

Different Forms of Silicon		<u>k</u>	MUNTARA Constant
Crystal Type	Symbol	Crystal Grain Size	Common Growth Techniques
Single-crystal	sc-Si	> 10 cm	Czochralski (Cz), Float-Zone (FZ)
Multicrystalline	mc-Si	10cm	Cast, Spheral, Sheet, ribbon
Polycrystalline	pc-Si	1μm – 1mm	Evaporation , CVD, sputtering
Microcrystalline	μc-Si	<1µm	Plasma Deposition
			12

Single Crystal Silicon What we are using Currently supplies a significant but declining solar cell market share Advantages Produced for electronics industry

- Allows for higher efficiency solar cells
- Disadvantages

12

- Requires higher quality of feed stock
- More expensive and slower to produce
- Circular shape leads to lower packing density in panels or larger waste of silicon

21

Ribbon Silicon
 Ribbon silicon is a technique used to grow multi- crystalline silicon Two graphite filaments are placed in a crucible of molten silicon The molten silicon is grown horizontally through capillary action along the filaments Produces a ribbon-like sheet of multi-crystalline silicon which is already a long wafer → no kerf losses
22

Copper Indium Gallium Diselenide 🔬 🚉 🚉 👘 👬	.
 Extremely good light absorption (99% of light absorbed in the first micron) → an optimal and effective PV material The addition of gallium boosts its light absorption band gap for the solar spectrum No performance degradation over time Much higher efficiencies than other thin films (19%) 	'n
	40

Criteria of Heterojunction for PV (3)	Criteria of Heterojunction for PV (4)
 Lattice Mismatch As little mismatch in lattice constant between two materials as possible, this appears to minimize interface density of states and recombination losses through such states Electrical Contacts It should be possible to form low-resistance electrical contacts to both n-and p-type materials 	 Material Availability Supplies of the material should be sufficient to allow large area cell production Material Cost Cost of the material should be competitive with alternative systems Material toxicity Materials should be nontoxic, or control of toxicity should be possible Cell Stability and Lifetime Cell must have an operating lifetime sufficient to pay back economic and energy costs required to produce it.
55	56

