SUPPORTING INFORMATION

Methane Adsorption on Heteroatom-Modified Maquettes of Porous Carbon Surfaces

Rylan Rowsey,¹ Erin E. Taylor, ¹ Stephan Irle,² Nicholas P. Stadie,^{1*} and Robert K. Szilagyi^{1*}

¹Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana, 59717, United States

²Computational Sciences & Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, United States

* Corresponding authors: szilagyi@montana.edu and nstadie@montana.edu

Additional electronic supporting information including the atomic positional coordinates for all *maquettes*, templates for geometric and electronic structure analysis, formatted checkpoint files, and electron density and spin density cube files is available free of charge at Zenodo.org (DOI: 10.5281/zenodo.4898710 or URL: https://zenodo.org/record/4898710)

Table of Contents:

- **Figure S2.** Graphical illustrations of the nomenclature employed for representative internal coordinates of the adsorbent. The "inner sphere" coordinates are defined by three C-C distances between the site of substitution (X1) and each of the αC atoms. The "outer sphere" is defined by six C-C distances between adjacent αC and βC atoms. The "peripheral sphere" is defined by six plus one C-C distances between adjacent βC and γC atoms, and the methylidene γ'C atom. The planarity of the molecule is described by the distance (δ) between the site of substitution (X1) and the plane formed by the ring centroids (X_I, X_{II}, and X_{III}). Finally, the out-of-plane wagging character of the methylidene group is defined by the angle (w) between the $\gamma'C\cdots ipso$ -βC···para-αC of ring I. Notably, the inplane bending of the MPh structure is typically negligible owing to the extensive π -conjugation of all carbon/heteroatom sites.
- Figure S3. Graphical illustrations of the nomenclature employed for adsorption model geometry, atom numbering, and internal coordinates. The bond length of the adsorption interaction is defined by the distance between the methane carbon (C25) and site of substitution (X1), as well as the three distances between the proximal H atoms of the methane molecule and the nearest ring centroids (H26···X_I, H27···X_{II}, and H28···X_{III}). The distortion imposed by the adsorption interaction is defined by four C-H distances within the methane (adsorbate) molecule, and the dihedral angles (ω_I, ω_{II}, and ω_{III}) between the methane C-H bonds and the closest ring centroid: C25–H(26,27,28)···X1···γC(11,12,13). The C-H distances are further classified as proximal (C25–H26, C25–H27, and C25–H28) or distal (C25–H29) relative to the adsorbent surface.
- **Figure S4.** Top and side views of a larger "curved blade" *maquette* $(XC_{47}H_{20})$ with fourteen possible sites of substitution (X = C, B, or N) for CH_4 adsorption, shown in yellow. Only one of the fourteen sites is substituted with B or N in each calculation, the remainder remaining as C.

Figure S6. Comparison of the completeness of capturing electron correlation with the employed levels of correlated MO theory as a function of 6-311++G** (diamond), aug-cc-pVDZ (square), and aug-cc-pVTZ (star) basis sets for MPh (gray), B-MPh (salmon) and N-MPh (blue), for (a) the adsorbent models and (b) the adsorption models. The 1.2±0.2% shift between the two sets of curves and the identical trends (parallel lines within 2% variation) between the results with and without the triples substitution (T) allows for the extrapolation of the Figure S7. Electron density difference plots for methane interactions with MPh and its heteroatom-substituted variants: (a-c) at a high contour level of 5×10^{-4} (e-)² Å⁻³ and (d-f) at a low contour level of 1.5×10^{-4} (e-)² Å⁻³ for MPh×2CH₄ (a,d), B-MPh×2CH₄ (b,e), and N-MPh×2CH₄ (c,f). Electron density difference between the double adsorption model and the separate adsorbent and adsorbates at the MN15/def2-QZVPP level is shown (positive difference in red, negative difference in blue). See **Figure 3** for the corresponding single (n = 1) adsorption Figure S8. Comparison of the electron density of MPh and the spin density of B-MPh and N-MPh upon methane adsorption. (a) LUMO and (c) HOMO electron density contour plots for MPh×2CH₄ at a contour level of 4.5×10^{-2} (e^{-1})² Å⁻³ and (b,d) spin density contour plots for N-MPh×2CH₄ and B-MPh×2CH₄ at a contour level of 3.5×10^{-3} (e⁻)² Å⁻³. See **Figure 4** for the corresponding single (n = 1) adsorption Figure S9. Atomic spin density distribution analysis upon single (n = 1) and double (n = 2)methane adsorption on B-MPh (orange/red) and N-MPh (cyan/blue) determined by two conceptually different population analysis methods: (a) Hirshfeld (HPA) and (b) Weinhold (NPA), at the MN15/def2-OZVPP level of theory. See Figures S1-S3 for the atomic numbering and Tables S11-S12 for The figure is followed by a brief discussion about the effect and challenges of spin polarization due to the presence of an electron hole and extra electron in the S=1/2 paramagnetic [B-MPh] and [N-MPh] adsorbents; respectively, in comparison to the pure C, diamagnetic [MPh] adsorbent. **Figure S10.** Stationary structures of the two "curved blade" adsorption models (BC₄₇H₂₀), where the CH₄ adsorbate slipped to an adjacent adsorption site due to the curvature and distortion of the aromatic π -system. Optimization was performed Table S1: Overview of literature examples of experimental (top) and theoretical (bottom) investigations of methane adsorption on carbon surfaces. The sign convention corresponds to energy of dissociation/desorption. All experimental and theoretical values refer to isosteric heat of desorption (q_{st}) from gas adsorption measurements and calculated desorption energy ($\Delta_{des}E$) from quantum potential energy differences, respectively. 16 Table S2. Graphical illustration and Z-matrix definitions for κ^1 , μ_2 , μ_3 , and η^2 approaches

Table S3.	Free adsorbent structures (LoT: MN15 using the STO-3G {MN15}, SDDAll [MN15], 6-31G* (MN15–), or def2-QZVPP (MN15+) basis sets) of MPh, B-MPh, and N-MPh as described by averages and standard deviations of inner, outer, and peripheral sphere C–C distances in Å, out-of-planarity (δ , in Å) of the site of substitution, and wagging angle (<i>w</i> , in degrees) of the methylidene group (see Table S4 for the geometry upon methane adsorption)	18
Table S4.	Adsorbent structures upon adsorption (LoT: MN15, MP2, MP4 ^{SDQ} , or CCSD using the 6-311++G ^{**} basis set, or MN15 using the STO-3G {MN15}, SDDAll [MN15], 6-31G [*] (MN15–), or def2-QZVPP (MN15+) basis sets) of methane on MPh, B-MPh, and N-MPh, as described by averages and standard deviations of inner, outer, and peripheral sphere C–C distances in Å, out-of-planarity (δ , in Å) of the site of substitution, and wagging angle (<i>w</i> , in degrees) of the methylidene group (see Tables 1 and S3 for the free adsorbent structures).	19
Table S5.	Adsorption model structures (LoT: MN15 using the STO-3G {MN15}, SDDAll [MN15], 6-31G* (MN15–), or def2-QZVPP (MN15+) basis sets) of methane on MPh, B-MPh, and N-MPh. Adsorption by one (n = 1) and two (n = 2) methane molecules is described by interaction distances and twisting angles: methane to central site (C25…X1) distance, proximal H to closest ring centroid (H _p …X _i) distance, dihedral angle formed by X _i …X1…C25–H _p (ω), and proximal and distal C–H bond lengths.	20
Table S6.	Desorption energies (Δ_{des} , kJ mol ⁻¹) for MPh×nCH ₄ \rightarrow MPh + nCH ₄ (LoT: MN15 using the STO-3G {MN15}, SDDAll [MN15], 6-31G* (MN15–), or def2-QZVPP (MN15+) basis sets). CBS refers to the modified complete basis set extrapolation method employing the CBS-QB3 formalism, but utilizing the MN15/6-311++G ^{**} geometry. The standard enthalpy, Gibbs free energy, and entropy of desorption are calculated at 298 K using a simple statistical mechanical model assuming ideal gas behavior. A modest statistical analysis (average and standard deviation) of the thermochemical quantities is shown, normalized per mole of CH ₄ .	21
Table S7.	Energy components of the modified CBS-QB3 method using fixed MN15/6- 311++G** equilibrium structures for adsorbent, adsorbate, and adsorption models and corresponding vibrational analyses (invoking Gaussian keyword 'StartMP2' and using the results of the frequency calculation from the converged MN15 checkpoints).	22
Table S8.	Energy stabilization ($\Delta\Delta E^{QM}$) and desorption (\rightarrow MPh+CH ₄) energy differences (in kJ mol ⁻¹) due to optimizing the MN16/6-311++G ^{**} equilibrium structures of the adsorbent, adsorbate, and the adsorption model using a conceptually converging series of correlated MO theories (LoT: MP2, MP3, MP4, CCSD, or CCSD(T) using the 6-311++G ^{**} basis set).	24
Table S9.	Atomic charge (electron) distribution analysis upon single ($n = 1$) and double ($n = 2$) methane adsorption on MPh, B-MPh, and N-MPh determined by three conceptually different population analysis methods: Hirshfeld (HPA), Weinhold (NPA), and Merz-Kollman (ESP) at the MN15/def2-QZVPP level of theory. See Figure 2 for a graphical plot and Figure S1 for the numbering of atom positions.	25

Table S10.	Atomic charge (electron) distribution analysis upon single (n = 1) and double (n = 2) methane adsorption on MPh, B-MPh, and N-MPh determined by three conceptually different population analysis methods: Hirshfeld (HPA), Weinhold (NPA), and Merz-Kollman (ESP) at the MN15/def2-QZVPP level of theory. See Figure 2 for a graphical plot and Figure S1 for the numbering of atom positions (numbering of the second adsorbate is logical).	26
Table S11.	Atomic spin densities of the adsorbent molecule for single $(n = 1)$ and double $(n = 2)$ methane adsorption on B-MPh and N-MPh from Hirshfeld population analysis (HPA) and Weinhold natural population analysis (NPA) at the MN15/def2-QZVPP level of theory. See Figure S1 for the numbering of atom positions.	27
Table S12.	Atomic spin densities of the adsorbate molecule(s) for single $(n = 1)$ and double $(n = 2)$ methane adsorption on B-MPh and N-MPh from Hirshfeld population analysis (HPA) and Weinhold natural population analysis (NPA) at the MN15/def2-QZVPP level of theory. See Figure S1 for the numbering of atom positions (numbering of the second adsorbate is logical).	28
Table S13.	Thermochemical quantities (in kJ mol ⁻¹) for comparison to experimental measurements of physisorptive binding of methane on porous carbon surfaces at 298 K. LoT: MN15/6-311++G**. MPh×CH ₄ corresponds to 5.6 mmol g ⁻¹ of absolute uptake and MPh×2CH ₄ corresponds to 11.2 mmol g ⁻¹ , where uptake is defined as the true or "absolute" quantity. At room temperature (298 K), this corresponds to the following equilibrium pressures for adsorption on ZTC: 9.5 and 26.8 bar (or 9.3 and 26.4 atm), respectively. The enthalpy of desorption (Δ_{des} H) at these conditions is measured to be 13.5 and 13.1 kJ mol ⁻¹ , respectively (Stadie et al., 2015 – Reference 49).	29
Table S14.	Thermochemical quantities (in kJ mol ⁻¹) for comparison to experimental measurements of physisorptive binding of methane on porous carbon surfaces at 298 K. LoT: MN15/def2-QZVPP. MPh×CH ₄ corresponds to 5.6 mmol g ⁻¹ of absolute uptake and MPh×2CH ₄ corresponds to 11.2 mmol g ⁻¹ , where uptake is defined as the true or "absolute" quantity. At room temperature (298 K), this corresponds to the following equilibrium pressures for adsorption on ZTC: 9.5 and 26.8 bar (or 9.3 and 26.4 atm), respectively. The enthalpy of desorption (Δ_{des} H) at these conditions is measured to be 13.5 and 13.1 kJ mol ⁻¹ , respectively (Stadie et al., 2015 – Reference 49).	29
Table S15.	Consequences of the gradual relaxation of the $XC_{47}H_{20}$ ×CH ₄ (i.e., blade×CH ₄ or X- blade×CH ₄ , X = B or N), adsorption model structures on CH ₄ binding energies in kJ mol ⁻¹ , as a function of site of interaction (C, B, or N). A number of stationary structures (N) below 28 indicates a 'slip' of CH ₄ into an adjacent adsorption site than originally targeted. Basis sets used for MN15–, MN15, and MN15 levels are	

Figure S1. Graphical illustrations of the nomenclature employed for adsorbent reference orientation and atom numbering. The central position 1 is the site of substitution (X1 position, X = C, B, or N). Relative to X1, the nearest neighbors (α positions) are numbered 2–4, the secondnearest neighbors (β positions) are numbered 5–10, and the third-nearest neighbors (γ positions) are numbered 11–13. The methylidene group carbon is numbered 14. While this is different from the IUPAC numbering convention, it is suited for clarity within the present work. The rings of the MPh models are labeled with roman numerals. Ring I contains the dangling methylidene group, which breaks the symmetry of the model. Rings II and III are adjacent and opposite to ring I, respectively.

Figure S2. Graphical illustrations of the nomenclature employed for representative internal coordinates of the adsorbent. The "inner sphere" coordinates are defined by three C–C distances between the site of substitution (X1) and each of the α C atoms. The "outer sphere" is defined by six C–C distances between adjacent α C and β C atoms. The "peripheral sphere" is defined by six plus one C–C distances between adjacent β C and γ C atoms, and the methylidene γ 'C atom. The planarity of the molecule is described by the distance (δ) between the site of substitution (X1) and the plane formed by the ring centroids (X_I, X_{II}, and X_{III}). Finally, the out-of-plane wagging character of the methylidene group is defined by the angle (w) between the γ 'C…*ipso*- β C…*para*- α C of ring I. Notably, the in-plane bending of the MPh structure is typically negligible owing to the extensive π -conjugation of all carbon/heteroatom sites.

Figure S3. Graphical illustrations of the nomenclature employed for adsorption model geometry, atom numbering, and internal coordinates. The bond length of the adsorption interaction is defined by the distance between the methane carbon (C25) and site of substitution (X1), as well as the three distances between the proximal H atoms of the methane molecule and the nearest ring centroids (H26…XI, H27…XII, and H28…XIII). The distortion imposed by the adsorption interaction is defined by four C-H distances within the methane (adsorbate) molecule, and the dihedral angles (ωI, ωII, and ωIII) between the methane C-H bonds and the closest ring centroid: C25–H26, C25–H27, and C25–H28) or distal (C25–H29) relative to the adsorbent surface.

Figure S4. Top and side views of a larger "curved blade" *maquette* $(XC_{47}H_{20})$ with fourteen possible sites of substitution (X = C, B, or N) for CH₄ adsorption, shown in yellow. Only one of the fourteen sites is substituted with B or N in each calculation, the remainder remaining as C.

Figure S5. (a) Potential energy surface maps for methane interactions with MPh and its heteroatom-substituted variants (B-MPh and N-MPh) in κ¹ approach geometry at the PBE/6-311++G** level. (b) The PBE optimized adsorption models MPh×CH₄, B-MPh×CH₄, and N-MPh×CH₄ in their starting geometries used for structural optimizations. (c) Potential energy difference maps between the PBE/6-311++G** and the MN15/6-311++G** levels of theory.

Figure S6. Comparison of the completeness of capturing electron correlation with the employed levels of correlated MO theory as a function of 6-311++G** (diamond), *aug-cc*-pVDZ (square), and *aug-cc*-pVTZ (star) basis sets for MPh (gray), B-MPh (orange) and N-MPh (light blue), for (a) the adsorbent models and (b) the adsorption models. The 1.2±0.2% shift between the two sets of curves and the identical trends (parallel lines within 2% variation) between the results with and without the triples substitution (T) allows for the extrapolation of the missing CCSD and CCSD(T) results for the *aug-cc*-pVTZ basis set.

Figure S7. Electron density difference plots for methane interactions with MPh and its heteroatom-substituted variants: (a-c) at a high contour level of 5×10⁻⁴ (*e*⁻)² Å⁻³ and (d-f) at a low contour level of 1.5×10⁻⁴ (*e*⁻)² Å⁻³ for MPh×2CH₄ (a,d), B-MPh×2CH₄ (b,e), and N-MPh×2CH₄ (c,f). Electron density difference between the double adsorption model and the separate adsorbent and adsorbates at the MN15/def2-QZVPP level is shown (positive difference in red, negative difference in blue). See Figure 3 for the corresponding single (n = 1) adsorption models.

Figure S8. Comparison of the electron density of MPh and the spin density of B-MPh and N-MPh upon methane adsorption. (a) LUMO and (c) HOMO electron density contour plots for MPh×2CH₄ at a contour level of 4.5×10^{-2} (e^{-})² Å⁻³ and (b,d) spin density contour plots for N-MPh×2CH₄ and B-MPh×2CH₄ at a contour level of 3.5×10^{-3} (e^{-})² Å⁻³. See **Figure 4** for the corresponding single (n = 1) adsorption models.

Figure S9. Atomic spin density distribution analysis upon single (n = 1) and double (n = 2) methane adsorption on B-MPh (orange/red) and N-MPh (cyan/blue) determined by two conceptually different population analysis methods: (a) Hirshfeld (HPA) and (b) Weinhold (NPA), at the MN15/def2-QZVPP level of theory. See Figures S1-S3 for the atomic numbering and Tables S11–S12 for the tabulated data.

The unpaired electron distribution among the atomic constituents of the MPh×nCH₄ adsorption models at the MN15+ level, as calculated by the HPA and NPA analysis methods, is shown in **Figure S8** (see also **Tables S9–S10**). Contrary to the variations in atomic charges that are the sum of spinup (α) and spin-down (β) one-electron densities (wherein errors accumulate), the spin densities show only negligible dependence on the population analysis method (due to error cancelation). The Weinhold analysis (NPA) displays a slightly larger spin polarization than the Hirshfeld analysis (HPA); however, the overall spin density distribution as a function of atom location in the adsorption system is identical in both cases. The different compositions of the spin-up and spindown orbitals, and thus the multi-reference nature of the wave function, are demonstrated by the presence of both positively and negatively signed atomic spin densities in an ordered and characteristic manner, independent of the identity of substitution. While the atomic charge distribution undulates (**Figure 2** and **Tables S9-S10**) as a function of distance from the site of substitution (X1), the atomic spin densities show the opposite trend as the peripheral (γ) atoms accumulate the largest spin density. Exploratory calculations using larger, extended *maquette* molecules (results not shown) confirm that the extra electron/electron hole delocalizes to the periphery of the conjugated polycyclic molecule and does not stay localized to the inner or outer sphere of the site of substitution as the origin of spin polarization. Hirshfeld analysis (HPA) shows to a greater extent than Weinhold analysis (NPA) that the methane adsorbate also undergoes a slight spin polarization: 0.008 e⁻ for B-MPh×nCH₄ and 0.003 e⁻ N-MPh×nCH₄ (**Figure 5** and **Table S12**). This is a direct indication of the presence of a small, but non-negligible magnetic interaction between the adsorbate and adsorbent in addition to the above discussed induced ionic interactions due to mutual polarization of the constituents of the adsorption system.

To a modest degree, the spin polarization also appears in the expectation value of the spin operator <S²> at the MN15+ level. The <S²> values are 0.791 and 0.783 for B-MPh×nCH₄ and N-MPh×nCH₄, respectively. Upon spin annihilation by eliminating contributions from the $M_s = \frac{1}{2}$ sublevel of the higher S = $3/_2$ spin state, the $\langle S^2 \rangle$ values for both systems are reduced to 0.751, which is close to the ideal, non-contaminated expectation value of S(S+1) = 0.750. The reference wave function level for correlated MO calculations ($HF/6-311++G^{**}$) shows a dramatically larger deviation from the ideal value (2.486 and 2.448). This result becomes even greater (4.982 and 4.725) upon spin annihilation, indicating significant contributions of the $M_s = \frac{1}{2}$ sublevel of the S = $\frac{5}{2}$ and likely higher spin states. Deviations from the ideal spin expectation value can be mitigated by constructing a restricted open-shell (ROHF) S = $\frac{1}{2}$ electronic structure calculation; however, this wave function corresponds to a significantly higher energy state by +173 and +158 kJ mol⁻¹ for the B-MPh×CH₄ and N-MPh×CH₄ models, respectively. These large energy values are indicative of the significant static electron correlation as captured by allowing for different composition of spin-up and spin-down one-electron orbitals in the unrestricted (UHF) calculation. Analogously, the use of the spin-polarized B-MPh×CH₄ and N-MPh×CH₄ electronic structures as initial wave functions results in a spin-unrestricted, open-shell singlet electronic structure for the unsubstituted MPh×CH₄ *maquette* at a lower energy structure (-110 kJ mol⁻¹) than the closed-shell, diamagnetic state, at the restricted HF/6-311++G** level. The energy differences between the spin-polarized (UHF) and spin-restricted (ROHF) electronic structures are gradually diminished as more complete treatment of electron correlation is employed: 264-287 at MP2, 138-152 at MP3, 98-112 at MP4^{SDQ}, 19-30 at CCSD, and finally 43-47 at CCSD(T), in kJ mol⁻¹. The complexity of the spin manifold also explains the computational challenges of obtaining equilibrium structures that were burdened by chronic oscillations in SCF cycles, jumping arbitrarily to higher energy potential energy surfaces that correspond to resonance structures with non-planar, puckered geometries. Further multi-reference CASSCF/CASMP2 calculations are warranted in order to obtain a complete, detailed picture of methane interactions with MPh-based molecular maquettes of carbon surfaces, but remain relegated to future work.

Figure S10. Stationary structures of the two "curved blade" adsorption models ($BC_{47}H_{20}$), where the CH₄ adsorbate slipped to an adjacent adsorption site due to the curvature and distortion of the aromatic π -system. Optimization was performed at the MN15/6-31G* (MN15–) level.

Table S1: Overview of literature examples of experimental (top) and theoretical (bottom) investigations of methane adsorption on carbon surfaces. The sign convention corresponds to energy of dissociation/desorption. All experimental and theoretical values refer to isosteric heat of desorption (q_{st}) from gas adsorption measurements and calculated desorption energy ($\Delta_{des}E$) from quantum potential energy differences, respectively.

Experimental Studies:

Author(s)	Year	DOI		Method	q _{st} , kJ mol ⁻¹	
Chahine	1997	10.1021/la960843x	activated carbon	CNS-201	Gas adsorption	
Salem	1998	<u>10.1021/la970119u</u>	activated carbon	AS activated carbon	Gas adsorption	14.35
Lozano- Castelló	2002	<u>10.1016/S0008-6223(02)00194-X</u>	activated carbon	KOH-activated anthracite-based	Gas adsorption	
Zhou	2007	<u>10.1021/jp074889i</u>	MOFs	MOF5 and ZIF8	Gas adsorption	~12.2
Stadie	2013	<u>10.1021/ja311415m</u>	microporous carbons	ZTC, MSC-30, CNS-201	Gas adsorption	13.519.5
Yuan	2013	<u>10.1021/es4000643</u>	ordered mesoporous carbon	soft templated ordered mesoporous carbon (sOMC)	Gas adsorption	15.4
Stadie	2015	10.1021/acs.jpcc.5b05021	microporous carbons	ZTC, MSC-30, CNS-201	Gas adsorption	~14, 15, 19
Kim	2018	10.1016/j.micromeso.2018.06.021	N-doped nitrogen-doped crab shel	l-derived carbon nanofibers	Gas adsorption	18.920.7

Theoretical Studies:

Author(s)	Year	DOI		Adso	rbent	Theory	∆ _{des} E ,kJ mol -1
Matranga	1992	10.1016/0009-2509(92)85005-V	activated carbon	carbon slit p	oore	GCMC, isosteric	~12 ª
Cracknell	1993	<u>10.1021/j100104a036</u>	microporous carbon	carbon slit p	oore	GCMC, isosteric	~12 a
Bhatia	2006	<u>10.1021/la0523816</u>	porous carbon	carbon slit p	pore	GCMC, isosteric	16
Palmer	2009	<u>10.1016/j.carbon.2009.06.037</u>	coal-based activated carbon	hybrid reve	rse MC-derived amorphous microporous carbon	GCMC, isosteric	~19ª
Smith	2012	<u>10.1021/ct3008809</u>	polyaromatic hydrocarbons	open surfac	e	CCSD(T)+MP2	~14~20
Lui	2013	<u>10.1016/j.apsusc.2013.08.035</u>	graphene	open surfac	e	DFT (LDA CA-PZ)	9.814.9
Chen	2015	10.1109/LED.2015.2492580	monolayer and multilayer graphene	open surfac	e	DFT (LDA GGA)	43.4
Hussoin	2015	101002/icc24242	buckybowls	open surfac	e	DFT (M05-2X)	4.620.3
IIussaili	2015	10.1002/jcc.24242	coronene	open surfac	e	DFT (M05-2X)	4.620.3
Burrill	2020	<u>10.1039/D0CP02645J</u>	buckybowls	open surfac	e	DFT (ωB97M-V/pc-2)	7.2323.3
Denis	2008	10.1016/j.chemphys.2008.07.024	N-doped nanotube segments		curved surface	DFT (LDA)	10.331.0
Lui	2013	10 1016/i ansusc 2013 08 035	B-doped graphene		open surface	DFT (LDA CA-PZ)	6.214.8
Dui	2015	<u>10.1010/j.apsusc.2015.00.055</u>	N-doped graphene		open surface	DFT (LDA CA-PZ)	2.917.3
Wang	2015	<u>10.1002/pssb.201451632</u>	N-doped graphene		open surface	DFT (PBE)	10.6206.5
Chen	2015	10 1109/LED 2015 2492580	B-doped monolayer and multilayer	graphene	open surface	DFT (LDA GGA)	49.2
Glien	2015	10.1107/110.2013.2172300	N-doped monolayer and multilayer	graphene	open surface	DFT (LDA GGA)	41.5
Hassani	2016	10 1016 /i compte 2016 02 019	B-doped graphene		open surface	DFT D3	7.517.5
nassann	2010	<u>10.1010/j.comptc.2010.02.017</u>	N-doped graphene		open surface	DFT D3	5.413.4

^a isosteric heat value.

κ ¹ CH ₄ bonding	μ ₂ CH ₄ bonding	$\mu_3 CH_4$ /tetrel bonding	η^2 (C–H) CH ₄ bonding
B/C/N H 1 rCH X 2 1.0 190.0 C 2 rCHm 3 qCHX 1 wCHXC H 4 rCHm 2 qHCH 3 wHaCHX H 4 rCHm 2 qHCH 3 wHaCHX C 1 rCaC 2 qCaCH 3 wCabCHX C 8 rCbCa 1 qCbCaC 2 wCbCaCH C 9 rCbCa 1 qCbCaC 2 wCbCaCH C 9 rCbCa 1 qCbCaC 2 wCbCaCH C 10 rCbCa 1 qCbCaC 2 wCbCaCH C 10 rCbCa 1 qCbCaC 2 wCbCaCH C 10 rCbCa 1 qCbCaC 2 wCbCaCH C 11 rCmC B 8 qCmCbCa 1 wCmCbCaC H 17 rHCm 11 qHCmCb 8 wHCmCbH C 11 rCcCb 8 qCcCbCa 1 wCcCbCaC H 20 rHC 11 qHCcCb 8 wHCcCbCa C 12 rCcCb 8 qCcCbCa 1 wCcCbCaC H 22 rHC 11 qHCcCb 8 wHCcCbCa C 14 rCaCb 9 qCcCbCa 1 wCcCbCaC H 12 rHC 14 qHCcCb 9 wHCcCbCa C 14 rCaCb 9 qCcCbCa 1 wCcCbCaC H 12 rHC 14 qHCcCb 9 wHCcCbCa C 14 rCaCb 9 qCcCbCa 1 wCcCbCaC H 13 rHC 9 qHCbCa 1 qHCbCaC H 13 rHC 9 qHCbCa 1 qHCbCaC H 16 rHC 10 qHCbCa 10 qHCbCa 10 qHCbCa 120.0 wCmCbCaC 180.0 rCmCb 1.36 qCmCbCa 120.0 wCmCbCaC 180.0 rHCCCbCa 120.0 wHCcCbCa 120.0 wHCcCbCa 120.0 wHCcCbCa 120.0 wHCbCaC 180.0 qHCbCaC	$B/C/N \\ X 1 rCX \\ X 2 rXX 1 qXXC \\ C 2 rCX 3 qCXX 1 wCXXC \\ H 4 rHC 3 qHCX 1 wHCXC \\ H 4 rHC 5 qHCH 1 wHaCHC \\ H 4 rHC 5 qHCH 1 wHaCHC \\ H 4 rHC 5 qHCH 1 wHaCHC \\ C 1 rCaC 2 qCaCX 3 wCaaCXX \\ C 1 rCaC 2 qCaCX 3 wCaaCXX \\ C 1 rCaC 2 qCaCX 3 wCaaCXX \\ C 9 rCbCa 1 qCbCaC 2 wCbCaCX \\ C 9 rCbCa 1 qCbCaC 2 wCbCaCX \\ C 10 rCbCa 1 qCbCaC 2 wCbCaCX \\ C 10 rCbCa 1 qCbCaC 2 wCbCaCX \\ C 10 rCbCa 1 qCbCaC 2 wCbCaCX \\ C 11 rCbCa 1 qCbCaC 2 wCbCaCX \\ C 12 rCmCb 9 qCmCbCa 1 wCmCbCaC \\ H 8 rHCm 12 qHCmCb 9 wHCmCbCa \\ H 18 rHCm 12 qHCmCb 9 wHCmCbCa \\ C 13 rCcCb 9 qCcCbCa 1 wCcCbCaC \\ C 13 rCcCb 9 qCcCbCa 1 wCcCbCaC \\ C 13 rCcCb 9 qCcCbCa 1 wCcCbCaC \\ H 23 rHCc 13 qHCcCb 9 wHCcCbCa \\ C 15 rCcCb 10 qCcCbCa 1 wCcCbCaC \\ H 15 rHCh 12 qHCmCb 10 wHCcCbCa \\ H 15 rHCh 10 qHCbCa 1 wHCbCaC \\ H 15 rHCb 10 qHCbCa 1 wHCbCaC \\ H 15 rHCb 10 qHCbCa 1 wHCbCaC \\ H 16 rHCb 11 qHCbCa 1 wHCbCaC \\ H 17 rHCb 11 qHCbCa 1 wHCbCaC \\ H 16 rHCb 11 qHCbCa 1 wHCbCaC \\ H 17 rHCb 11 qHCbCa 1 wHCbCaC \\ H 16 rHCb 11 qHCbCa 1 wHCbCaC \\ H 17 rHCb 11 qHCbCa 1 wHCbCaC \\ H 16 rHCb 11 qHCbCa 1 wHCbCaC \\ H 17 rHCb 11 qHCbCa 1 wHCbCaC \\ H 16 rHCb 11 qHCbCa 1 wHCbCaC \\ H 17 rHCb 11 qHCbCa 1 wHCbCaC \\ H 16 rHCb 11 qHCbCa 1 wHCbCaC \\ H 17 rHCb 11 qHCbCa 1 wHCbCaC \\ H 16 rHCb 11 qHCbCa 1 wHCbCaC \\ H 17 rHCb 11 qHCbCa 1 wHCbCaC \\ H 16 rHCb 11 qHCbCa 1 wHCbCaC \\ H 17 rHCb 11 qHCbCa 1 wHCbCaC \\ H 16 rHCb 11 qHCbCa 1 wHCbCaC \\ H 17 rHCb 11 qHCbCa 1 wHCbCaC \\ H 16 rHCb 11 qHCbCa 1 wHCbCaC \\ H 17 rHCb 11 qHCbCa 1 wHCbCaC \\ H 16 rHCb 11 qHCbCa 1 wHCbCaC \\ H 17 rHCb 11 qHCbCa 1 wHCbCaC \\ H 16 rHCb 11 qHCbCa 1 wHCbCaC \\ H 10 rHCb 120.0 \\ wCCbCa 180.0 \\ rCCb 1435 \\ qCcCbCa 180.0 \\ rCcbCa 120.0 \\ wCaCbCa 180.0 \\ rHCcb 120.0 \\ wHCcCbCa 180.0 \\ rHCcb 10 \\ rHCb 100 \\ rHCcb 100 \\ rHCcb 100 \\ rHCcb 100 \\ rHCb 100 \\ $	B/C/N X 1 rCX X 2 rXX 1 qXXC C 2 rCX 3 qCXX 1 wCXXC H 4 rHC 5 qHCH 3 wHaCHX H 4 rHC 5 qHCH 3 wHbCHX H 4 rHC 5 qHCH 3 wHbCHX C 1 rCaC 2 qCaCX 3 wCaaCXX C 1 rCaC 2 qCaCX 3 wCaaCXX C 1 rCaC 2 qCaCX 3 wCaaCXX C 9 rCbCa 1 qCbCaC 2 wCbCaCX C 9 rCbCa 1 qCbCaC 2 wCbCaCX C 10 rCbCa 1 qCbCaC 2 wCbCaCX C 10 rCbCa 1 qCbCaC 2 wCbCaCX C 11 rCbCa 1 qCbCaC 2 wCbCaCX C 11 rCbCa 1 qCbCaC 2 wCbCaCX C 12 rCmCb 9 qCmCbCa 1 wCmCbCaC H 18 rHCm 12 qHCmCb 9 wHCmCbCa H 18 rHCm 12 qHCmCb 9 wHCmCbCa C 13 rCcCb 9 qCcCbCa 1 wCcCbCaC C 13 rCcCb 9 qCcCbCa 1 wCcCbCaC C 15 rCcCb 10 qCcCbCa 1 wCcCbCaC H 23 rHCc 13 qHCCb 9 wHCcCbCa C 15 rCcCb 10 qCcCbCa 1 wCcCbCaC H 15 rHCb 10 qHCbCa 1 wHCbCaC H 16 rHCb 11 qHCbCa 1 wHCbCaC H 16 rHCb 11 qHCbCa 1 wHCbCaC H 16 rHCb 11 qHCbCa 1 wHCbCaC H 17 rHCb 11 qHCbCa 1 wHCbCaC H 16 rHCb 11 qHCbCa 1 wHCbCaC H 17 rHCb 11 qHCbCa 1 wHCbCaC H 16 rHCb 10 qHCbCa 1 wHCbCaC H 16 rHCb 11 80.0 wCcbCa 120.0 wCcbCa 120.0 wCcbCa 120.0 wCcbCa 120.0 wHCcCbCa 180.0 rHCm 109 qHCmCcb 120.0 wHCcCbCa 180.0 rHCb 109 qHCbCcb 120.0 wHCcCbCa 120.0 wHCbCbCa 120.0 wHCcCbCa 120.0	B/C/N C X 1 rCX H 2 rHX 1 qHXC C 3 rCH 2 qCHX 1 wCHXC H 4 rHC 3 qHCH 1 -wHaCHC H 4 rHC 3 qHCH 1 wHaCHC C 1 rCaC 2 qCaCX 4 wCaaCXC C 1 rCaC 2 qCaCX 4 wCabCXC C 1 rCaC 2 qCaCX 4 wCabCXC C 8 rCbCa 1 qCbCaC 2 wCbCaCX C 9 rCbCa 1 qCbCaC 2 wCbCaCX C 9 rCbCa 1 qCbCaC 2 wCbCaCX C 10 rCbCa 1 qCbCaC 2 wCbCaCX C 10 rCbCa 1 qCbCaC 2 wCbCaCX C 10 rCbCa 1 qCbCaC 2 wCbCaCX C 11 rCmCb 8 qCmCbCa 1 wCmCbCaC H 17 rHCm 11 qHCmCb 8 wHCmCbH C 11 rCaCb 8 qCcCbCa 1 wCcCbCaC H 20 rHC 11 qHCmCb 8 wHCmCbH C 11 rCaCb 9 qCcCbCa 1 wCcCbCaC H 22 rHC 11 qHCcCb 8 wHCcCbCa C 14 rCcCb 9 qCcCbCa 1 wCcCbCaC H 22 rHC 11 qHCcCb 8 wHCcCbCa H 12 rHC 8 qHCbCa 1 qHCbCaC H 13 rHC 9 qHCbCa 1 qHCbCaC H 14 rHC 9 qHCbCa 1 qHCbCaC H 15 rHC 10 qHCbCa 1 qHCbCaC H 15 rHC 10 qHCbCa 1 qHCbCaC H 16 rHC 10 qHCbCa 1 qHCbCaC H 17 rHCm 11 qHCCD 8 wHCcDCaC H 16 rHC 10 qHCbCa 1 qHCbCaC H 16 rHC 10 qHCbCa 1 qHCbCaC H 17 rHCm 11 qHCCCb 8 vHCCbCaC H 16 rHC 10 qHCbCa 1 qHCbCaC H 16 rHC 10 qHCbCa 1 qHCbCaC H 17 rHCm 10 qHCCCa 1 qHCbCaC H 16 rHC 10 qHCbCa 1 qHCbCaC H 17 rHCm 10 qHCCCa 1 qHCbCaC H 16 rHC 10 qHCbCa 1 qHCbCaC H 17 rHCm 10 qHCbCa 1 qHCbCaC H 16 rHC 10 qHCbCa 1 qHCbCaC H 16 rHC 10 qHCbCa 1 qHCbCaC H 17 rHCm 10 qHCbCa 1 qHCbCaC H 10 rHC 100 WCCbCa 120.0 WCaCCbCa 120.0 WCaCCbCa 120.0 WCCbCaC 120.0 WCCbCa 120.0 WCCCCC 120.0 WCCCCCA 180.0 HCbCaC 180.0
	qHCbCa 120.0 wHCbCaC 180.0	wHCbCaC 180.0	

Table S2. Graphical illustration and Z-matrix definitions for κ^1 , μ_2 , μ_3 , and η^2 approaches of CH₄ to the X1 position of MPh and its heteroatom substituted variants.

Table S3. Free adsorbent structures (LoT: MN15 using the STO-3G {MN15}, SDDAll [MN15], 6-31G* (MN15–),def2-QZVPP (MN15+), or *aug-cc*-pVTZ (MN15cc) basis sets) of MPh, B-MPh, and N-MPh as described by averages and standard deviations of inner, outer, and peripheral sphere C–C distances in Å, out-of-planarity (δ , in Å) of the site of substitution, and wagging angle (*w*, in degrees) of the methylidene group (see **Table S4** for the geometry upon methane adsorption).

Adsorbent	LoT	Inner, Å	Outer, Å	Peripheral, Å	δ, Å	<i>w</i> , °
MPh	{MN15}	1.44 ± 0.01	1.43 ± 0.05	1.41 ± 0.05	0.00	177
	[MN15]	1.43 ± 0.00	1.42 ± 0.04	1.40 ± 0.04	0.00	177
	MN15-	1.43 ± 0.00	1.42 ± 0.04	1.40 ± 0.04	0.00	176
	MN15+	1.42 ± 0.00	1.41 ± 0.04	1.39 ± 0.04	0.00	176
	MN15cc	1.42 ± 0.00	1.41 ± 0.04	1.39 ± 0.04	0.00	176
B-MPh	{MN15}	1.52 ± 0.01	1.44 ± 0.05	1.42 ± 0.05	0.00	174
	[MN15]	1.52 ± 0.01	1.42 ± 0.04	1.41 ± 0.04	0.00	173
	MN15-	1.52 ± 0.01	1.42 ± 0.04	1.41 ± 0.04	0.00	172
	MN15+	1.51 ± 0.01	1.41 ± 0.04	1.41 ± 0.04	0.00	172
	MN15cc	1.51 ± 0.01	1.41 ± 0.04	1.41 ± 0.04	0.00	172
N-MPh	{MN15}	1.44 ± 0.01	1.44 ± 0.05	1.41 ± 0.04	0.00	179
	[MN15]	1.41 ± 0.01	1.42 ± 0.04	1.39±0.03	0.00	179
	MN15-	1.41 ± 0.01	1.42 ± 0.04	1.39 ± 0.03	0.01	179
	MN15+	1.40 ± 0.01	1.41 ± 0.04	1.39±0.03	0.00	179
	MN15cc	1.40 ± 0.01	1.41 ± 0.04	1.39±0.03	0.00	179

Table S4. Adsorbent structures upon adsorption (LoT: MN15, MP2, MP4^{SDQ}, or CCSD using the 6-311++G** basis set, or MN15 using the STO-3G {MN15}, SDDAll [MN15], 6-31G* (MN15–), def2-QZVPP (MN15+), or *aug-cc*-pVTZ (MN15cc) basis sets) of methane on MPh, B-MPh, and N-MPh, as described by averages and standard deviations of inner, outer, and peripheral sphere C–C distances in Å, out-of-planarity (δ , in Å) of the site of substitution, and wagging angle (*w*, in degrees) of the methylidene group (see **Tables 1** and **S3** for the free adsorbent structures).

Adsorbent	LoT	n	Inner, Å	Outer, Å	Peripheral, Å	δ, Å	w,°
MPh	{MN15}	1	1.44±0.01	1.43±0.05	1.41±0.05	0.01	177
	[MN15]	1	1.43 ± 0.00	1.42 ± 0.04	1.40 ± 0.04	0.03	176
	MN15-	1	1.43 ± 0.00	1.42 ± 0.04	1.40 ± 0.04	0.03	175
	MN15	1	1.43 ± 0.00	1.42 ± 0.04	1.40 ± 0.04	0.03	175
	MN15+	1	1.42 ± 0.00	1.41 ± 0.04	1.39±0.04	0.03	176
	MN15cc	1	1.42 ± 0.00	1.41 ± 0.04	1.39±0.04	0.03	176
	MP2	1	1.54 ± 0.00	1.40 ± 0.05	1.41 ± 0.05	0.03	171
	MP4 ^{sdq}	1	1.43 ± 0.01	1.42 ± 0.04	1.40 ± 0.04	0.05	173
	CCSD	1	1.43 ± 0.01	1.42 ± 0.04	1.40 ± 0.04	0.04	173
	{MN15}	2	1.44 ± 0.01	1.43 ± 0.05	1.41 ± 0.05	0.00	177
	[MN15]	2	1.43 ± 0.00	1.42 ± 0.04	1.40 ± 0.04	0.00	177
	MN15-	2	1.43 ± 0.00	1.42 ± 0.04	1.40 ± 0.04	0.00	176
	MN15	2	1.43 ± 0.00	1.42 ± 0.04	1.39±0.04	0.00	176
	MN15+	2	1.42 ± 0.00	1.41 ± 0.04	1.39±0.04	0.00	176
	MN15cc	2	1.42 ± 0.00	1.41 ± 0.04	1.39 ± 0.04	0.00	176
B-MPh	{MN15}	1	1.52 ± 0.01	1.44 ± 0.05	1.43 ± 0.05	0.00	174
	[MN15]	1	1.52 ± 0.01	1.42 ± 0.04	1.41 ± 0.04	0.02	173
	MN15-	1	1.52 ± 0.01	1.42 ± 0.04	1.41 ± 0.04	0.04	172
	MN15	1	1.52 ± 0.01	1.42 ± 0.04	1.41 ± 0.04	0.04	172
	MN15+	1	1.52 ± 0.01	1.41 ± 0.04	1.41 ± 0.04	0.04	172
	MN15cc	1	1.52 ± 0.01	1.41 ± 0.04	1.41 ± 0.04	0.04	172
	MP2	1	1.54 ± 0.00	1.40 ± 0.05	1.41±0.05	0.03	171
	MP4 ^{SDQ}	1	1.54 ± 0.00	1.41 ± 0.04	1.42 ± 0.04	0.02	173
	CCSD	1	1.54 ± 0.01	1.42 ± 0.05	1.42 ± 0.05	0.04	171
	{MN15}	2	1.52 ± 0.01	1.43 ± 0.05	1.43±0.05	0.00	174
	[MN15]	2	1.52 ± 0.01	1.42 ± 0.04	1.41 ± 0.04	0.00	173
	MN15-	2	1.52 ± 0.01	1.42 ± 0.04	1.41 ± 0.04	0.00	172
	MN15	2	1.52 ± 0.01	1.42 ± 0.04	1.41 ± 0.04	0.00	172
	MN15+	2	1.52 ± 0.01	1.41 ± 0.04	1.41 ± 0.04	0.00	172
	MN15cc	2	1.52 ± 0.01	1.41 ± 0.04	1.41 ± 0.04	0.00	172

Table S4. continued

N-MPh	{MN15}	1	1.44±0.01 1.44±0.05	1.41 ± 0.04	0.01	179
	[MN15]	1	1.41±0.01 1.42±0.04	1.39 ± 0.03	0.03	178
	MN15-	1	1.41±0.01 1.42±0.04	1.39 ± 0.03	0.03	175
	MN15	1	1.41±0.01 1.42±0.04	1.39 ± 0.03	0.02	177
	MN15+	1	1.40±0.01 1.41±0.04	1.39 ± 0.03	0.02	178
	MN15cc	1	1.40±0.01 1.41±0.04	1.39 ± 0.03	0.02	178
	MP2	1	1.41±0.01 1.41±0.01	1.39 ± 0.03	0.01	175
	MP4 ^{SDQ}	1	1.41±0.01 1.42±0.02	1.39 ± 0.03	0.01	176
	CCSD	1	1.42±0.01 1.42±0.07	1.41 ± 0.05	0.07	169
	{MN15}	2	1.44 ± 0.0 1.44 ± 0.05	1.41 ± 0.04	0.00	179
	[MN15]	2	1.41±0.0 1.42±0.04	1.39 ± 0.03	0.00	179
	MN15-	2	1.41±0.01 1.42±0.04	1.39 ± 0.03	0.00	179
	MN15	2	1.41±0.01 1.42±0.04	1.39 ± 0.03	0.00	179
	MN15+	2	1.40±0.01 1.41±0.04	1.39 ± 0.03	0.00	179
	MN15cc	2	1.40±0.01 1.41±0.04	1.39 ± 0.03	0.00	179

Table S5. Adsorption model structures (LoT: MN15 using the STO-3G {MN15}, SDDAll [MN15], 6-31G* (MN15–), or def2-QZVPP (MN15+), or *aug-cc*-pVTZ (MN15cc) basis sets) of methane on MPh, B-MPh, and N-MPh. Adsorption by one (n = 1) and two (n = 2) methane molecules is described by interaction distances and twisting angles: methane to central site (C25…X1) distance, proximal H to closest ring centroid (H_p …X_i) distance, dihedral angle formed by X_i…X1…C25– H_p (ω), and proximal and distal C–H bond lengths.

Adsorbent	LoT	n	C25…X1, Å	Hp···Xi, Å	ω, °	C-H _p ,ª Å	C-Hd,ª Å
MPh	{MN15}	1	3.44	3.09±0.20	2±1	1.096±0.000	1.096
	[MN15]	1	3.29	2.92 ± 0.03	0±1	1.091 ± 0.000	1.090
	MN15-	1	3.28	2.90 ± 0.04	1±1	1.094 ± 0.000	1.093
	MN15+	1	3.28	2.91 ± 0.04	0±0	1.089 ± 0.000	1.087
	MN15cc	1	3.28	2.91 ± 0.04	0±0	1.089 ± 0.000	1.087
	{MN15}	2	3.56±0.01	3.23±0.38	10±4	1.096 ± 0.000	1.096 ± 0.000
	[MN15]	2	3.29±0.00	2.95 ± 0.02	1±0	1.091 ± 0.000	1.090 ± 0.000
	MN15-	2	3.27±0.00	2.93±0.03	1±1	1.094 ± 0.000	1.093 ± 0.000
	MN15+	2	3.27 ± 0.00	2.93 ± 0.03	1±0	1.089 ± 0.000	1.087 ± 0.000
	MN15cc	2	3.27 ± 0.00	2.93±0.03	1±0	1.089±0.000	1.087 ± 0.000
B-MPh	{MN15}	1	3.45	3.11±0.28	2±1	1.096±0.000	1.096
	[MN15]	1	3.28	2.91 ± 0.04	4±1	1.091 ± 0.000	1.090
	MN15-	1	3.29	2.91±0.05	3±1	1.094 ± 0.000	1.093
	MN15+	1	3.30	2.93 ± 0.05	5±1	1.088 ± 0.000	1.087
	MN15cc	1	3.30	2.93 ± 0.05	5±1	1.088 ± 0.000	1.087
	{MN15}	2	3.44 ± 0.01	3.10 ± 0.23	6±2	1.096 ± 0.000	1.096 ± 0.000
	[MN15]	2	3.26 ± 0.00	2.92 ± 0.04	4±1	1.091 ± 0.000	1.090 ± 0.000
	MN15-	2	3.27 ± 0.00	2.93 ± 0.05	2±1	1.094 ± 0.000	1.093 ± 0.000
	MN15+	2	3.29±0.00	2.95 ± 0.04	4 ±1	1.088 ± 0.000	1.087 ± 0.000
	MN15cc	2	3.29±0.00	2.95±0.04	4 ±1	1.088±0.000	1.087 ± 0.000
N-MPh	{MN15}	1	3.28	2.93±0.01	0±0	1.096±0.000	1.096
	[MN15]	1	3.17	2.82 ± 0.01	7±11	1.091 ± 0.000	1.089
	MN15-	1	3.17	2.80 ± 0.01	1±1	1.095 ± 0.000	1.093
	MN15+	1	3.17	2.81 ± 0.00	1±1	1.089 ± 0.000	1.087
	MN15cc						
	{MN15}	2	3.28 ± 0.00	2.94 ± 0.01	1±0	1.096 ± 0.000	1.096 ± 0.000
	[MN15]	2	3.17 ± 0.00	2.83 ± 0.01	1±1	1.091 ± 0.000	1.089 ± 0.000
	MN15-	2	3.16±0	2.82 ± 0.01	1±1	1.095 ± 0.000	1.093 ± 0.000
	MN15+	2	3.16 ± 0.00	2.82 ± 0.01	1±1	1.089 ± 0.000	1.087 ± 0.000
	MN15cc	2	3.16 ± 0.00	2.82 ± 0.01	1±1	1.089 ± 0.000	1.087 ± 0.000

^aThe C–H bond lengths in free methane are, at {MN15}: 1.095 Å, [MN15]: 1.089 Å, MN15–: 1.092 Å; MN15+: 1.086 Å; and MN15cc: 1.087 Å **Table S6.** Desorption energies (Δ_{des} , kJ mol⁻¹) for MPh×nCH₄ \rightarrow MPh + nCH₄ (LoT: MN15 using the STO-3G {MN15}, SDDAll [MN15], 6-31G* (MN15–), def2-QZVPP (MN15+), or *aug-cc*-pVTZ (MN15cc) basis sets). mCBS-QB3 refers to the modified complete basis set extrapolation method employing the CBS-QB3 formalism, but utilizing the MN15/6-311++G** geometry (see Table S6.5 for details). The standard enthalpy, Gibbs free energy, and entropy of desorption are calculated at 298 K using a simple statistical mechanical model assuming ideal gas behavior. A modest statistical analysis (average and standard deviation) of the thermochemical quantities is shown, normalized per mole of CH₄.

Adcorbont	n	$\Delta_{\rm des} U^{\rm QM}$ (kJ mol ⁻¹)							BSSE (kJ mol ⁻¹)				
Ausoi bent	п	{MN15}	[MN15]	MN15-	MN15+	MN15cc	mCBS-QB3		{MN15}	[MN15]	MN15-	MN15+	MN15cc
MPh	1	3	16	13	14	15	10		2.5	2.8	3.7	0.3	1.5
B-MPh	1	2	13	14	13	15	9	`	1.9	2.2	4.4	0.2	1.7
N-MPh	1	3	17	16	16	18	12		2.3	2.6	3.9	0.3	1.8
MPh	2	5	33	26	27	31	21		5.0	5.7	7.2	0.6	3.7
B-MPh	2	4	25	26	26	29	18		4.2	4.3	8.3	0.5	4.1
N-MPh	2	5	33	32	32	36	24		4.6	5.1	7.4	0.6	4.1
MPh	per CH ₄	2.5±0.0	16.3±0.0	13.0±0.2	13.6±0.3	15.3±0.0	10.2±0.2						
B-MPh	per CH ₄	2.0±0.1	12.8±0.3	13.3 ± 0.2	13.2±0.3	14.6±0.1	8.9±0.1						
N-MPh	per CH ₄	2.7±0.0	16.5±0.2	16.2 ± 0.4	16.2±0.2	18.0 ± 0.0	12.2±0.0						

Adaamhant		Δ _{des} H° (kJ mol ⁻¹)						Δ _{des} G° (kJ mol ⁻¹)					
Ausorbent	п	{MN15}	[MN15]	MN15-	MN15+	MN15cc	mCBS-QB3	{MN15}	[MN15]	MN15-	MN15+	MN15cc	mCBS-QB3
MPh	1	-3	11	8	9	11	9	-28	-23	-28	-26	-24	-19
B-MPh	1	-3	8	9	9	10	7	-31	-27	-26	-25	-23	-19
N-MPh	1	-3	12	9	11	13	9	-40	-26	-23	-25	-22	-12
MPh	2	-3	23	16	16	21	18	-62	-46	-54	-51	-48	-34
B-MPh	2	-6	15	17	17	20	14	-56	-53	-51	-50	-47	-35
N-MPh	2	-7	23	21	22	26	22	-80	-51	-53	-50	-46	-35
MPh	per CH ₄	-1.9±0.9	011.5±0.0	7.9±0.2	8.7±0.3	10.7±0.2	8.8±0.0	-29.3±2.3	-23.1±0.2	-27.3±0.6	-13.1±0.6	-23.8±0.1	-18.0±1.0
B-MPh	per CH ₄	-3.2±0.2	2 7.8±0.2	8.4±0.2	8.4±0.3	10.1±0.2	7.2±0.0	-29.8±2.2	-26.8±0.4	-26.0±0.4	-12.6±0.3	-23.4±0.2	-18.2±1.5
N-MPh	per CH ₄	-3.4±0.1	11.4±0.2	9.6±1.5	11.2±0.2	13.3±0.2	9.9±1.6	-40.0±0.1	-25.7±0.3	-24.9±2.3	-12.7±0.3	-22.6±0.3	-14.5±4.2

Table S7. Energy components of the modified CBS-QB3 method using fixed MN15/6-311++G** equilibrium structures for adsorbent, adsorbate, and adsorption models and corresponding vibrational analyses (invoking Gaussian keyword 'StartMP2' and using the results of the frequency calculation from the converged MN15 checkpoints).

CBS-QB3			MN15/6	6-311G	(2d,d,p) w/5	d&7f			
(StartMP2:MN15)	E ^{nuc.rep} , a.u.	E ^{sc⊧} , a.u.	<s²> before</s²>	after	E ^{zpe} , a.u.	Q, a.u.	Н, а.и.	G, a.u.	S, cal/molK
CH_4	13.4425	-40.5337	0.00	0.00	-40.4891	-40.4862	-40.4853	-40.5064	44.5
B-MPh	754.5442	-526.3362	0.78	0.75	-526.1510	-526.1408	-526.1399	-526.1873	99.8
MPh	787.1806	-539.6350	0.00	0.00	-539.4457	-539.4360	-539.4351	-539.4813	97.3
N-MPh	812.5538	-556.2317	0.77	0.75	-556.0449	-556.0357	-556.0348	-556.0796	94.4
$B-MPh \times CH_4$	888.0026	-566.8668	0.78	0.75	-566.6356	-566.6213	-566.6204	-566.6779	121.1
$MPh×CH_4$	923.5009	-580.1662	0.00	0.00	-579.9307	-579.9170	-579.9160	-579.9718	117.4
$N-MPh\times CH_4$	953.3618	-596.7628	0.77	0.75	-596.5296	-596.5156	-596.5146	-596.5721	120.9
$B-MPh\times 2CH_4$	1027.9738	-607.3976	0.78	0.75	-607.1207	-607.1019	-607.1010	-607.1706	146.5
$MPh \times 2CH_4$	1066.4851	-620.6976	0.00	0.00	-620.4162	-620.3982	-620.3972	-620.4650	142.6
$N-MPh\times 2CH_4$	1101.6539	-637.2941	0.77	0.75	-637.0149	-636.9976	-636.9966	-637.0610	135.6

CBS-QB3				CCSD(T)/6	-31+G(d') w	/6d&7f		
(StartMP2:MN15)	E ^{sc⊧} , a.u.	<s<sup>2> before</s<sup>	after	E ^{™P2} , a.u.	Е™², а.и.	E ^{MP4sdq} , a.u.	E ^{ccsD} , a.u.	E ^{ccsD(T)} , a.u.
CH_4	-40.1954	0.00	0.00	-40.3359	-40.3525	-40.3561	-40.3568	-40.3597
B-MPh	-522.7987	2.48	4.93	-524.3961	-524.4858	-524.5127	-524.5466	-524.6339
MPh	-535.9817	0.00	0.00	-537.7811	-537.8228	-537.8343	-537.8357	-537.9302
N-MPh	-552.5321	2.44	4.70	-554.2292	-554.3089	-554.3377	-554.3735	-554.4669
$B\text{-}MPh\timesCH_{4}$	-562.9909	2.48	4.93	-564.7377	-564.8431	-564.8736	-564.9080	-564.9990
$MPh \times CH_4$	-576.1732	0.00	0.00	-578.1241	-578.1802	-578.1953	-578.1973	-578.2960
$N-MPh\times CH_4$	-592.7234	2.44	4.68	-594.5722	-594.6670	-594.6994	-594.7361	-594.8339
$B-MPh \times 2CH_4$	-603.1836	2.48	4.93	-605.0798	-605.2009	-605.2350	-605.2698	-605.3645
$MPh \times 2CH_4$	-616.3653	0.00	0.00	-618.4667	-618.5375	-618.5563	-618.5588	-618.6616
$N-MPh \times 2CH_4$	-632.9153	2.44	4.67	-634.9153	-635.0253	-635.0614	-635.0988	-635.2009

CBS-QB3		MP	4SDQ/	CBSB4 w/6o		I	MP2/CBSB3 v	v/5d&7	7f	
(StartMP2:MN15)	E ^{scF} , a.u.	<s<sup>2> before</s<sup>	after	E ^{™₽2} , a.u.	E ^{™₽3} , a.u.	E ^{MP4sdq} , a.u.	E ^{scF} , a.u.	<s<sup>2> before</s<sup>	after	E ^{™2} , a.u.
CH_4	-40.2010	0.00	0.00	-40.3675	-40.3870	-40.3896	-40.2122	0.00	0.00	-40.4043
B-MPh	-522.8146	2.47	4.91	-524.4734	-524.5691	-524.5934	-522.9430	2.47	4.89	-524.8981
MPh	-535.9981	0.00	0.00	-537.8585	-537.9058	-537.9144	-536.1318	0.00	0.00	-538.3024
N-MPh	-552.5487	2.44	4.68	-554.3070	-554.3924	-554.4187	-552.6910	2.43	4.63	-554.7694
$B-MPh \times CH_4$	-563.0123	2.47	4.92	-564.8465	-564.9604	-564.9874	-563.1520	2.47	4.90	-565.3077
MPh×CH₄	-576.1952	0.00	0.00	-578.2331	-578.2974	-578.3087	-576.3402	0.00	0.00	-578.7136
$N-MPh \times CH_4$	-592.7455	2.44	4.66	-594.6817	-594.7848	-594.8138	-592.8989	2.43	4.62	-595.1803
$B-MPh\times 2CH_4$	-603.2106	2.47	4.91	-605.2197	-605.3520	-605.3816	-603.3615	2.47	4.90	-605.7178
$MPh \times 2CH_4$	-616.3928	0.00	0.00	-618.6072	-618.6888	-618.7028	-616.5493	0.00	0.00	-619.1250
$N-MPh \times 2CH_4$	-632.9430	2.43	4.65	-635.0563	-635.1771	-635.2090	-633.1075	2.43	4.61	-635.5915

Table S7. continued.

CBS-QB3							CBS-MN15	technical					
(StartMP2:MN15)	ElSum	E2(CBS)	CBS-Int	ΟΤΙΙ	E(ZPE)	E(thermal)	E(SCF)	∆ E(MP2)	∆ E(CBS)	∆ E(MP34)	∆E(CCSD)	∆ E(Int)	∆E(empirical)
CH_4	5.0	-0.2114	0.0073	2.0796	0.0442	0.0471	-40.2122	-0.1920	-0.0194	-0.0222	-0.0036	0.0073	-0.0120
B-MPh	93.0	-2.1436	0.0617	15.5321	0.1864	0.1968	-522.9431	-1.9550	-0.1886	-0.1200	-0.1212	0.0617	-0.1063
MPh	47.0	-2.3729	0.0698	16.2389	0.1906	0.2005	-536.1318	-2.1706	-0.2023	-0.0559	-0.0960	0.0698	-0.0940
N-MPh	95.0	-2.2800	0.0642	16.2173	0.1878	0.1972	-552.6910	-2.0784	-0.2016	-0.1117	-0.1293	0.0642	-0.1099
B-MPh×CH ₄	103.0	-2.3639	0.0691	17.5837	0.2319	0.2468	-563.1520	-2.1558	-0.2081	-0.1409	-0.1255	0.0691	-0.1182
MPh×CH₄	52.0	-2.5952	0.0772	18.2867	0.2364	0.2505	-576.3402	-2.3734	-0.2218	-0.0756	-0.1007	0.0772	-0.1059
N-MPh×CH ₄	105.0	-2.5026	0.0717	18.2664	0.2337	0.2482	-592.8989	-2.2814	-0.2211	-0.1321	-0.1345	0.0717	-0.1218
B-MPh×2CH ₄	113.0	-2.5835	0.0764	19.6337	0.2774	0.2967	-603.3615	-2.3564	-0.2271	-0.1619	-0.1296	0.0764	-0.1301
MPh×2CH₄	57.0	-2.8164	0.0845	20.3359	0.2819	0.3006	-616.5493	-2.5756	-0.2407	-0.0955	-0.1054	0.0845	-0.1177
N-MPh×2CH ₄	115.0	-2.7241	0.0789	20.3144	0.2794	0.2973	-633.1075	-2.4840	-0.2400	-0.1527	-0.1395	0.0789	-0.1336

CBS-QB3	CBS-MN1	5 (NoOpt) f	inal at 298.1	15 K 1 atm
(StartMP2:MN15)	(0 Kelvin)	U, a.u.	Н, а.и.	G, a.u.
CH_4	-40.4099	-40.4071	-40.4061	-40.4273
B-MPh	-525.1861	-525.1757	-525.1748	-525.2225
MPh	-538.4902	-538.4804	-538.4794	-538.5259
N-MPh	-555.0698	-555.0604	-555.0595	-555.1046
B-MPh×CH₄	-565.5994	-565.5846	-565.5837	-565.6425
$MPh \times CH_4$	-578.9040	-578.8898	-578.8889	-578.9459
$N-MPh \times CH_4$	-595.4844	-595.4699	-595.4689	-595.5274
$B-MPh \times 2CH_4$	-606.0128	-605.9935	-605.9925	-606.0637
$MPh \times 2CH_4$	-619.3180	-619.2993	-619.2984	-619.3676
$N-MPh \times 2CH_4$	-635.8990	-635.8811	-635.8802	-635.9458

Table S8. Energy stabilization ($\Delta \Delta E^{QM}$) and desorption (\rightarrow MPh+CH₄) energy differences (in kJ mol⁻¹) due to optimizing the MN16/6-311++G** equilibrium structures of the adsorbent, adsorbate, and the adsorption model using a conceptually converging series of correlated MO theories (LoT: MP2, MP3, MP4, CCSD, or CCSD(T) using the 6-311++G** basis set).

ΔΔΕΩΜ	MP2	MP3	MP4 ^a	CCSD	CCSD(T)♭
MPh	-10	-5	-10	-6	-9
B-MPh	-10	-8	-9	-7	-7
N-MPh	-13	-9	-15	-11	-10
CH ₄	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
$MPh \times CH_4$	-9	-5	-8	-5	-8
B-MPh×CH ₄	-9	-8	-9	-7	-6
$N-MPh \times CH_4$	-10	-10	-9	-8	-12
→MPh+CH ₄	-1	0	-2	-1	-1
\rightarrow B-MPh+CH ₄	-1	0	0	0	-1
\rightarrow N-MPh+CH ₄	-3	+2	-6	-3	+2

^aMP4 results are single-point energy calculations using the MP4^{SDQ} geometry (i.e., MP4|MP4^{SDQ}). ^bCCSD(T) results are single-point energy calculations using the CCSD geometry (i.e., CCSD(T)|CCSD)

Table S9. Atomic charge (electron) distribution analysis upon single (n = 1) and double (n = 2) methane adsorption on MPh, B-MPh, and N-MPh determined by three conceptually different population analysis methods: Hirshfeld (HPA), Weinhold (NPA), and Merz-Kollman (ESP) at the MN15/def2-QZVPP level of theory. See **Figure 2** for a graphical plot and **Figure S1** for the numbering of atom positions.

		W.4		α					3				γ		=CH ₂	5 11
Х	n	XI	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	ΣH
Hirshfe	eld Popu	lation An	alysis (HI	PA)												
С	1	0.01	0.00	0.00	0.00	0.00	-0.03	-0.03	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.08	0.39
В	1	0.04	-0.08	-0.07	-0.04	0.01	0.00	-0.02	0.00	-0.03	-0.02	0.00	-0.05	-0.02	-0.05	0.37
Ν	1	0.04	0.07	0.06	0.04	-0.02	-0.07	-0.05	-0.08	-0.05	-0.07	-0.05	-0.02	-0.04	-0.11	0.39
С	2	0.01	0.01	0.01	0.00	0.00	-0.03	-0.03	-0.03	-0.03	-0.03	-0.04	-0.04	-0.04	-0.08	0.40
В	2	0.05	-0.08	-0.07	-0.04	0.01	0.00	-0.02	0.00	-0.03	-0.02	0.00	-0.05	-0.02	-0.05	0.38
Ν	2	0.05	0.07	0.07	0.04	-0.02	-0.07	-0.05	-0.08	-0.05	-0.07	-0.05	-0.02	-0.04	-0.11	0.40
Weinho	old Natu	ıral Popul	ation Ana	lysis (NP	A)											
С	1	-0.03	-0.04	-0.06	-0.06	-0.08	-0.18	-0.18	-0.18	-0.19	-0.18	-0.18	-0.21	-0.21	-0.34	2.12
В	1	0.61	-0.39	-0.37	-0.26	-0.08	-0.09	-0.14	-0.11	-0.20	-0.17	-0.11	-0.25	-0.19	-0.29	2.05
Ν	1	-0.33	0.23	0.20	0.13	-0.13	-0.29	-0.25	-0.30	-0.23	-0.26	-0.20	-0.15	-0.20	-0.41	2.17
С	2	-0.02	-0.04	-0.06	-0.06	-0.08	-0.18	-0.18	-0.18	-0.19	-0.18	-0.18	-0.21	-0.21	-0.34	2.12
В	2	0.67	-0.41	-0.39	-0.28	-0.08	-0.10	-0.15	-0.12	-0.21	-0.18	-0.11	-0.25	-0.18	-0.29	2.06
Ν	2	-0.34	0.24	0.21	0.14	-0.13	-0.30	-0.26	-0.30	-0.23	-0.26	-0.20	-0.15	-0.20	-0.41	2.18
Merz-K	Collman	Electrosta	atic Poten	tial Fit (E	SP)											
С	1	-0.02	0.04	0.28	0.17	0.20	-0.19	-0.29	-0.35	-0.26	-0.23	-0.19	-0.08	-0.03	-0.51	1.48
В	1	0.24	-0.25	-0.07	0.03	0.24	0.02	-0.13	-0.09	-0.21	-0.13	-0.19	-0.23	-0.12	-0.43	1.32
Ν	1	0.25	0.06	0.16	0.15	0.15	-0.29	-0.31	-0.32	-0.30	-0.33	-0.15	-0.01	-0.07	-0.60	1.62
С	2	0.72	-0.27	0.01	-0.11	0.25	-0.10	-0.24	-0.29	-0.20	-0.19	-0.25	-0.16	-0.10	-0.50	1.51
В	2	0.96	-0.49	-0.27	-0.13	0.23	0.05	-0.12	-0.11	-0.22	-0.18	-0.18	-0.28	-0.14	-0.41	1.39
Ν	2	1.48	-0.46	-0.28	-0.32	0.25	-0.18	-0.25	-0.24	-0.21	-0.26	-0.23	-0.09	-0.16	-0.59	1.66

Table S10. Atomic charge (electron) distribution analysis upon single (n = 1) and double (n = 2) methane adsorption on MPh, B-MPh, and N-MPh determined by three conceptually different population analysis methods: Hirshfeld (HPA), Weinhold (NPA), and Merz-Kollman (ESP) at the MN15/def2-QZVPP level of theory. See **Figure 2** for a graphical plot and **Figure S1** for the numbering of atom positions (numbering of the second adsorbate is logical).

v		60 F		proxima	l	distal	E CH	620		proximal		distal	E CU
X	n	C25	H26	H27	H28	H29	2 ርዘ 4	C30	H31	H32	H33	H34	Σ CH 4
Hirshfe	eld Popu	lation Ana	alysis (HI	PA)									
С	1	-0.13	0.02	0.02	0.02	0.03	-0.04						
В	1	-0.13	0.02	0.02	0.02	0.03	-0.03						
Ν	1	-0.13	0.02	0.02	0.02	0.03	-0.04						
С	2	-0.13	0.02	0.02	0.02	0.03	-0.03	-0.13	0.02	0.02	0.02	0.03	-0.03
В	2	-0.13	0.02	0.03	0.02	0.03	-0.03	-0.13	0.02	0.03	0.02	0.03	-0.03
Ν	2	-0.13	0.02	0.02	0.02	0.03	-0.04	-0.13	0.02	0.02	0.02	0.03	-0.04
Weinho	old Natu	iral Popula	ation Ana	lysis (NP.	A)								
С	1	-0.84	0.21	0.21	0.21	0.21	0.00						
В	1	-0.83	0.21	0.21	0.21	0.21	0.00						
Ν	1	-0.84	0.21	0.21	0.21	0.21	0.00						
С	2	-0.84	0.21	0.21	0.21	0.21	0.00	-0.84	0.21	0.21	0.21	0.21	0.00
В	2	-0.83	0.21	0.21	0.21	0.21	0.00	-0.83	0.21	0.21	0.21	0.21	0.00
Ν	2	-0.84	0.21	0.21	0.21	0.21	0.00	-0.84	0.21	0.21	0.21	0.21	0.00
Merz-K	lollman	Electrosta	itic Poten	tial Fit (E	SP)								
С	1	-0.48	0.12	0.12	0.12	0.11	-0.01						
В	1	-0.50	0.12	0.13	0.13	0.11	0.00						
Ν	1	-0.50	0.13	0.12	0.12	0.12	-0.01						
С	2	-0.45	0.10	0.09	0.10	0.11	-0.05	-0.44	0.10	0.09	0.09	0.11	-0.05
В	2	-0.46	0.09	0.10	0.10	0.12	-0.05	-0.46	0.09	0.10	0.10	0.12	-0.05
Ν	2	-0.45	0.09	0.09	0.09	0.12	-0.06	-0.45	0.09	0.09	0.09	0.12	-0.06

v		V1		α					β				γ		=CH ₂	2.11
λ	n	X1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	2 H
Hirshfe	ld Popu	lation An	alysis (HF	PA)												
В	1	0.10	-0.01	0.05	0.18	-0.02	0.08	0.03	0.06	-0.02	-0.03	0.21	0.01	0.14	0.17	0.05
Ν	1	0.03	0.00	0.02	0.13	-0.01	0.11	0.07	0.09	0.02	0.00	0.15	-0.01	0.09	0.22	0.07
В	2	0.11	-0.01	0.05	0.18	-0.02	0.07	0.03	0.05	-0.03	-0.03	0.21	0.02	0.15	0.16	0.04
Ν	2	0.03	0.00	0.02	0.13	-0.01	0.11	0.07	0.09	0.02	0.00	0.15	-0.01	0.09	0.23	0.07
Weinho	ld Natu	iral Popul	lation Ana	lysis (NP	A)											
В	1	0.11	-0.04	0.04	0.26	-0.08	0.11	0.04	0.06	-0.08	-0.10	0.30	-0.01	0.19	0.23	-0.03
Ν	1	0.03	-0.03	0.00	0.19	-0.08	0.17	0.10	0.12	-0.01	-0.06	0.22	-0.04	0.12	0.32	-0.04
В	2	0.11	-0.03	0.06	0.26	-0.08	0.10	0.03	0.04	-0.09	-0.10	0.30	0.01	0.21	0.22	-0.03
Ν	2	0.03	-0.03	0.00	0.18	-0.08	0.17	0.10	0.12	-0.01	-0.06	0.22	-0.04	0.11	0.32	-0.04

Table S11. Atomic spin densities of the adsorbent molecule for single (n = 1) and double (n = 2) methane adsorption on B-MPh and N-MPh from Hirshfeld population analysis (HPA) and Weinhold natural population analysis (NPA) at the MN15/def2-QZVPP level of theory. See **Figure S1** for the numbering of atom positions.

Table S12. Atomic spin densities of the adsorbate molecule(s) for single (n = 1) and double (n = 2) methane adsorption on B-MPh and N-MPh from Hirshfeld population analysis (HPA) and Weinhold natural population analysis (NPA) at the MN15/def2-QZVPP level of theory. See **Figure S1** for the numbering of atom positions (numbering of the second adsorbate is logical).

v		C25		proxima	1	distal	х си	C20		proxima	l	distal	Г СЦ
Λ	п	C25	H26	H27	H28	H29	2 СП 4	C30	H31	H32	H33	H34	2 СП4
Hirshfel	d Popı	ulation Ana	alysis (HF	PA)									
В	1	0.003	0.001	0.001	0.002	0.001	0.007						
Ν	1	0.001	0.001	0.001	0.001	0.000	0.003						
В	2	0.004	0.001	0.001	0.002	0.001	0.008	0.004	0.001	0.001	0.002	0.001	0.008
Ν	2	0.001	0.001	0.001	0.001	0.000	0.003	0.001	0.001	0.001	0.001	0.000	0.003
Weinhol	d Natı	ural Popula	ation Ana	lysis (NP.	A)								
В	1	0.001	0.000	0.000	0.000	0.001	0.002						
Ν	1	0.001	0.000	0.000	0.000	0.000	0.000						
В	2	0.001	0.000	0.000	0.000	0.001	0.002	0.001	0.000	0.000	0.000	0.001	0.002
Ν	2	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000

Table S13. Thermochemical quantities (in kJ mol⁻¹) for comparison to experimental measurements of physisorptive binding of methane on porous carbon surfaces at 298 K. LoT: MN15/6-311++G**. MPh×CH₄ corresponds to 5.6 mmol g⁻¹ of absolute uptake and MPh×2CH₄ corresponds to 11.2 mmol g⁻¹, where uptake is defined as the true or "absolute" quantity. At room temperature (298 K), this corresponds to the following equilibrium pressures for adsorption on ZTC: 9.5 and 26.8 bar (or 9.3 and 26.4 atm), respectively. The enthalpy of desorption (Δ H) at these conditions is measured to be 13.5 and 13.1 kJ mol⁻¹, respectively (Stadie et al., 2015 – Reference 48).

Swatam	Р	$\Delta_{des} E^{QM*}$	$\Delta_{des}E_{ZPE}$	$\Delta_{des}U^{SM}$	$\Delta_{des} U^a$	$\Delta_{des} U^b$	$\Delta_{des}H^a$	$\Delta_{des}H^b$	$\Delta_{des}H^{c}$
System	atm	kJ mol-1	kJ mol ⁻¹	kJ mol-1	kJ mol ⁻¹	kJ mol ⁻¹	kJ mol ⁻¹	kJ mol ⁻¹	kJ mol-1
MPh×CH ₄	1	14.8	-4.0	-7.4	7.4	10.8	9.8	13.2	17.2
B-MPh×CH ₄	1	13.9	-3.5	-7.2	6.6	10.4	9.1	12.9	16.4
$N-MPh \times CH_4$	1	17.4	-4.6	-7.6	9.8	12.9	12.3	15.3	19.9
MPh×CH ₄	9.3	14.8	-4.0	-7.4	7.4	10.8	9.8	13.2	17.2
$B-MPh \times CH_4$	9.3	13.9	-3.5	-7.2	6.6	10.4	9.1	12.9	16.4
$N-MPh \times CH_4$	9.3	17.4	-4.6	-7.6	9.8	12.9	12.3	15.3	19.9
MPh×2CH ₄	26.4	14.1	-4.1	-7.6	6.6	10.1	9.1	12.5	16.6
B-MPh×2CH ₄	26.4	13.4	-3.5	-7.3	6.1	9.9	8.6	12.4	15.9
$N-MPh \times 2CH_4$	26.4	17.0	-4.4	-7.6	9.4	12.6	11.9	15.1	19.5

^a defined as $\Delta U^a = \Delta E^{QM*} + \Delta U^{SM}$ and $\Delta H^a = \Delta E^{QM*} + \Delta U^{SM} + RT$ referred to as ΔU^o and ΔH^o at P = 1 atm; ^b defined as $\Delta U^b = \Delta E^{QM*} + \Delta E_{ZPE}$ and $\Delta H^b = \Delta E^{QM*} + \Delta E_{ZPE} + \Delta PV$; ^c defined as $\Delta H^c = \Delta E^{QM*} + \Delta PV$

Table S14. Thermochemical quantities (in kJ mol⁻¹) for comparison to experimental measurements of physisorptive binding of methane on porous carbon surfaces at 298 K. LoT: MN15/def2-QZVPP. MPh×CH₄ corresponds to 5.6 mmol g⁻¹ of absolute uptake and MPh×2CH₄ corresponds to 11.2 mmol g⁻¹, where uptake is defined as the true or "absolute" quantity. At room temperature (298 K), this corresponds to the following equilibrium pressures for adsorption on ZTC: 9.5 and 26.8 bar (or 9.3 and 26.4 atm), respectively. The enthalpy of desorption (Δ_{des} H) at these conditions is measured to be 13.5 and 13.1 kJ mol⁻¹, respectively (Stadie et al., 2015 – Reference 48).

	Р	Ades EQM*	· AdesE7PF	AdesUSM	$\Delta_{des}U^a$	$\Delta_{des}U^{b}$	$\Delta_{des}H^{a}$	$\Delta_{des}H^{b}$	ΔdesHC
System	atm	kJ mol ⁻¹	kJ mol-1	kJ mol ⁻¹					
MPh×CH ₄	1	13.6	-3.8	-7.4	6.1	9.8	8.6	12.2	16.0
B-MPh×CH ₄	1	13.1	-3.4	-7.3	5.8	9.7	8.3	12.2	15.6
$N-MPh \times CH_4$	1	16.1	-4.2	-7.5	8.6	11.9	11.0	14.4	18.6
MPh×CH ₄	9.3	13.6	-3.8	-7.4	6.1	9.8	8.6	12.2	16.0
B-MPh×CH ₄	9.3	13.1	-3.4	-7.3	5.8	9.7	8.3	12.2	15.6
$N-MPh \times CH_4$	9.3	16.1	-4.2	-7.5	8.6	11.9	11.0	14.4	18.6
MPh×2CH ₄	26.4	13.1	-3.6	-7.4	5.7	9.5	8.2	12.0	15.6
B-MPh×2CH ₄	26.4	12.8	-3.3	-7.3	5.5	9.5	8.0	12.0	15.2
N-MPh×2CH ₄	26.4	15.8	-4.1	-7.5	8.3	11.7	10.8	14.2	18.3

^a defined as $\Delta U^a = \Delta E^{QM*} + \Delta U^{SM}$ and $\Delta H^a = \Delta E^{QM*} + \Delta U^{SM} + RT$ referred to as ΔU^o and ΔH^o at P = 1 atm; ^b defined as $\Delta U^b = \Delta E^{QM*} + \Delta E_{ZPE}$ and $\Delta H^b = \Delta E^{QM*} + \Delta E_{ZPE} + \Delta PV$; ^c defined as $\Delta H^c = \Delta E^{QM*} + \Delta PV$

Table S15. Consequences of the gradual relaxation of the $XC_{47}H_{20}\times CH_4$ (i.e., blade× CH_4 or Xblade× CH_4 , X = B or N), adsorption model structures on CH_4 binding energies in kJ mol⁻¹, as a function of site of interaction (C, B, or N). A number of stationary structures (N) below 28 indicates a 'slip' of CH_4 into an adjacent adsorption site than originally targeted. Basis sets used for MN15–, MN15, and MN15 levels are 6-31G*, 6-311++G**, def2-QZVPP, respectively with the MN15 functional.

	Ν	average	std. dev.	minimum	maximum
Relaxation of pe	ripheral	H, CH4: MN15-	- level		
blade×CH ₄	28	12.8	1.4	11	16
B-blade×CH ₄	28	12.7	1.5	11	16
N-blade×CH ₄	28	15.1	1.2	13	17
Relaxation of pe	ripheral	H, CH4, site of	adsorption: M	N15– level	
blade×CH ₄	28	12.8	1.4	11	16
B-blade×CH ₄	28	12.8	1.6	10	16
N-blade×CH ₄	28	15.2	1.1	13	17
Relaxation of pe	ripheral	H, CH4, site of	adsorption, $lpha$	-carbons: MN15	- level
blade×CH ₄	30	13.2	1.7	11	17
B-blade×CH ₄	26	12.9	1.6	11	16
$N-blade \times CH_4$	28	15.2	0.9	13	17
Relaxation of pe	ripheral	H, CH4, site of	adsorption, $lpha$	-carbons: MN15	–/MN15 level
blade×CH ₄	30	17.7	1.9	14	21
B-blade×CH ₄	26	15.6	2.0	13	20
N-blade×CH ₄	28	18.9	1.3	16	21
Relaxation of pe	ripheral	H, CH4, site of	adsorption, $lpha\cdot$	-carbons: MN15	level
blade×CH ₄	30	17.8	1.9	14	21
B-blade×CH ₄	26	15.9	2.3	13	20
N-blade×CH ₄	28	19.0	1.3	16	21
Relaxation of pe	ripheral	H, CH₄, site of	adsorption, $lpha\cdot$	-carbons: MN15	/MN15+ level
blade×CH ₄	30	13.8	1.7	11	17
B-blade×CH ₄	26	12.9	1.7	10	15
N-blade×CH₄	28	15.3	1.1	14	17