EELE408 Photovoltaics Electrical Characterization nm ——
Lecture 19: Characterization

* 3 basic techniques
Dr. Todd J. Kaiser

— llluminated IV: the cell is illuminated at one sun and basic cell
tjkaiser@ece.montana.edu parameters are measured
— Dark IV: cell is in the dark and the cell IV are traced
Department of Electrical and Computer Engineering

Montana State University - Bozeman — Jsc Voc: Jsc and Voc are measured at different illumination levels

Measurement of Solar Cell Efficiency nM = Basic Structure for IV Testing

cooling fan
Air Mass 1.5 for terrestrial cells and AMO for space cells EE.:-: adjustable lamp helght
« Intensity of 200mW/cm? = 1kW/m?2 (one sun)

« Cell temperature of 25°C ( not 300K)

4-point probe to remove effect of contact resistance

computer controlled
current voltage source

temperature ®
probe
25°C b\
e top current and voltage probes —J
L r
— block is the rear current contact

rear voltage probe

water cooling

11
J

st 3 st

lllumination Sources

Halogen Lamp with Dichroic Reflector nM|L

The intensity as well as the spectrum must be matched to sun
light

« ldeal artificial source features

— Spatial nonuniformity of less than 1%

— Variation in total irradiance with time less than 1%

— Filtered for a given reference mismatch of 1%

— Gives an accuracy of 2%

— Cost: <$100,000

most of the infrared light
passes through the reflector

most of the visible light is reflected out the front
to the sample
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Spectrums from typical solar simulator MONTARA | =
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Errors

« Difficult to exactly match solar spectrum
— Deviations in AM1.5 causes errors in Jg,

* One-sun illumination is quite intense and heats the cell
— Poor temperature control introduces errors in V,

« Contact errors in probing

— Probing errors primarily cause Fill Factor errors but can also cause Jg,
and V, errors
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IV Dark (semilog)
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Limitations of Dark IV Measurements th-_

« Assumes the light IV curve is just the dark IV curve shifted by
the photogenerated current
— Not always true, if has high series resistance
— Orif carrier lifetime is a function of voltage in some multicrystal materials
« Measures the diode with current in the opposite direction
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Double Diode Model LE_““__I"’"——

« Single diode model assumes a single value for the ideality
factor

« In reality the ideality factor is a function of the voltage across
the device
« High voltage
— Recombination dominated by surface and bulk recombination = n > 2
« Low voltage
— Recombination in the junction dominates & n > 1

Current Comparison (Light)
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Model for Effect of Series Resistance on MINTARA | ===
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Ideality Factor Measurements n%l""—-—
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q Plot the natural log of the current vs the voltage
gives a slope proportional to g/nkT and an intercept
In(1) = In(l,)+ atthe In(l
0 (1))
nkT

Problems Measuring the Ideality Factor nM|r—-

« At low voltages the shunt resistances dominates the device
performance and causes a large peak (can not be
compensated for)

« At high voltages the series resistances dominate causes a
large peak in the ideality factor

< Ideality factor comes from a difference of signals and is prone
to noise

« Temperature changes during measurement introduce errors

Surface Lifetime n_.—_lr—-—

* Includes the surface recombination and surface lifetimes

« Function of Surface Recombination Velocity (S), the minority
carrier Diffusivity (D), and width of the wafer (W)
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Carrier Lifetime oy | o

¢ Carrier lifetime in the bulk is composed of various
recombination mechanisms
— Band to Band or Radiation Recombination
— Auger Recombination
— Shockley-Read-Hall (SRH) Recombination via traps
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For indirect bandgap materials such as silicon the t,,, is very large and
usually neglected

it =

Effective Lifetime n.—-—l ey
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Z-eff Tbulk z-surface

» Combination of bulk lifetime and surface lifetime

« If correctly passivated surfaces then tq4 =t

« If high bulk lifetimes then effective is dominated by the
surface: e = T gyrface




Lifetime Measurement

Pulse a light source on the surface and
measure the minority carrier density
gives an exponential dependence. = 35

Light Intamaity
Canier Dengil
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