

Battery Selection Procedure
 1. Determine the number of days storage Depending on whether the load is noncritical or critical 2. Determine the amount of storage required in A-h This is the product of the corrected A-h per day and the number of days of storage required. May vary with season
7

Battery Selection Procedure (continued) 📩 📴 🔤
 5. Check to see whether a temperature correction factor is required If so apply this to the results of (3) or (4) 6. Check to see whether the rate of charge exceeds the rate specified by the battery manufacturer. If so multiply the charging current by the rated number of hours for charging If this number is larger than (7) this is the required battery capacity
9

Array Sizing and Tilt Procedure	
 1. Determine the design current for each month of the year by dividing the corrected A-h load of the system each month by the monthly average peak sun hours at each array tilt angle 2. Determine the worst-case (highest monthly) design current for each tilt angle 	
11	

Array Sizing and Tilt Procedure	• 41, 8
 6. Select a module that meets the illumination and temperature requirements of the system as well as having a rated output current and voltage at maximum power consistent with system needs 	
 7. Determine the number of modules in parallel by dividing the derated array current by the rated module current. – Round up or down as deemed appropriate 	
13	3

Applications	
 Rural Electrification Water Pumping and Treatment Health Care System Communications Agriculture 	 Transport Aids Security Corrosion Protection Satellite Power Miscellaneous
	15

Water Pumping and Treatments Systems	MONTANA Reserves
 Pumping for drinking water Pumping for irrigation De-watering and drainage Ice production Saltwater desalination systems Water purification Water circulation in fish farms 	
	20

Communications	
 Radio repeaters Remote TV and radio receivers Remote weather measuring Mobile radios Rural telephone kiosks Remote data acquisition and transmission Emergency telephones 	
*	31

PV Phone Booth (London)	MORTANA data data data data data data data dat
	33

Emergency & Security Systems	
 Security lighting Remote alarm system Emergency phones 	
	45

 Ventilation systems Camper and RV power Calculators Automated feeding system on fish farms Solar water heater circulation pumps Path lights Yacht/boat power 	 Vehicle battery trickle chargers Earthquake monitoring systems Battery charging Fountains Emergency power for disaster relief Aeration systems for stagnant lakes
~	49

Space Applications: Primary Power Source	
 Are Solar Arrays the correct choice? Choice governed by: Power level Operating location Life expectancy Orientation requirements Radiation tolerance Cost What are the options? 	
4	61

Primary Batteries
 Long installed storage required Missiles in silos Interplanetary missions Often dry without electrolyte prior to activation Pyrotechnic valve fires to allow electrolyte to enter the battery from a separate reservoir Highly reliable quick reaction power source No maintenance Uses:
 Activate pyrotechnic charges and other deployment devices Electromechanical actuators and sensors that require isolation from other noisy circuits and power drains Most common type is Silver-Zinc

Nickel Cadmium (Ni-Cd)	
 Most common secondary battery in use Good deep discharge tolerance Can be reconditioned to extend life Low energy density 20-30 W-h/kg Long cycle life 20,000, 3000, 800 @ 25, 50, 75% DOD 1.25 V/cell 	
	73

Nickel Hydrogen (Ni-H ₂)	elig-et Desucciones
 High internal pressure requires bulky pressure vessel configuration No reconditioning required Good energy density 60-70 W-h/kg Long cycle life 15,000, 10,000, 5000 @ 25, 50, 75% DOD 1.30 V/cell 	
	75

Example 1	MUNICANA Commenced	
 What is the required size of a NiCad battery to support a 1500 W payload in geostationary orbit? Given: Bus Voltage 28 VDC Peak Load 1500 W Maximum Load Duration 1.2 h Battery Energy Density 15 (W-h)/lb at 100% DOD Average Cell Voltage 1.25 V Maximum DOD 70% 		
-	83	

Example 2: Solution (Cont. 3)
(In the calculate the total cell area to produce the required power.
• Need to calculate the total cell area to produce the required power.
• Then calculate the array size that will produce the required cell area

$$P_{BOL} = \eta_{si}I_{s}A_{cell} = (0.115)(1350W / m^{2})A_{cell} = 2800W$$

$$A_{cell} = 18(m^{2})$$

$$A_{cell} = \eta_{pack}A_{array} \Rightarrow A_{array} = \frac{A_{cell}}{0.9} = \frac{18m^{2}}{0.9} \approx 20m^{2}$$

