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Conservation tillage management has been advocated for carbon sequestration and soil quality preservation
purposes. Past satellite image analyses have had difficulty in differentiating between no-till (NT) and
minimal tillage (MT) conservation classes due to similarities in surface residues, and may have been
restricted by the availability of cloud-free satellite imagery. This study hypothesized that the inclusion of
high temporal data into the classification process would increase conservation tillage accuracy due to the
added likelihood of capturing spectral changes in MT fields following a tillage disturbance. Classification
accuracies were evaluated for Random Forest models based on 250-m and 500-m MODIS, 30-m Landsat, and
30-m synthetic reflectance values. Synthetic (30-m) data derived from the Spatial and Temporal Adaptive
Reflectance Fusion Model (STARFM) were evaluated because high frequency Landsat image sets are often
unavailable within a cropping season due to cloud issues. Classification results from a five-date Landsat
model were substantially better than those reported by previous classification tillage studies, with 94% total
and ≥88% class producer's accuracies. Landsat-derived models based on individual image scenes (May
through August) yielded poor MT classifications, but a monthly increase in accuracy illustrated the
importance of temporal sampling for capturing regional tillage disturbance signatures. MODIS-based model
accuracies (90% total; ≥82% class) were lower than in the five-date Landsat model, but were higher than
previous image-based and survey-based tillage classification results. Almost all the STARFM prediction-based
models had classification accuracies higher than, or comparable to, the MODIS-based results (N90% total;
≥84% class) but the resulting model accuracies were dependent on the MODIS/Landsat base pairs used to
generate the STARFM predictions. Also evident within the STARFM prediction-based models was the ability
for high frequency data series to compensate for degraded synthetic spectral values when classifying field-
based tillage. The decision to use MODIS or STARFM-based data within conservation tillage analysis is likely
situation dependent. A MODIS-based approach requires little data processing and could be more efficient for
large-area mapping; however a STARFM-based analysis might be more appropriate in mixed-pixel situations
that could potentially compromise classification accuracy.
atts).
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1. Introduction

The need for improved terrestrial soil carbon management has
received considerable attention in recent years. An estimated 42–
78 Gt/carbon globally has already been lost from cropland soils after
decades of cultivation (Lal, 2004). The adoption of cropland practices,
including conservation tillage management, that increase plant
residue deposition while also reducing soil disturbances have been
advocated to help replenish lost soil carbon (Pacala & Socolow, 2004;
Sperow et al., 2003). Benefits from soil carbon, in addition to climate
change mitigation efforts, include added plant productivity due to
water and nutrient retention and improved soil, air, and water quality
(Reicosky, 2001).

Conservation tillage systems include those with minimal tillage
(MT) and thosewithout tillage, or no-till (NT). NT systems seed directly
into the previous crop stubble and are allowed only 15–25% surface
disturbance and residue removal (NRCS, 2006; NRCS, 2008). Fields
under MT management include conservation practices that do not
disturb more than ~67% of the surface residue (CTIC, 2010; Lal, 1997).
Conservation tillage can reduce soil disturbance events that result in
elevated carbon dioxide (CO2) release due to the microbial decompo-
sition of organic, carbon-rich materials. Conservation systems can also
facilitate carbon sequestration in agricultural soils because preserved
plant residues directly store organic carbon while helping to retain the
soil moisture necessary to sustain plant photosynthesis.

http://dx.doi.org/10.1016/j.rse.2010.08.005
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National and localized conservation outreach efforts have helped
to promote the adoption of conservation tillage, but documentation
has been limited. Global NT adoption has been estimated at roughly
45 million ha (Derpsch & Friedrich, 2009). Past survey results in the U.
S. have estimated NT adoption at ~24% (26 million ha) and MT at
roughly 20 million ha (~19%), but these statistics were dependent on
voluntary information from participating counties and are likely not
representative of actual trends (CTIC, 2007).

The use of survey-based methods to collect tillage statistics is both
expensive and time-intensive. The impracticality of survey-based
approaches has often resulted in an absence of tillage data, or
information that is out-dated and spatially limited. Satellite-based
tillage mapping has been suggested as a possible means to facilitate
the annual collection of large-area tillage statistics (Watts et al.,
2009). The availability of these data would likely benefit future policy
and conservation planning and would help to facilitate regional
carbon sequestration estimates (Watts et al., Submitted for publica-
tion). Emphasis within agricultural carbon credit markets has been
given to NT adoption, rather than to management types which
incorporate tillage, as many studies have shown higher sequestration
results with tillage absence (Lal, 2004). Satellite-based mapping
might also be useful formonitoring tillagemanagement compliance in
fields under carbon sequestration programs, but has been hindered by
past difficulties in separating NT from MT (Watts et al., 2009).

Previous image-based mapping studies have focused primarily on
classifying NT from traditional tillage systems with a high percentage
of surface disturbance (Bricklemyer et al., 2002; South et al., 2004) or
conservation tillage (≥30% surface residue) from traditional tillage
(Daughtry et al., 2006; Gowda et al., 2008; Sullivan et al., 2008; Viňa et
al., 2003). One study (Bricklemyer et al., 2006) attempted to
distinguish NT from tillage (grouping conservation and intensive
tillage into one class) by applying logistic regression to a 26-June
Landsat Enhanced Thematic Mapper (ETM+) mosaic, but obtained
only 29% accuracy in the tillage class. The low tillage accuracy was
attributed to crop canopy interference as study sites included both
cropped and fallow fields. Another study (Watts et al., 2009) also
reported low tillage accuracy (b35%) after applying a binary (tillage or
NT) split to both cropped and fallow fields, through an object-oriented
Random Forest classification approach applied to May and August
Landsat data. The study concluded that the class error had resulted
from MT fields misclassified as NT due to similarities in surface
residue cover, rather than bias from crop canopy cover.

The timing of image acquisition, in relation to tillage events, might
be important for classification accuracy as spectral differences
between the NT and MT classes are likely greater directly following
a tillage event. Field-based spectroradiometer mapping has shown
slight increases in spectral absorption within visible and infrared
bands following a tillage disturbance event due to increased exposure
of moist, carbon and oxide rich soil and a decrease in surface residues
(Demattê et al., 2004; Haché et al., 2007). Tillage dates can vary
greatly through a region; hence a high temporal frequency data set
might increase the likelihood of capturing tillage-related disturbances
in a greater percentage of fields. The incorporation of data sets with
higher temporal resolution, instead of the one or two date approach
used by many tillage classification studies, therefore, might better
capture surface disturbances in MT fields and increase differentiation
between the conservation tillage classes (Watts et al., 2009).

Obtaining data sets with both high temporal and spatial resolution
has long challenged the remote sensing community. Ultra-high spatial
resolution sensors with 1–5 day collection intervals (i.e., IKONOS,
QuickBird, RapidEye, and SPOT) are costly and can be disadvantageous
for regional mapping due to their small footprint and often limited
spectral resolution. Additionally, the high revisit rate can only be
accomplished by pointing the sensor in an off nadir direction, and, as a
result, full coverage over larger areas cannot be provided at high
revisit rates. Many studies have instead opted to use mid-resolution
sensors such as Landsat-5 Thematic Mapper (TM) and Landsat-7
Enhanced Thematic Mapper Plus (ETM+) (Cohen & Goward, 2004).
The Landsat products are often appealing because of their 30-m
spatial resolution, larger footprint (185 km), a combined 8-day
collection interval, and low cost (basic products available at no-cost
as of Dec. 2008). It is probable that exploiting fortnightly Landsat data
sets for tillage mapping would help improve the classification of
surface disturbances, but it is often difficult to obtain enough cloud-
free scenes to produce a high frequency set. Restrictions in Landsat
data availability due to clouds are likely when two or more cloud-free
scenes are required per year, especially within a short time interval
(Ju & Roy, 2008).

Daily-collected MODIS (Moderate Resolution Imaging Spectro-
radiometer) data have been used as an alternative to Landsat for
mapping cropland systems. MODIS is comparable to Landsat in
spectral coverage, but has a coarser spatial resolution (500 m–1 km;
250 m in red and near-infrared (NIR)). Several studies have
incorporated MODIS data into cropland analyses (e.g., Lobell &
Asner, 2004; Shao et al., 2010; Wardlow & Egbert, 2008, 2010). Only
one study (Schroers et al., 2009) was identified that used MODIS data
for tillage classification. In that analysis, logistic regression was
applied to 8-day 500-m and 16-day 250-m MODIS composites to
differentiate between 25 tilled and NT fields and resulted in 88% total
model accuracy. While the temporal strength of MODIS might benefit
cropland mapping, at least two studies have reported higher
classification errors associated with smaller field sizes (Schroers et
al., 2009; Shao et al., 2010). Another has expressed caution in using
MODIS data for mapping in regions with high surface diversity, and
consequently higher probabilities for mixed-pixel situations, without
also incorporating high-resolution data to refine map estimations
(Price, 2003).

The spectral blending of MODIS with higher-resolution Landsat
data through the Spatial and Temporal Adaptive Reflectance Fusion
Model (STARFM) has been used to produce synthetic 30-m Landsat-
like high temporal resolution data sets (Gao et al., 2006; Hilker et al.,
2009a). The STARFM algorithm is based on a spatially weighted
relationship between the reflectance of Landsat and MODIS,
resampled to 30-m pixels, at Date-1; this relationship can then be
used to predict high-resolution synthetic data at Date-2, after
accounting for spectral differences between MODIS values at Date-1
and Date-2 (Gao et al., 2006). Studies have demonstrated STARFM's
capability in accurately generating synthetic Landsat scene data (Gao
et al., 2006; Hilker et al., 2009a), but have noted that better
predictions generally occur in landscapes characterized by homoge-
nous regions having spectrally “pure” MODIS-scale observations.
STARFM has also shown difficulty in accounting for small-area
spectral changes resulting from surface disturbance events (Hilker
et al., 2009b). An extension to the STARFMmodel, STAARCH (Spatially
and Temporal Adaptive Algorithm for Mapping Reflectance Change),
has been developed to better detect small scale disturbances in forest
ecosystems (Hilker et al., 2009b). STAARCH allows for STARFM-based
predictions to be applied to MODIS pixels classified as “disturbed” via
a 2-date Landsat change mask with the time of disturbance identified
from MODIS series data sets. The STAARCH algorithm relies on a
disturbance index derived from normalized tasseled cap components
(Hilker et al., 2009b) to detect change events. The STAARCH tasseled
cap-based disturbance index might not be the best approach for
detecting small and temporally variable tillage disturbance events,
given its reliance on a Landsat scene before and after a possible surface
disturbance. This is due potential problems in obtaining cloud-free
imagery. It is also questionable if spectral signature changes due to
tillage would stay distinctive for long after the disturbance date as
Watts et al. (2009) reported difficulty classifying tillage disturbance in
high residue systems when using one Landsat image at either end of
the cropping season, even with the incorporation of tasseled cap
components, normalized difference vegetation index (NDVI) values,
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per-band reflectance, and textural and neighborhood relationship
components into an advanced decision tree-based classifier.

Our objective in this study was to examine the ability to classify NT
fields from those characterized by MT management through the use of
data sets with increased temporal and/or spatial resolution. We
hypothesized that a high temporal data set would better capture subtle
differences in spectral response between NT andMT fields within north
central Montana. The timing of tillage events varies greatly within this
region, therefore a high density of image dateswithin a cropping season
would likely increase the probability of capturing spectral changes
occurring within a tillage disturbance window. However, the temporal
extent of this change within conservation systems is unknown as the
degree of surface disturbance is relatively minimal and the decrease in
reflectance is minimized over time due to surface weathering.

Tillage classification performance was evaluated for Random
Forest models based on three categories of data, namely Landsat,
MODIS, and STARFM-derived synthetic Landsat. The high temporal
Landsat series provided a baseline for comparing model results with
those from previous tillage studies that evaluated NT and MT
classifications (Bricklemyer et al., 2006; Watts et al., 2009) and for
evaluating the performance of MODIS and STARFM-based models. It
was hypothesized that the added spatial resolution within the
STARFM-based synthetic data sets might result in better classification
performance than models based on the lower-resolution MODIS data,
especially since field widths less than 500 m are common within this
region.

2. Methods

2.1. Tillage data collection

Tillagemanagement data were collected forMT and NT sites across
north central Montana in 2009 (study center lat/long: 48.46,−110.84
degrees). This region is characterized by a semi-arid steppe climate
(NRCS, 2007a). Textural properties for themostly mollic soils can vary
Fig. 1. Spatial locations for MT (red circles) and NT fields (blue circles) used for tillage classifi
outline (lower left) within the Montana insert.
considerably throughout the region, ranging from clay to sandy loam
(NRCS, 2007b). Mean annual precipitation is spatially variable and has
typically ranged from 260 mm–380 mm (WRCC, 2009). Farmers
within the region using MT management were identified through
agricultural extension agents in Toole, Liberty, and Hill counties. The
specified farmers were contacted to determine if MT practices had
been used during the 2009 growing season (May–September) and to
determine the specific field locations. Field locations were then cross-
referenced with regional cadastral shapefile data to obtain field
boundaries. Data for tillage dates, post-tillage surface residue
percentages, and crop type were obtained during the farmer inter-
views whenever possible. The ensuing information indicated that
tillage disturbance events during the 2009 crop season resulted in
anywhere from 30 to 60% total disturbance of crop surface stubble
(based on visual estimates provided to us by farm managers).

The duration of MT use was at least three years for most fields,
with one field having been recently converted from NT in spring 2009
due to pest management issues. Additional fields converted to MT in
2009 were not identified. NT field locations were primarily obtained
through the North Dakota Farmers Union Carbon Credit Program, but
also included sites that were specified by farmers during the interview
process. The resulting data pool consisted of 75 NT and 50 MT fields
for reference training and validation data (Fig. 1). Field crops included
spring and winter wheat and some barley, and primarily incorporated
a crop and fallow rotation system. Reported productivity in these
systems ranged from less than 280 to 700 L of grain per ha. The timing
of tillage disturbances spanned from early May to the end of August
and was often dependent on soil moisture conditions and operator
flexibility. The majority of fields had widths spanning 250–480 m.

2.2. MODIS and Landsat data processing

Twenty-six MODIS images were selected for the 2009 (May–
September) cropping season (Table 1). MODIS images were excluded
if a substantial proportion (N30%) of the study area was cloud,
cation, within an August 2009 Landsat TM image. The study area is indicated by the red



Table 1
Schematic depicting the 2009 image scenes used in the Random Forest classifications,
including multiple Landsat (column 1) and MODIS (column 2) dates. STARFM-based
synthetic data were also generated for eachMODIS image date (STARFM prediction sets
1-3). Each STARFM prediction scenewithin a set was based on the relationship between
a base date Landsat and MODIS image. The base pair corresponding to each individual
STARFM-based prediction at a particular MODIS date (three predictions were made for
each MODIS scene) is indicated by the base pair symbol in that particular cell.

Image dates
(2009)

STARFM prediction
sets

Image dates
cont.

STARFM cont.

Landsat MODIS 1 2 3 Landsat MODIS 1 2 3

2-May o o •

18-May o o • 17-Jul ‡ • •

19-May o o • 19-Jul ‡ • •

22-May o o • 21-Jul ‡ • •

23-May o o • 23-Jul ‡ 22-Jul ‡ • •

28-May o 26-May o o • 25-Jul ‡ • •

1-Aug ‡ • •

30-May † o • 2-Aug ‡ • •

3-Jun † o •

4-Jun † o • 11-Aug • • •

13-Jun † 13-Jun † o • 20-Aug • • •

21-Aug • • •

24-Jun Δ o • 24-Aug • 25-Aug • • •

25-Jun Δ o • 27-Aug • • •

29-Juna Δ 27-Jun Δ • •

30-Jun Δ • •

a Paired with 27-Jun instead of 30-JunMODIS due to amplified cloud coverage within
the combined 29-Jun Landsat/30-Jun MODIS data set.
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shadow, or haze contaminated, as identified through a visual and
histogram-based examination of pixel outliers. Five Landsat image-
pairs (TM and ETM+; path/row 39/26 and 39/27), each pair occurring
on the same date, were also obtained for the 2009 cropping period
and were mosaicked to create one continuous image that spanned the
spatial extent of the study region (Table 1). The Landsat image-pairs
were georectified to a base image (RMSEb0.35 pixel) to minimize
pixel spatial error.

The compiled MODIS surface reflectance product data (MOD09)
were reprojected to UTM coordinates and clipped to the spatial extent
of the Landsat image-pairs. The 250-m red and near-infrared MODIS
data were incorporated with the 500-m blue, green, and middle-
infrared MODIS data for each image scene. The MODIS data were re-
scaled to a 30-m pixel resolution through a nearest-neighbor
approach for incorporation into the STARFM algorithm.

The 30-m Landsat image data were converted from sensor-based
digital number (DN) values to exo-atmospheric reflectance using
standard processing techniques (Chander et al., 2007; Chavez, 1996;
SDH-L7, 2006). This procedure adjusted for between-band scaling
differences, earth–sun distance, and sun elevation angle. The Landsat
surface reflectance data were formatted as unsigned 16 bit with a
scale factor of 10,000 to coincide with the MODIS data format.

2.3. STARFM-based synthetic data

Synthetic Landsat data were generated using the STARFM
algorithm developed by Gao et al. (2006), in a windows executable
format (Hilker et al., 2009a). The STARFM algorithm predicts Landsat-
like (30 m) spectral pixel values at Date-2, using MODIS data values at
Date-2 and spatially and spectrally-weighted differences between
baseline Landsat andMODIS image data acquired at Date-1 (Gao et al.,
2006):

L xw= 2; yw= 2;Date−2
� �

= ∑
w

i=1
∑
w

j=1
WijTðM xi; yj;Date−2

� �

+ L xi; yj;Date−1
� �

−M xi; yj;Date−1
� �Þ;
where L is a Landsat reflectance pixel value (xw/2, yw/2) in the center of
a moving window (here spanning 1500 m2, Hilker et al., 2009a).Wij is
the spatial weighting function, M (xi , yj, Date-2) is the MODIS
reflectance at the window location (xi, yj) observed at Date-2, while L
(xi , yj, Date-1) andM(xi, yj Date-1) are the corresponding Landsat and
MODIS reflectance values observed at Date-1, respectively (Gao et al.,
2006).

The Wij value determines the degree to which spectrally similar
(Gao et al., 2006) neighboring pixels within a moving window (w)
contribute spectral information for a predicted central pixel. Wij is
defined by a normalized reverse distance, where the inverse of
combined spatial, temporal, and spatial distance values, Cij, for a pixel
location is divided by the area-based inverse for Cij from the moving
window (Gao et al., 2006):

Wij = 1= Cij

� �
= ∑

w

i=1
∑
w

j=1
1= Cij

� �
;

the reverse distance measure provides a decreased weighting for more
extreme values, while the w-based normalization constrains the
localized Cij value according to neighborhood-based Cij values. A
logistic-based formula for Cij was incorporated for a reduced sensitivity
to spectral differences between L and M baseline pixel data, and
temporal differences betweenM pixel values atDate-1 and Date-2 (Gao
et al., 2006). Cij is defined as:

Cij = ln SijTB + 1
� �

Tln TijTB + 1
� �

TDij;

where Sij is spectral distance, Tij is temporal distance, and Dij is a spatial
distance function that assigns a higher weighting to pixels within a
movingwindow that are closer to the predicted central pixel. B is a scale
reflectance value (10,000 for MODIS). Sij is defined simply as the
absolute value of the difference between a baseline Landsat and MODIS
pixel value at Date-1:

Sij = AL xi; yj;Date−1
� �

−M xi; yj;Date−1
� �

A:

Tij is defined as the absolute value of the difference between a
MODIS pixel at Date-1 and the predicted date, Date-2:

Tij = AM xi; yj;Date−1
� �

−M xi; yj;Date−2A:
�

The STARFM algorithm was used to generate synthetic Landsat
data for three different temporal prediction data sets (Table 1). The
first set incorporated five separate Landsat–MODIS base pairs and
represented a “best-case” scenario high temporal synthetic series that
could optimize the potential for surface reflectance changes (i.e.,
tillage disturbance) to be captured by the algorithm and within the
resulting data. MODIS images paired with the Landsat scenes were
chosen according to their proximity to the Landsat image date
(Table 1). The second set represented a more realistic scenario where
only early and late season Landsat imagery was available due to area-
wide cloud cover during the growing season. This set utilized
Landsat–MODIS base pairs from May and August. The third scenario
represented a “worst-case” scenario where area-wide cloud contam-
ination was only absent in the late season and used the August base
pair for all image predictions.

The suitability of the resulting synthetic data series for tillage
classification purposes was evaluated based on tillage classification
model accuracies. Pixel value differences between Landsat data and
their predicted values were also examined based on random pixel
samples in cropland fields for ~10% (40,000 pixels) of the study area,
following the methods of Hilker et al. (2009a).
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2.4. Random Forest classification models

A MODIS spectral data set was obtained for each MT and NT
location by visually selecting per field the MODIS pixel with the
highest percentage of spatial overlap. The MODIS pixels were chosen
in this manner as the field areas were often smaller than the MODIS
pixel extent. The Landsat and resulting synthetic STARFM-based
datasets were obtained by taking the average pixel value within each
field boundary.

Four overall categories of data were evaluated within tillage
classification models and included all six spectral bands from each
input image (blue through the secondmid-infrared): MODIS, Landsat,
MODIS and Landsat, and STARFM-based synthetic Landsat. TheMODIS
evaluation incorporated 26 image dates within the classification
model. The Landsat evaluation included six model scenarios, with one
including all five image dates and the other five scenarios being
individual scene-based. The MODIS and Landsat evaluation included
all 26 MODIS scenes and an August Landsat scene. The STARFM-based
evaluation included four scenarios: (1) data that resulted from five
MODIS/Landsat base pairs that were used to generate predictions for
26 MODIS dates (Table 1, prediction set 1); (2) data from only the five
predicted scenes that directly corresponded to the five MODIS/
Landsat base pair dates, and mimicked the five-date Landsat scenario;
(3) data from a set based on aMay and an August base pair predictions
for the 26MODIS dates (Table 1, prediction set 2); and (4) data from a
set based on August base pair predictions for the 26 MODIS dates
(Table 1, prediction set 3).

The tillage classificationmodels were generated using the Random
Forest package (S-Plus®). Random Forest is superior to many other
tree-based classifiers (Watts et al., 2009), and has often outperformed
logistic regression (Cutler et al., 2007; Guo et al., 2004). The Random
Forest classifier utilizes a bagging-based approach (random sampling
with replacement) to build a forest of classification trees (Breiman,
2001; Cutler et al., 2007; Lawrence et al., 2006). Each classification
tree (~500 trees in a typical forest) is constructed from a randomly
sampled set consisting of ~63% of the full data (Cutler et al., 2007). A
random selection of variables also occurs at each node during tree
partitioning. The Gini index of node impurity is used to determine,
from the sampled variable set, the best binary split at each node and
provides a measure of which predictor variable and associated
splitting value best decreases class heterogeneity. A larger Gini
index indicates greater class heterogeneity (higher class impurity
among cases) while a low Gini index indicates increased homogeneity
(low class impurity). Tree splitting at each node is determined by
comparing the total impurity of child nodes resulting from a possible
split at a parent node to the parent Gini value. A split is successful
when the Gini of the children is less than that of a parent. Tree
splitting terminates upon reaching a Gini index of zero, where only
one class is present at each terminal node.

Classification model accuracies were determined using the
Random Forest out-of-bag measure, which is an advantageous by-
product of bagging and is inherent within the Random Forest
algorithm (Breiman, 2001; Lawrence et al., 2006). The out-of-bag
measure utilizes training data samples that were withheld during the
tree-building process. The withheld sets are run through their
associated classification trees and the predicted class for an
observation is determined by a plurality vote. Model and class-related
accuracies are determined through an analysis of out-of-bag obser-
vation prediction results from all trees. The out-of-bag approach has
been shown equivalent to external accuracy measures, where a
portion of data is withheld completely from model building
(Lawrence et al., 2006), and is often ideal for smaller data sets as it
allows for all information to be included within classification tree
construction. Kappa values were also generated to quantitatively
measure a model's predictive ability while accounting for chance
agreement (Congalton & Green, 2009; Emam, 1999).
3. Results

3.1. STARFM predictions

The relative accuracies of the STARFM-based predictions incorpo-
rated into tillage modeling were evaluated to better understand
STARFM's predictive capability within a cropland setting. This
examination also helped to assess the classification performance of
the synthetic data-based models, as compared to those based on the
MODIS or Landsat sets. The accuracy assessments were both visual
and regression-based.

A high level of spatial detail was observed within the predicted
scenes as had been reported by previous studies (Gao et al., 2006;
Hilker et al., 2009a,b). However, some smoothing of fine spatial details
was also noted and was especially apparent within regions having
distinctive crop-fallow strip patterns (Fig. 2). A pixel-based compar-
ison of 40,000 randomly sampled cropland pixels showed significant
(α=0.05, p=0.001) correlations (0.7≤ r2≤0.93) between the
reference 24-August Landsat and the predicted 25-August data, with
the highest correlations observed in the red, near-infrared (NIR), and
second mid-infrared (MIR2) bands (Fig. 3). An analysis of the slope
coefficients indicated close to a 1:1 unit increase between the August
Landsat and predicted data, but the STARFM-predicted mean values
were generally lower than Landsat (Table 2). Results from a two-sided
t-test showed significant difference (α=0.05, p=0.001) in means
between the reference August Landsat and August predicted values in
all bands, although these results are to be expected given the large
sample size.

Decreased correlations between the Landsat and STARFM-based
synthetic data were observed when analyzing image predictions for
dates further from the 24/25-August base pair (Table 2), and
approached zero when comparing the 27-June predictions with their
corresponding Landsat date values. A regression between 24-August
Landsat data and 27-June predictions, performed to observe the
influence of baseline Landsat data on the resulting STARFM-based
predictions, showed substantial increase in band-wise correlations
when compared to the 29-June Landsat and 27-June predicted
regression (Table 2). Temporal variability in correlation strength was
observed between August, July, June, and May-predicted data (taken
from the same predicted scenes used within the 5-Date STARFM
classificationmodel; Table 3) and comparative Landsat data (Table 2).
The highest correlations were seen between the 22-July predicted and
23-July Landsat (r2N0.98, all bands) data. The June andMay synthetic/
Landsat comparisons showed generally poorer correlations
(0.4≤r2≤0.77), with the strongest observed in the red, NIR, and
MIR bands.

3.2. Classification accuracies

Tillage accuracies resulting from the Random Forest models
showed potential for distinguishing MT from NT in dryland settings
within north central Montana using satellite image data. Considerable
differences in total and/or class accuracies were observed. However,
statistically significant (α=0.05) results from Z-tests were not
observed when the stronger (N84% total accuracy) classification
models were analyzed against each other.

The Landsat-based model using all five image dates (All-data
model) yielded the highest classification accuracies (in the Landsat
series) with 94% total accuracy (kappa=0.88) and class (producer's)
values of 88% MT and 99% NT (Table 3). This full-set, best case,
scenario would be unrealistic in most years due to the high frequency
of cloud cover within the growing season, but was included for
comparative purposes. An analysis of models generated using
individual Landsat scene dates illustrated a key relationship between
temporal sampling and tillage classification accuracy. The May
through August scene-specific Landsatmodels yielded total accuracies



Fig. 2. Visual comparative for 07/22/2009 MODIS (left), 07/23/2009 Landsat (middle), and a STARFM-based reflectance prediction for 07/22/2009 using an August MODIS/Landsat
base pair.
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ranging from 71% (May) to 87% (August) with a step-wise increase in
accuracy by month (Table 3). The producer's accuracies for these
models ranged from 60% MT and 79% NT for the May-based model to
78% MT, 93% NT in the August-based model.

The MODIS-based tillage classification resulted in 90% total model
accuracy (Table 3). The corresponding kappa value (0.8) indicated
that the model had substantial strength in providing class agreements
that were greater than chance occurrence (Landis & Koch, 1977). The
MODIS-based model producer's accuracies were 82% (18% omission)
and 93% (7% omission) for MT and NT, respectively. A lower
producer's accuracy resulted in the MT category due to the
misclassification of MT fields as NT. Lowered classification accuracies
(86% total, 76%MT producer's) resulted when only the 250-m red and
NIR MODIS data from each date were included into the model. An
evaluation of the model using the 26MODIS dates and August Landsat
scene (referred to as the MODIS and Landsat model), which had been
expected to add an increased spatial component to the high temporal
data set, did not show improvement over the exclusively MODIS-
based model.
Fig. 3. Band-wise correlations (significant atα=0.05, p=0.001) between 24-Aug-2009 Land
MODIS image pair, based on random pixel samples (40,000) taken from cropland. The stro
infrared (MIR2) bands.
The All-data STARFM-based model (Table 3), where five MODIS/
Landsat base pairs were used to generate synthetic data for MODIS
dates closest to each pair, resulted in the highest overall model
accuracy (95%; kappa=0.89) and had class accuracies similar to the
All-data Landsat model. Again, the availability of five Landsat scenes
for inclusion as base pairs in STARFMpredictions is typically unrealistic
but this step was taken for purposes of comparison and to help
illustrate the importance of temporal resolution, aided by high spatial
resolution, in detecting small-area surface tillage disturbances. The
classification model (Table 3) using only the five STARFM-predicted
dates within closest proximity to (on the same day of, or +/−2 days)
the Landsat scene dates (taken from the abovementioned data, but
excluding the full temporal set) had a 4.8% decrease in total
classification accuracy and a substantial 12% decrease inMTproducer's
accuracy when compared to the All-data STARFM model.

The 26-date August STARFM base pair classification model
(referred to previously as the likely “worst-case” scenario) had 93%
total accuracy and a 0.85 kappa (Table 3; Table 1 illustrates MODIS/
Landsat base pairs and corresponding predictive dates). Producer's
sat reflectance values and STARFM-predicted values derived from a 24/25-Aug Landsat/
ngest correlations were observed in the red, near-infrared (NIR), and second middle-

image of Fig.�2
image of Fig.�3


Table 2
Pixel-based (n=40,000) regression results from Landsat and STARFM-predicted synthetic data.

Blue Green Red NIR MIR1 MIR2

24-August Landsat and
25-August Predicteda

r2 0.7 0.88 0.93 0.91 0.86 0.93
Intercept −258 −201 −147.6 −319 −330 −9.6
Slope 1.12 1.08 1.04 1.07 1.06 1

22-July Landsat and
23-July Predicteda

r2 0.42 0.34 0.44 0.65 0.32 0.61
Intercept 721 596 630 508 1727 957
Slope 0.56 0.48 0.62 0.83 0.47 0.64

29-June Landsat and
27-June Predicteda

r2 0.01 0.01 0.03 0.06 0.03 0
Intercept 1140 957 885 2259 2260 1628
Slope 0.03 0.04 0.1 0.08 0.09 −0.02

24-August Landsat and
27-June Predicteda

r2 0.41 0.36 0.03 0.75 0.27 0.51
Intercept 186 100 701 760 618 −202
Slope 0.64 0.58 0.14 0.71 0.52 0.66

22-July Landsat and
23-July Predictedb

r2 0.99 0.99 0.99 0.99 0.99 0.99
Intercept 7.49 0.38 12.1 26.25 17.09 12.78
Slope 0.99 0.99 0.99 0.98 0.99 0.99

29-June Landsat and
27-June Predictedc

r2 0.41 0.54 0.65 0.45 0.68 0.99
Intercept 654 491 337 980 796 4.64
Slope 0.74 0.94 1.16 0.59 1.17 0.98

28-May Landsat and
26-May Predictedd

r2 0.59 0.57 0.77 0.73 0.61 0.41
Intercept −108 −235 66 351 −404 186
Slope 1.03 1.19 0.84 0.77 1.11 0.64

a Predictions based on an August Landsat/MODIS base pair.
b Predictions based on a July base pair.
c Predictions based on a June base pair.
d Predictions based on a May base pair.
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accuracies resulting from this model were 86% and 97% for MT and NT,
slightly higher than the MODIS-based results, but substantially higher
than accuracies from the use of a single 26-August Landsat image
model. The May and August STARFM-based model (Table 3), where
both May and August base pairs were used to predict synthetic data
for the 26 scenes, showed decreased classification strength when
compared to August-only base pair model.

Field-specific trends in tillage classification accuracy, as influenced
by dataset inputs into each model, were not apparent with exception
of one field that changed from NT to MT management in 2009. This
field had been misclassified as NT in all models except for the five day
Landsat and all of the STARFM-based models.

4. Discussion

While past remote sensing studies have successfully classified NT
from high disturbance tillage, or intensive tillage from conservation
tillage, there has been difficulty in distinguishing between the two
primary categories of conservation tillage, MT and NT, due to surface
residue similarities (Bricklemyer et al., 2006; Watts et al., 2009). Both
these studies incorporated advanced classification algorithms, but
were limited to using one or two imagedateswithin a cropping season.
This study analyzed tillage management within the same region of
north central Montana as the abovementioned studies, but included
high temporal resolution data sets within the classification process to
ascertain if an increased temporal frequency would improve tillage
class accuracy.

4.1. Landsat-based models

The importance of spectral sampling throughout a cropping season,
spaced in a manner that maximized the likelihood of capturing tillage-
influenced surface changes, was evident when evaluating the Landsat-
based classification model accuracies. The All-data Landsat model
yielded a MT class producer's accuracy that was substantially better
(≥54%) than tillage accuracies reported byBricklemyer et al. (2006) and
Watts et al. (2009) where only June or May/August data had been used.
Both studies hadexaminedabinary split betweenNTandall other forms
of tillage, although Watts et al. (2009) attributed the low tillage class
accuracy to the misclassification of MT fields as NT. This problem was
rectified in our study by including an increasednumber of image scenes,
collected throughout the cropping season, into the classificationmodel-
building process. The availability of five quality Landsat scenes is
unrealistic in most years due to cloud contamination. Results from the
All-data Landsat model, therefore, were used more as a standard of
reference for comparing the performance of individual Landsat scene
models, and high temporal frequency MODIS and STARFM-based
models, than as a practical approach to future mapping.

The monthly increase in classification accuracy observed in the
single-date Landsat models demonstrated the importance of temporal
sampling when mapping region-wide conservation tillage. Tillage
timing is greatly dependent on soil moisture conditions, weed or pest-
related soil management requirements, and machine operator
availability. Spring tillage is often location dependent and might be
nonexistent in some fields due to precipitation events or gradual soil
drainage, hence the lower MT accuracies observed within the May
Landsat-based model. In contrast, tillage had occurred in all the
examined MT fields at least once by the end of August. The August
model, consequently, produced the highest accuracies when com-
pared to the other single-date Landsat models but still had only 78%
classification success in the MT class. It is likely that spectral changes
resulting from earlier summer tillage events had already diminished
by the August scene date, which contributed to classification accuracy
lower than in the All-data model.
4.2. MODIS-based models

Total and class accuracies for the MODIS-based model were lower
than the All-data Landsat model, but the MT producer's accuracy was
slightly higher (4%) than the more realistic August-based Landsat
model. The resulting MT producer's accuracy (82%) was slightly lower
than the often used 85% mapping standard (Wulder et al., 2006) and
5% lower than USGS National Land Cover class accuracy for cropland
(Wickham et al., 2010), but still was substantially better than previous
conservation tillage results (Bricklemyer et al., 2006; Watts et al.,
2009). The MODIS-based classifications were also better than those
obtained through visually-based transect surveys where human
errors in discerning surface residue amounts reduced tillage accura-
cies to below 60% (Thoma et al., 2004).



Table 3
Random Forest model tillage classification using MODIS, Landsat, and STARFM-based
synthetic data sets.

Model accuracy Classification
results
(n=125)

Class accuracies
(%)

Total
(%)

Kappa and
95% CI

MT NT Producer's User's

MODIS
All-data (26 Dates) 90.4 0.8

(0.69–0.91)
MT 41 9 82 93
NT 3 72 93 89

Landsat
All-data (5 Dates)a 94.4 0.88

(0.8–0.97)
MT 44 6 88 98
NT 1 74 99 93

May 71.2 0.39
(0.23–0.56)

MT 30 20 60 65
NT 16 59 79 75

June 13 73.6 0.44
(0.28–0.61)

MT 32 18 64 68
NT 15 60 80 77

June 29 77.6 0.53
(0.38–0.68)

MT 35 15 70 73
NT 13 62 83 81

July 84 0.66
(0.52–0.8)

MT 37 13 74 84
NT 7 68 91 84

August 87.2 0.73
(0.6–0.85)

MT 39 11 78 89
NT 5 70 93 86

MODIS and Landsat
26-Date MODIS; 91.2 0.81

(0.71–0.92)
MT 41 9 82 95

Aug. Landsat NT 2 73 97 89

STARFM
1. All-data (26 Dates; 5
MODIS/Landsat pairs)a

95.2 0.89
(0.82–0.98)

MT 45 5 90 98
NT 1 74 99 94

2. 26-Date (Aug. MODIS/
Landsat pair)a

93 0.85
(0.75–0.94)

MT 43 7 86 96
NT 2 73 97 91

3. 5-Date (MODIS/
Landsat)b

90.4 0.79
(0.68–0.9)

MT 39 11 78 98
NT 1 74 99 87

4. 26-Date (May and Aug.
MODIS/Landsat pairs)

90.4 0.79
(0.69–0.9)

MT 42 8 84 91
NT 4 71 95 90

a Used for comparative/discussion purposes (highlighted), but donot represent realistic
data availability due to frequent cloud cover during the summer cropping season.

b The MODIS/Landsat date-pairs were used.
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Spectral noise from changing reflectance in adjoining fields due to
crop phenology was undoubtedly present in the MODIS data; however
the relatively high accuracy of the MODIS-based tillage classifications
suggests that tillage spectral signals contained within these data were
strong enough, in most cases, for the Random Forest algorithm to
differentiate between the two classes. Total reliance on MODIS data for
tillage mapping in regions with small field widths, however, might be
inappropriate due to possible classification problems resulting from
mixed-pixel effects. It is possible that the presence of stronger andmore
localized spectral influences by neighboring fields, resulting from
residue burning or intensive tillage events, could compromise NT
classifications. Alternatively, a MT field could be misclassified if a high
percentage of reflectance from a neighboring NT field was present
within the same MODIS pixel.

4.3. STARFM prediction-based models

The incorporation of higher spatial resolution data into analyses
where MODIS data are used, as was suggested by Price (2003), might
be advantageous when mapping conservation tillage classes in
croplands where mixed-pixels are present. High tillage classification
accuracies (MT≥86%) were observed for almost all the synthetic-
based models and were comparable to, or higher than, the MODIS-
based results. It is also possible that the STARFM-based Random Forest
models might be better suited to detecting first time tillage
occurrences in NT fields. A field converted from NT to MT in 2009
was classified correctly by all of the STARFM-based models and the
All-data Landsat model. The MODIS, MODIS and Landsat, and single-
date Landsat models incorrectly classified the field as NT. This
observation remains inconclusive, however, as further evaluation is
necessary due to the single field sample.

The STARFM algorithmwas seemingly appropriate for creating high
temporal resolution synthetic image sets because of the 30-m Landsat-
like output; nonetheless the resulting data predictions varied in their
ability to capture localized spectral changes within highly heteroge-
neous cropland. Lowered accuracies were observed for the five-date
synthetic model, compared to the All-data Landsat model, indicating
some spectral inaccuracy within the STARFM predictions. Likewise,
disparity in spectral reflectance values between the predicted data and
Landsat comparatives was observed when examining the per-band
regressions; correlations (r2 values)between the two ranged from0.41–
0.99 and slope values were often less than one. Classification accuracies
became comparable (~1% difference) to the five-date Landsat model
when synthetic data from an additional 20 dateswere incorporated into
the classifier. This suggests that although the spectralpatterns contained
within data from a few synthetic dates were not strong enough for the
Random Forest model to adequately separate MT from NT, the high
frequency synthetic set contained enough information to compensate
for the reduced accuracy.

A temporal variation in accuracy was observed within the synthetic
STARFM-based predictions. The strongest correlations occurred be-
tween the July-based STARFM predictions and their Landsat compara-
tives, followed by the August predicted/Landat comparatives.
Correlationswere substantiallyweakerbetweenMayand Junesynthetic
data and their Landsat comparatives. This variation in accuracymight be
attributed to the spectrally mixedMODIS pixels that were incorporated
into the STARFM model. STARFM predictions are based on the
relationship between MODIS and Landsat base pair data at Date-1 and
the relationship betweenbaseline (Date-1)MODISdata andMODISdata
at Date-2, for which the 30-m predictions are made. In the above-
mentioned cases, STARFM predictions were made for the same MODIS
date that was included into the base pair; consequently, the resulting
predictions were solely products of the relationship between the 30-m
Landsat and the 250-m and 500-mMODIS reflectance values. It is likely
that better band-wise correlations occurred in late July because the
senesced crop vegetation in neighboring fields had spectral reflectance
values more similar to the surface crop residue present in both MT and
NT fields, and hence there was less discrepancy between the “pure”
Landsat and mixed MODIS data. By the August scene, however, most of
the crops would have been harvested. Reflectance is often higher in
newly cut fields than in fallow fields where the residue has weathered,
so it is probable that the August MODIS mixed-pixel effect would have
been more influential within the STARFM predictions.

Tillage classifications resulting from the August base pair STARFM
model were slightly better (4% higher MT and NT producer's accuracy)
than in theMODIS-basedmodel, and class accuracies were only slightly
lower (2%) than the All-data Landsat model. Although the regression
analyses for the multi-date August-based predictions showed lowered
correlations (r2 0–0.65) for those further away from the base pair date,
the spectral-temporal trends within the 26 day set were strong enough
to adequately classify MT from NT. Again, this illustrates the ability for
high temporal sampling to compensate for degraded field-based
spectral values.

The importance of base-pair date selection for STARFM predictions,
and resulting classification accuracies, was also observed in this study.
The model generated from May and August base pair predictions
resulted in lower classification accuracies than the August STARFM-
based model. STARFM gives a high weighting to baseline Landsat data
when computing prediction values, hence the resulting predictions
have attributes similar to their Landsat base. This relationship between
STARFM predictions and their baseline Landsat data was observed
within the regression analyses, where June predicted data were more
strongly correlated with their baseline August Landsat image thanwith
data from a corresponding June date. Consequently, lowered tillage
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accuracy should be expected when using a classification model
generated from synthetic STARFM data based on a Landsat image that
did not sufficiently capture regional disturbance events.

5. Conclusions

The adoption of conservation tillage management has been
advocated globally and within the U.S. due to an increased awareness
concerning cropland carbon sequestration potential and the impor-
tance of organic, carbon-rich, materials in improving soil quality for
long-term food security (Lal, 2004). The collection of conservation
tillage statistics has been greatly limited due to the need for an
accurate and time-effective tillage mapping approach. Past satellite
image-based classifications have had difficulties in differentiating
between NT and other forms of conservation tillage (i.e., MT) due to
similarities in surface residues. These studies, however, had included
only one or two Landsat dates into their analyses. The results from this
study demonstrated that adequate conservation tillage accuracy can
be achieved by incorporating high temporal MODIS or STARFM-based
synthetic data sets into classificationmodel developmentwhenmulti-
date Landsat imagery is not available.

As the resulting classification accuracies were similar between
MODIS and STARFM-based models, the decision to use one series over
the other for tillage mapping is likely application dependent. MODIS
data can be advantageous as they are easy to obtain and require little
processing before inclusion into the classification model, although
careful pixel sampling techniques are required when field dimensions
are smaller than the MODIS pixels to ensure that each spectral sample
is most representative for a given field. The incorporation of high
frequency STARFM-based predictions into the classification process
might be more appropriate in mixed-pixel situations due to spectral
contributions from finer resolution Landsat data, which allow for
added spectral differentiation between tillage classes. The small
increases in tillage accuracy observed within the STARFM-based
approach might become more critical when used for carbon-related
mapping as any misclassification of MT as NT incorrectly allocates
carbon credit (and subsequent monetary payments) to fields with
higher CO2 emissions.
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