

- Solar cells are not usually used individually because they do not output sufficient voltage and power to meet typical electrical demands
- The amount of voltage and current they output can be increased by combining cells together with wires to produce larger area solar modules
- Cells can be connected in a number of ways
- Strings - where cells are connected in series
- Blocks 2 or more strings connected together in parallel
- Joining 2 or more blocks together

Module Structure

- Typically 36 cells wired in series
- Encapsulated in a single long-lasting stable unit
- Purpose to protect solar cells and interconnecting wires
- Prevent mechanical and water damage

Module Materials
- Tempered Glass(low Iron):
- Used for the transparent top surface.
- AR coatings are cost prohibited and can not with stand environment
- Needs to be highly transparent, scratch-resistant \& rain, wind, hail,
human... proof.
Tedlar - Typical back layer because it is strong material - Gives structural support - Removes excess heat that reduces efficiency
- Ethylene Vinyl Acetate (EVA)
- Transparent encapsulant that is UV resistant
- Fills all the spaces between the front, rear edges and between
layers
- Frame
- Typically aluminum, strong and light weight

Module Open Circuit Voltage

- Typically 0.6 Volts per cell at $25^{\circ} \mathrm{C}$ and AM1.5
- Gives about 21 volts per module
- Allows for reductions due to temperature effects and other nonideal conditions
- Allows for voltage drops across other PV system components
- Requires 15 V to charge a 12 V battery

By-pass diodes used across groups

- Cost prohibitive to use one diode per cell
- By-pass diodes from unshaded cells are reversed bias and have no impact
- Current from string of cells limited by lowest current cell, if some cells are shaded extra current from good cells in the string forward bias the diode

Calculating Voltage and Current

- Series connections are made by connecting one cell's n type contact to the p-type of the next cell
- Parallel connections are made by joining each cells n type contacts together and p-type contacts together
- Series connections the voltages add
- Parallel connections the current add
- Series connections the current flow is equal to the current from the cell generating the smallest current (limited by poorest cell)
- Parallel connections the voltage is the average of the cells or string in parallel
\qquad

Example: Cells Parallel

Connected

- The voltage across terminals 34 is the average of the voltages
- $\mathrm{V}_{34}=\left(\mathrm{V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{B}}+\mathrm{V}_{\mathrm{C}}\right) / 3=(0.58+0.54+0.61) / 3=0.58(\mathrm{~V})$
- The current at the terminals 34 is the sum of the currents in each cell
- $\mathrm{I}_{34}=\left(\mathrm{I}_{\mathrm{A}}+\mathrm{I}_{\mathrm{B}}+\mathrm{I}_{\mathrm{C}}\right)=(0.28+0.31+0.25)=0.84(\mathrm{~A})$

Example: Block Connected

- The voltage across terminals 56 given by the series voltage already calculated:
- $\mathrm{V}_{56}=\mathrm{V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{B}}+\mathrm{V}_{\mathrm{C}}=0.58+0.54+0.61=1.73(\mathrm{~V})$
- The current at the terminals 56 is the sum of the currents in each string already calculated
- $I_{56}=3\left(I_{\text {string }}\right)=3(0.25)=0.75(\mathrm{~A})$
\rightarrow
- Linking modules or batteries is similar to connecting PV cells
- Series Connections
- Voltages are added in series connections
- The current is restricted to the smallest current
- Parallel connections
- The currents are added in parallel connections
- The voltages are averaged from each string
- Solar Cells and Modules are Matched to improve the power generated

