatial and temporal rules in addition
to the spectral classification enabled subdivision of the low and
no vegetation classes into impervious and non-impervious
classes. To illustrate the effects of the spatial and temporal rules,
we present the results for the 2006 map. Spatial Rule #1 resulted
in 21% of the no vegetation pixels being reclassified as high
impervious inside the UGAs, and 23% of the low vegetation
pixels being reclassified as low impervious inside the UGAs.
Outside the UGAs, spatial Rule #2 resulted in a 57% increase in
the number of pixels of low impervious. To mitigate errors
associated with the spatial rules, we implemented the temporal

Table 2
Five-class, cross-date accuracy assessment

Observed class

Broadleaf Needleleaf High impervious Low impervious NLM Row total Commission error

Predicted class Broadleaf 30 9 0 3 1 43 0.30
Needleleaf 2 48 0 2 2 54 0.11
High impervious 0 0 8 5 1 14 0.43
Low impervious 0 0 1 24 0 25 0.04
NLM 20 0 1 5 57 83 0.31
Column total 52 57 10 39 61 219
Omission error 0.42 0.16 0.20 0.38 0.07

Overall accuracy=76%; Khat=69%

Bold numbers signify the agreement between observed and predicted classes.
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rules. Temporal Rule #3 resulted in a 14% decline in the number
of impervious pixels across the study area.

3.2. Map accuracy assessment

Classification error assessment, facilitated by use of multiple
dates of digital orthophotos, was revealing (Table 2). Error rates
were generally low for most of the five main map classes
(excluding water and snow and ice, which were not assessed).
The highest commission error rate was for high impervious
(0.43), but this was largely balanced by the omission error rate of
the same class (0.20) and that of the low impervious (0.38),
which was mapped over a significantly large proportion of the
map at each date. Moreover, most of the commission error
associated with high impervious was the result of misclassifi-
cation to low impervious. The commission error rate for low
impervious was very low (0.04), and all of it was the result of
misclassification to high impervious. The high omission error
rate for low impervious was indicative of the significant vege-
tation composition of that class. Overall cross-date accuracy for
the five classes was 76% (Table 2).

Although errors in each class were important, they were not
equally important. For the purposes of this study, distinction
among the non-impervious classes was not particularly mean-

ingful. Focusing on the primary distinction of importance, re-
classification of the final maps into two broad classes, pixels
containing impervious surface and those not containing im-
pervious surface, yielded a cross-date overall accuracy of 95%
(Table 3). The higher omission error rate (0.22) v. commission
error rate (0.03) for impervious was partially mitigated by
the fact that nearly all of the omission error was from low
impervious while all of the commission error was from high
impervious.

3.3. Land cover change between 1972 and 2006

We calculated the area of impervious surface for each date by
weighting the pixels of the two impervious surface classes by
their open end-member proportion from mixture modeling.
We found that between 1972 and 2006, the area of impervious
surface increased from 3285 ha to 11,652 ha across the study
area (Fig. 6), representing an increase of 255%. During that same
time period, population in the two counties containing our study
area (King and Snohomish) increased from 1.4 to 2.5 million, an
increase of 79% (Washington Office of Financial Management,
2007). This differential growth rate between impervious surface
and population is typical of urban sprawl, which has been
defined as “a pattern of land-use/land-cover conversion in which
the growth rate of urbanized land significantly exceeds the rate
of population growth over a specified time period, with a
dominance of low-density impervious surfaces” (Barnes et al.,
2007). This is also supported by our observation that the low
impervious class increased by over 6000 ha (2748 ha to 8946 ha)
over the 34 years of this study, whereas the area classified as high
impervious increased by only approximately 2000 ha (from
537 ha to 2706 ha) (Fig. 7). Moreover, we see that the low
impervious increase occurred more outside of UGAs than within
(Fig. 8).

In 1990, the Washington state legislature adopted the Growth
Management Act, with which it attempted to concentrate urban

Table 3
Two-class, cross-date accuracy assessment

Observed class

Impervious Non-
impervious

Row
total

Commission
error

Predicted
Class

Impervious 38 1 39 0.03
Non-impervious 11 169 180 0.06
Column total 49 170 219
Omission error 0.22 0.01

Overall accuracy=95%; Khat=83%

Bold numbers signify the agreement between observed and predicted classes.

Fig. 6. Change in impervious area in the Snohomish WRIA and change in population in Snohomish and King Counties between 1972 and 2006.
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development within UGAs. Based on the previous discussion
that urban sprawl has a greater effect than urban densification
on impervious surface growth, it appears from Fig. 6 that the
rate of urban sprawl declined during the 1990's. However, the
extent to which this trend is associated with the Growth Man-
agement Act cannot be fully determined by this study. Further
analyses of trends in impervious surface in conjunction with
social, political, and economic studies could shed light on the
effect of growth management policies.

3.4. Comparison to other studies

There have been other attempts to quantify the extent of
impervious surface and change through time, across the
Snohomish WRIA. Although it is difficult to directly compare
studies with different objectives and methods, they do serve as
indirect comparisons against our results. The circa 2000 National
Land Cover Data (NLCD) base (United States Environmental
Protection Agency, 2007), developed through theMultiresolution
Land Characteristics Consortium (MRLC), mapped impervious

surface across the Snohomish WRIA (Homer et al., 2002). The
2001 NLCD map of impervious surface estimated 11,893 ha of
impervious surface in the Snohomish WRIA. This is close to our
2002 estimation of 10,568 ha of impervious surface in the
Snohomish WRIA. One striking visual difference between our
map and the NLCD map is that the NLCD map included the full
network of roads throughout the study area, many of which are
most likely dirt or gravel roads. If we were to include this same
network of roads (we used only major highways) in our cal-
culation of impervious surface area, our estimate would increase
to 11,936 ha. Since our overall objective, however, was to
quantify the change in impervious surface between 1972 and
2006, it was not practical to incorporate these roads, since we
could not verify how they have changed over time. Therefore, to
estimate change in impervious surface, we relied on changes in
surface reflectance, modified by spatial and temporal rules.

Another difference between our map and the NLCD map is
that our map depicted substantially more spatial heterogeneity
of impervious surface within urban areas, which appears to
be more accurate when contrasted against digital orthophotos

Fig. 7. Land cover and land use in the Snohomish WRIA 1972 and 2006.
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(Fig. 9a). The NLCD map tended to represent these areas more
uniformly, and therefore likely overestimated the amount of
impervious surface. This was potentially due to the fact that like
us, the NLCD mapping effort utilized an urban boundary mask
to delineate areas with a high probability of impervious surface.
However, we then used temporal rules to minimize commission
error of impervious surface. In contrast to urban areas, in ex-
urban areas, our map estimated a greater amount of impervious
surface relative to the NLCD map (Fig. 9b). Across the entire

study area, on a pixel level where either one or both studies
mapped impervious surface, there was 35% agreement over the
presence of impervious surface. More often, however, there was
disagreement between the two maps. The NLCD mapped im-
pervious surface (where we did not) 40% of the time, and we
mapped impervious surface (where NLCD did not) 25% of the
time (Fig. 9).

Alberti et al. (2004) estimated change in impervious surface
over an eight year time period for a portion of the Snohomish

Fig. 8. Percent impervious surface change between 1972 and 2006 in the Snohomish WRIA. The bar charts depict the change in the area of low v. high impervious
surface inside and outside the UGAs between 1972 and 2006.
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WRIA. Total impervious surface was estimated to increase by
9.7%between 1991 and 1999 across the study area.We compared
these estimates to our maps for an eight year time period between
1990 and 1998. Our change detection indicated an increase of
15.2% in impervious surface across the study area over the eight
years. One possible explanation for the divergence in change
estimates was our inclusion of temporal rules. By examining the
temporal trajectory of each pixel, we were able to discern real
changes in impervious surface from false changes associated with
vegetation phenology and succession. Moreover, our assumption
that an impervious pixel could not revert back to non- or less-
impervious was important. According to their change analysis,
11.6% of the paved class and 5.6% of the mixed urban class in
1991 reverted back to non-impervious in 1999. Our inclusion
of temporal rules circumvented these types of illogical-change
errors.

4. Conclusions

The use of a time series of Landsat imagery is an accurate
and effective means of quantifying change in impervious sur-
face across several decades for a large area. The 35 year Landsat

archive is unique in this respect (Cohen & Goward, 2004), and
lends itself to the development of multi-decadal time series
for wide ranging applications, at local, regional, national, and
international scales. Moderate resolution imagery, however,
necessitates the use of a technique for sub-pixel unmixing, but
this can only yield a preliminary land cover classification. To
accurately identify impervious surface associated with urban
and residential development requires the incorporation of spec-
tral information into spatial and temporal information. We
demonstrated that knowledge-based classification with spatial
rules can help discriminate between otherwise spectrally in-
distinguishable land cover types. Furthermore, we demonstrated
an effective technique to minimize classification error by ex-
amining the temporal trajectory of each pixel through the time
series to identify non-impervious surfaces that were misclassi-
fied as impervious.

Comparisons to other studies provided compelling evidence
that the inclusion of spatial and temporal rules were critical for
mapping impervious surface. In the NLCD map, many non-
impervious surfaces, especially in urban areas, were mapped as
impervious surface. The most likely explanation for this was that
open, non-vegetated surfaces were spectrally indistinguishable

Fig. 9. Sample comparisons between NLCD 2001 impervious surface map and this study's 2002 impervious surface map. Top panel (a) is an example from an urban
area; bottom panel (b) is an example from an exurban area. The thematic maps on the right depict agreement and disagreement between the NLCD 2001 map and our
2002 map. Magenta represents areas where both maps agree on impervious surface; white represents area where both maps agree on non-impervious surface; blue
represents areas where only we map impervious surface; green represents areas where only NLCD maps impervious surface; Digital orthophoto is from 2005. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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from impervious surfaces. Therefore, spatial rules were nec-
essary to distinguish open land cover from impervious surface.
In addition, examining the temporal trajectory of each pixel
yielded greater inference than could be gained from a single date
alone, thereby minimizing classification error. Within urban
areas, we reclassified pixels that were misclassified as im-
pervious by incorporating temporal context.
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