
1

EELE408 Photovoltaics
Lecture 19: Characterization

Dr. Todd J. Kaiser
tjkaiser@ece.montana.edu

Department of Electrical and Computer Engineering
Montana State University - Bozeman

Electrical Characterization

• 3 basic techniques
– Illuminated IV: the cell is illuminated at one sun and basic cell 

parameters are measured

– Dark IV: cell is in the dark and the cell IV are traced

– Jsc Voc: Jsc and Voc are measured at different illumination levels
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Measurement of Solar Cell Efficiency

• Air Mass 1.5 for terrestrial cells and AM0 for space cells

• Intensity of 100mW/cm2 = 1kW/m2 (one sun)

• Cell temperature of 25⁰C ( not 300K)

• 4‐point probe to remove effect of contact resistance
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Basic Structure for IV Testing
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Illumination Sources

• The intensity as well as the spectrum must be matched to sun 
light

• Ideal artificial source features
– Spatial nonuniformity of less than 1%

– Variation in total irradiance with time less than 1%

– Filtered for a given reference mismatch of 1%

– Gives an accuracy of 2%
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– Cost: <$100,000

Halogen Lamp with Dichroic Reflector
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Spectrums from typical solar simulator 
sources
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Probing
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Errors

• Difficult to exactly match solar spectrum
– Deviations in AM1.5 causes errors in Jsc

• One-sun illumination is quite intense and heats the cell
– Poor temperature control introduces errors in Voc

• Contact errors in probing
– Probing errors primarily cause Fill Factor errors but can also cause Jsc

and Voc errors
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a d oc e o s

Automated Electronics
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Two sweeps 0-70% of Voc then 70%-100% of Voc in smaller increments

IV Dark (linear)
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IV Dark (semilog)

Semilog IV plot reveals 
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more information about the 
diode. Different regions of 
the IV curve are dominated 
by different loss 
mechanisms
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Limitations of Dark IV Measurements

• Assumes the light IV curve is just the dark IV curve shifted by 
the photogenerated current
– Not always true,  if has high series resistance

– Or if carrier lifetime is a function of voltage in some multicrystal materials

• Measures the diode with current in the opposite direction
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Current Comparison (Light)
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Under illumination the current crossing the junction is nearly uniform  and then 
travels along the emitter to the contacts

Current Comparison (Dark)
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In the dark most of the current crosses the junction directly under the contact and 
does not travel along the emitter

It will have a lower series resistance than the lighted case

Model for Effect of Series Resistance on 
Part of the Solar Cell
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Double Diode Model

• Single diode model assumes a single value for the ideality 
factor

• In reality the ideality factor is a function of the voltage across 
the device

• High voltage
– Recombination dominated by surface and bulk recombination  n  2

• Low voltage
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• Low voltage
– Recombination in the junction dominates  n  1

Double Diode Equations

Small fluctuations in the 
light intensity overwhelm 
the effects of the second 
diode.  More common to 
use the double diode 
equation in the dark
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Ideality Factor Measurements
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Plot the natural log of the current vs the voltage 
gives a slope proportional to q/nkT and an intercept 
at the ln(I0)

Semilog plot of Dark Current-Voltage

(n= 1): eqv/kt
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(n = 2): eqv/2ktRshunt

Bias Voltage (V)

Problems Measuring the Ideality Factor

• At low voltages the shunt resistances dominates the device 
performance and causes a large peak (can not be 
compensated for)

• At high voltages the series resistances dominate causes a 
large peak in the ideality factor

• Ideality factor comes from a difference of signals and is prone 
to noise
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to noise

• Temperature changes during measurement introduce errors

Carrier Lifetime

• Carrier lifetime in the bulk is composed of various 
recombination mechanisms
– Band to Band or Radiation Recombination

– Auger Recombination

– Shockley-Read-Hall (SRH) Recombination via traps

22

SRHAradbulk 
1111



For indirect bandgap materials such as silicon the rad is very large and 
usually neglected

Surface Lifetime

• Includes the surface recombination and surface lifetimes

• Function of Surface Recombination Velocity (S), the minority 
carrier Diffusivity (D), and width of the wafer (W)
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Effective Lifetime

• Combination of bulk lifetime and surface lifetime

If tl i t d f th

surfacebulkeff 
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• If correctly passivated surfaces then eff =  bulk

• If high bulk lifetimes then effective is dominated by the 
surface: eff =  surface
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Lifetime Measurement

Pulse a light source on the surface and 
measure the minority carrier density 
gives an exponential dependence.

ne-t/
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