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Stand Alone PV System Design

• Determine Average Daily PV System Load

• Determine Battery Needs

• Determine Array Sizing and Tilt
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Determination of the Average Daily PV 
System Load

• 1. Identify all loads to be connected to the PV System

• 2. For each load determine its voltage, current, power and 
daily operating hours
– For some loads the operation may vary on a daily, monthly or seasonal 

basis

– If so accounted by calculating daily averages

• 3. Separate AC Loads from DC Loads
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Determination of the Average Daily PV 
System Load (Continued)

• 4. Determine average daily A-h for each load from current 
and operating hours data

• 5. Add up the A-h for the DC loads, being sure all are at the 
same voltage

• 6. If some DC loads are at a different voltage and require a 
DC-DC converter then the conversion efficiency of the 
converter needs to be included
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converter needs to be included

Determination of the Average Daily PV 
System Load (Continued)

• 7. For AC loads, the DC input to the inverter must be 
determined and the DC A-h are then determined from the DC 
input current
– The DC input current is determined by equating the AC load power to 

the DC input power and then dividing by the efficiency of the inverter
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• 8. Add the A-h for the DC loads to the A-h for the AC loads, 
then divide by the wire efficiency factor and the battery 
efficiency factor. 
– This gives the corrected average daily A-h for the total load

Determination of the Average Daily PV 
System Load (Continued)

• 9. The total AC load power will determine the required size 
of the inverter. 
– Individual load powers will be needed to determine wire sizing to the 

loads

– Total load current will be compared to the total array current when sizing 
wire from battery to controller

6

wire from battery to controller
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Battery Selection Procedure

• 1. Determine the number of days storage
– Depending on whether the load is noncritical or critical

• 2. Determine the amount of storage required in A-h
– This is the product of the corrected A-h per day and the number of days 

of storage required.

– May vary with season
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Battery Selection Procedure (continued)

• 3. Determine the allowable level of discharge
– Divide the required A-h by the allowed depth of discharge

– This results in the total corrected A-h required for storage

• 4. Check to see if whether an additional correction for 
discharge rate will be needed.
– If so apply it to results of (3)
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Battery Selection Procedure (continued)

• 5. Check to see whether a temperature correction factor is 
required
– If so apply this to the results of (3) or (4)

• 6. Check to see whether the rate of charge exceeds the rate 
specified by the battery manufacturer.
– If so multiply the charging current by the rated number of hours for 

charging
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– If this number is larger than (7) this is the required battery capacity

Battery Selection Procedure (continued)

• 7. Divide the final corrected battery capacity by the capacity 
of the chosen battery.

• 8. If more than 4 batteries are required in parallel, it is better 
to consider a higher capacity batteries to reduce the number in 
parallel to provide for better balance of battery currents
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Array Sizing and Tilt Procedure

• 1. Determine the design current for each month of the year 
by dividing the corrected A-h load of the system each month 
by the monthly average peak sun hours at each array tilt angle

• 2. Determine the worst-case (highest monthly) design 
current for each tilt angle

11

Array Sizing and Tilt Procedure 
(continued)

• 3. For a fixed mount, select the tilt angle that results in the 
lowest worst case design current

• 4. If tracking mounts are considered, then determine the 
design current for one- and two- axis trackers.

• 5. Determine the derated array current by dividing the 
design current by the module derating factor
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Array Sizing and Tilt Procedure 
(continued)

• 6. Select a module that meets the illumination and 
temperature requirements of the system as well as having a 
rated output current and voltage at maximum power consistent 
with system needs

• 7. Determine the number of modules in parallel by dividing 
the derated array current by the rated module current.
– Round up or down as deemed appropriate
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Round up or down as deemed appropriate

Array Sizing and Tilt Procedure 
(continued)

• 8. Determine the number of modules in series by dividing 
the nominal system voltage by the lowest anticipated module 
voltage of a module supplying power to the system
– It is almost always necessary to round up

• 9. The total number of modules is the product of the number 
in parallel and the number in series
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Applications

• Rural Electrification

• Water Pumping and 
Treatment

• Health Care System

• Transport Aids

• Security

• Corrosion Protection

• Satellite Power
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Health Care System

• Communications

• Agriculture

• Satellite Power

• Miscellaneous

Rural Electrification

• Lighting and power supplies for remote buildings

• Power supplies for remote villages

• Battery charging stations

• Portable power for nomads
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LED PV Lighting
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EETS Ltd. Hybrid Wind-Solar

18
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PV Lighting Virgin Islands
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Water Pumping and Treatments 
Systems

• Pumping for drinking water

• Pumping for irrigation

• De-watering and drainage

• Ice production

• Saltwater desalination systems

• Water purification
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• Water circulation in fish farms

PV pumping system
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PV Drinking Water
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PV Pumping Kit
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PV Well

24
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PV Cistern
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PV Desalination System
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PV Desalination
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Health Care Systems

• Lighting in rural clinics

• UHF transceivers between health centers

• Vaccine refrigeration

• Ice pack freezing for vaccine carriers

• Sterilizers

• Blood storage refrigerators
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PV Vaccine Refrigerator Schematic
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PV Vaccination Refrigerator
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Communications

• Radio repeaters

• Remote TV  and radio receivers

• Remote weather measuring

• Mobile radios

• Rural telephone kiosks

• Remote data acquisition and transmission
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• Emergency telephones

PV Communications
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PV Phone Booth
(London)
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PV Ham Radio
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PV Repeaters
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PV Radios
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Agriculture

• Livestock watering

• Irrigation pumping

• Electrical livestock fencing

• Stock tank ice prevention
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Livestock Trough
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PV Well Sheep
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Transport Aids

• Road sign lighting

• Railway crossing signals

• Hazard and warning lights

• Navigation buoys

• Fog horn

• Runway lights
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• Terrain avoidance lights

• Road markers

PV Radar Speed Display
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PV Road Warning Signs and Gates

42
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PV Buoys
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PV Railroad Cars?
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Emergency & Security Systems

• Security lighting

• Remote alarm system

• Emergency phones
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Corrosion Protection System

• Cathodic protection for bridges

• Pipeline protection

• Well-head protection

• Lock gate protection

• Steel structure protection

48
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Miscellaneous

• Ventilation systems
• Camper and RV 

power
• Calculators

• Vehicle battery trickle 
chargers

• Earthquake 
monitoring systems
B tt h i
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• Automated feeding 
system on fish farms

• Solar water heater 
circulation pumps

• Path lights
• Yacht/boat power

• Battery charging
• Fountains
• Emergency power for 

disaster relief
• Aeration systems for 

stagnant lakes

Solar Attic Fans
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Solar Fan
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Solar Calculators
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Solar Flashlights
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Solar Battery Chargers

54
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Solar Fountain
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PV Aeration

56

PV Solar Compactor
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Electric Power for Satellites

• Telecommunications

• Earth observations

• Scientific missions

• Large Space Stations
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PV Satellites

59

PV Satellites

60
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Space Applications: Primary Power 
Source

• Are Solar Arrays the correct choice?

• Choice governed by:
– Power level

– Operating location

– Life expectancy

– Orientation requirements

– Radiation tolerance
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– Cost

• What are the options?

Fuel Cells

Operating Regimes of Spacecraft Power 
Sources
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Energy 
Storage 
Control

Energy 
Storage

Power System Elements

• Power Source
– Solar Voltaic

– Radioisotope 
Thermoelectric 
Generator

• Source Control
– Shunt Regulator

– Series Regulator

– Shorting Switch Array

• Energy Storage Control
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– Nuclear Reactor

– Fuel Cells

– Primary Batteries 

– Battery Charge Control

– Voltage Regulator

• Power Conditioning
– DC-DC Converters

– DC-AC Inverters

– Voltage Regulation

Power System Design Considerations

• Customer/User
• Target Planet/Solar 

Distance
• Spacecraft Configuration

– Mass Constraints
– Size

Launch Constraints

• Lifetime
– Total
– % in various modes/power 

levels

• Attitude Control
– 3 axis stabilized
– Gravity Gradient
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– Launch Constraints
– Thermal Dissipation 

Capability

• Payload Requirements
– Power type, current, 

voltage
– Duty Cycle, Peak Loads
– Fault Protection

– Pointing Requirements

• Orbital Parameters
– Altitude
– Inclination
– Eclipse Cycle

• Mission Constraints
– Maneuver Rates
– G loads
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Eclipse Cycle
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Batteries

• Charge Capacity
– Total electric charge stored in the battery measured in ampere – hours (40A 

for 1hr = 40A-h)
• Energy Capacity

– Total energy stored in the battery equal to the charge capacity times the 
average discharge voltage – measured in Joules or Watt – hours

• Average Discharge Voltage
– Number of cells in series times cell discharge voltage (typically 1.25 V)

• Depth of Discharge (DOD)
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– Percentage of battery capacity used in the discharge cycle (75% DOD 
means 25% capacity remaining, DOD is usually limited to promote long cycle 
life)

• Charge Rate
– Rate at which the battery can accept charge (measured in amperes per unit 

time)
• Energy Density

– Energy per unit mass (J/kg or W-h/kg) stored in the battery

Primary Batteries

• Long installed storage required
– Missiles in silos

– Interplanetary missions

• Often dry without electrolyte prior to activation
– Pyrotechnic valve fires to allow electrolyte to enter the battery from a 

separate reservoir

• Highly reliable quick reaction power source
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• No maintenance

• Uses:
– Activate pyrotechnic charges and other deployment devices

– Electromechanical actuators and sensors that require isolation from 
other noisy circuits and power drains

• Most common type  is Silver-Zinc

Secondary Batteries

• Rechargeable

• Generally has a lower energy density

• Limits on the depth of discharge and lifetime
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Silver-Zinc (Ag-Zn)

• Commonly used in early space systems, still popular

• Good energy density 
– 175 W-h/kg – primary

– 120-130 W-h/kg – secondary

• Limited cycle life
– 2000, 400, 75 @ 25, 50, 75% DOD

• 1 5 V/cell
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• 1.5 V/cell

Silver Cadmium (Ag-Cd)

• Better cycle life than Ag-Zn

• Better energy density than Ni-Cd

• Fair energy density 
– 60-70 W-h/kg – secondary

• Limited cycle life
– 3500, 800, 100 @ 25, 50, 75% DOD

1 1 V/ ll

72

• 1.1 V/cell
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Nickel Cadmium (Ni-Cd)

• Most common secondary battery in use

• Good deep discharge tolerance

• Can be reconditioned to extend life

• Low energy density 
– 20-30 W-h/kg 

• Long cycle life
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– 20,000, 3000, 800 @ 25, 50, 75% DOD

• 1.25 V/cell

NiCad reconditioning

• Reconditioning consists of a very deep discharge to the point 
of voltage reversal followed by a recharge under carefully 
controlled conditions

• Increases Battery Lifetime
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Nickel Hydrogen (Ni-H2)

• High internal pressure requires bulky pressure vessel 
configuration

• No reconditioning required

• Good energy density 
– 60-70 W-h/kg 

• Long cycle life
15 000 10 000 5000 @ 25 50 75% DOD
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– 15,000, 10,000, 5000 @ 25, 50, 75% DOD

• 1.30 V/cell

Nickel –Metal Hydride (Ni-MH)

• Same chemistry as nickel-hydrogen

• Hydrogen adsorbed in metal hydride to reduce pressure

• Improved packaging relative to nickel-hydrogen

• Good energy density 

• Limited cycle life

• 1.30 V/cell
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Lithium Batteries 

• Several Types:
– Li-SOCl2, Li-V2O5, Li-SO2

• Both primary and secondary designs available

• Very high energy density
– 650 W-h/kg, 250 W-h/kg, 50-80 W-h/kg  

• Higher Cell Voltage

2 5 3 4 V/ ll

77

• 2.5 – 3.4 V/cell

Nominal Bus Voltage

• Most spacecraft systems flown to date have used 28 VDC as 
the Bus Voltage

• Satisfactory for relatively small low-powered spacecraft

• Higher voltage systems have become popular for larger 
spacecraft
– Reduces current handling requirements of wire harness

– Reduces weight of harness
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– Reduces weight of harness

– Reduces resistive losses (heating) goes as current squared
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Depth of Discharge Tradeoff

• Tradeoff between battery mass due to unused capacity and 
battery degradation and lifetime reduction due to repeated 
deep discharge

• Low-altitude, low inclination orbits have most severe usage 
due to eclipse on each orbit
– Battery will be discharged and charged 12-16 times per day

– 10,000 cycles in a few years
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Charge Rate

• Rule of thumb:

• Charge rate also drives battery size
– Power input level that is too high can result in overheating of the battery 

and if carried to extremes explosive destruction

• Trickle Charge:

• This is quite conservative higher charge rates may be 
acceptable use manufacture’s specifications as ultimate guide
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Charge voltage

• Battery must be charged at a slightly higher voltage than Vave

or a full charge cannot be restored.

• Typically charging voltages are 20% higher than average 
discharge voltage

• This impacts solar array design
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Example 1

• What is the required size of a NiCad battery to support a 1500 
W payload in geostationary orbit?

• Given:
– Bus Voltage 28 VDC

– Peak Load 1500 W

– Maximum Load Duration 1.2 h

– Battery Energy Density 15 (W-h)/lb at 100% DOD

83

y gy y ( )

– Average Cell Voltage 1.25 V

– Maximum DOD 70%

Example 1: Solution

• Number of Cells:

• Can choose either 22 or 23 cells
– Selecting 22 saves mass and results in an acceptable bus voltage of 

27.5 VDC

• Total Charge Capacity and Battery Energy Density:
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Example 1: Solution (Cont.)

• It may be desirable to split battery into 2 or 3 individual battery 
packs for ease in packaging, placement, and balance

• Each battery pack must contain 22 series-connected cells to 
maintain proper voltage

• Redundancy management issues have been ignored.
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Primary Power 

• Solar Array
– Viable choice out to Mars Orbit (1.5 AU)

– Inverse-square law renders solar energy too diffuse to be useful

– Concentrators may extend capability to a limited degree

– Seriously degraded by extensive exposure to radiation
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Example 2

• What is the size of a solar array to support a 1500 W load, 
plus a suitable level of battery charging (Example 1) if we 
assume 2 x 4 cm cells? How many are needed? 

• Given:
– Cell efficiency 11.5% @ 301 K

– Maximum operating temp. 323 K

– End of Life Degradation (10 yrs)30%
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– Worst Case Sun Angle 6.5⁰ off normal

– Solar Intensity 1350 W/m2 at 1 AU

– Temperature coef. -0.5%/K (power)

– Packing factor 90% (10% loss for spacing)

– Battery capacity 90Ah

Example 2: Solution

• Array voltage must exceed battery voltage, rule of thumb 20%

• Battery Charging Power

• End of Life (EOL) Power is Load + battery charging power
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Example 2: Solution (Cont.)

• Compensate for other lost efficiency factors

• Temperature:

• Radiation exposure:

• Incident angle:

  89.011.01301323
005.0

1  KK
Ktemp
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Example 2: Solution (Cont. 2) 

• The End of Life Power is the result of applying the losses to 
the Beginning of Life array power
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Example 2: Solution (Cont. 3) 

• Need to calculate the total cell area to produce the required 
power.

• Then calculate the array size that will produce the required cell 
area
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Example 2: Solution (Cont. 4) 

• Need to calculate the number of cells.

• Design array to hold the required cells

20 2mA
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