EE580 - Solar Cells Todd J. Kaiser

- Lecture 02 Microfabrication
 - A combination of Applied Chemistry, Physics and Optics
- Thermal Processes
 - Diffusion & Oxidation
- Photolithograpy
- Depostion
- Etching

Questions

- What is heat?
- Heat is the internal energy of a solid which is stored as atom vibration.
- What is heat flow?
- Heat flow represents the transfer from hot to cold of energy by the random motion and collisions of atoms and molecules
- Heat is removed by:
 - Conduction through solids

 - Convection through fluids and gases
 Radiation through no medium (IR)
- What is temperature?
- Temperature is a measure of the mean kinetic energy of the molecules.

Temperature Conversions

$$F = 32 \Leftrightarrow C = 0 \qquad F = 212 \Leftrightarrow C = 100$$

$$F = \frac{212 - 32}{100 - 0}C + 32 = \frac{180}{100}C + 32 = \frac{9}{5}C + 32$$
if $F = C \Rightarrow F = \frac{9}{5}F + 32$

$$-\frac{4}{5}F = 32 \Rightarrow F = \left(-\frac{5}{4} \times 32\right) = -40^{\circ}F = -40^{\circ}C$$

$$^{\circ} K = 273 + ^{\circ} C$$

Montana State University: Solar Cells Lecture 2: Microfabrication

Diffusion • Movement of particles from high concentration to low concentration • Mass transport within solids by stepwise atomic motion • Thermal energy drives reaction

Vacancy Diffusion Vacancy Vacancy Vacancy Requires vacancies (defects) Rate a function of the number of defects present Montana State University: Solar Cells Lecture 2: Microfishrcation

Diffusion

Process where particles tend to spread out or redistribute due to random thermal motion from high concentration to low concentration

Ex: spill a beer and eventually the whole room smells like a brewery

Or perfume

1-D system particles have an equally chance of jumping left or right due to thermal energy, if hit a wall bounce back to original bin

Montana State University; Solar Cells

Lecture 2: Microflabrication

Thermal Oxidation of Silicon

- Silicon oxidizes on exposure to oxygen
 - "Dry": Si + O₂ → SiO₂
 - "Wet": Si + 2H₂O → SiO₂ + 2H₂
- Room temperature in air creates "Native Oxide"
 - − Very Thin ~1nm − poor insulator, but can impede surface processing of Si
- Dry Oxide: 900-1200°C in O₂
 - Thin 0.05-0.5μm : Excellent insulator: gate oxides
- Wet Oxide: 900-1200°C in H₂O
 - Thick <2.5μm : Good Insulator: field oxides, Masking

Photolithography

- Lithography is the basic technique to define and transfer patterns in most microfabrication procedures
- Photolithography uses UV light through a mask onto a photosensitive organic (photoresist, PR)
- Positive resist → exposed resist is removed in developer→"What shows goes" (image of mask)
- Shipley 1813 Negative resist → UV light cross-links polymer and developer
- rinses away non-cross-linked chains→exposed remains (negative of mask)
- PR protects region for the next process step

Aligner Mask Holder

- Lower wafer 100 μm
- Calculate the exposure time
- Auto expose. Don't look at the light.
- Remove mask and wafer.
- Leave the machine on.

Montana State University: Solar Cell

Development

- PR comes with corresponding developer.
- Typically a KOH dissolved in water that reacts with PR to form amines and metallic salts
- Very temperature sensitive chemical reaction, therefore need to monitor or set temperature.
- After development a hard bake is used to further set the PR and drive off absorbed water and solvent.

Montana State University: Solar Ce

Develop

- MF 319
- Pour developer into crystallization dish
- Time the development
- Record time and developer concentration
- Rinse and inspect
- If PR is not entirely removed in exposed areas, return to developer
- · Record additional time

Montana State University: Solar Co

Postbake

- If patterns are well defined post bake
- This drives off the remaining solvent
- Record time and temperature

Montana State University: Solar Cells Lecture 2: Microfabrication

Wet Etching Silicon Dioxide

- HF supplied by vendor is 49%
 - Etch rate too fast

$$SiO_2 + 6HF \rightarrow H_2SiF_6 + 2H_2O$$

- Reaction consumes HF → rate will be function of time
- Buffering agent added to maintain HF concentration
 - Ammonium Fluoride: NH₄F
- 6:1 Buffered Oxide Etch
 - -6:1→NH₄F:HF (40%:49%)

Montana State University: Solar Cell

• The rate at which the material is removed $etch\ rate = \frac{\Delta T}{\Delta t} = \frac{change\ in\ thickness}{change\ in\ time}$ Montana State University: Solar Cells tecture 2: Microflabrication

Etch Oxide (HF solution)

- BOE 6:1
- Etch rate 900nm/min
- Calculate required time for your oxide thickness
- Approx. 5-6 minutes
- Rinse and dry
- It is better to over etch at this step than under etch.
- Record time and concentration used

Solvent Clean

- Acetone-Red
- Isopropyl Alcohol-Blue
- Methanol -Green
- DI water
- Dry with nitrogen gun
- Store wafer in dry box

Wet Etching Aluminum

- Phosphoric-Acetic-Nitric Acids (PAN etch)
 - 16:1:1:2→H₃PO₄:CH₃COOH:HNO₃:H₂O
 - Heated to 35-45°C
 - 350Å/minute
- Nitric oxidizes Al →Al₂O₃
- Phosphoric dissolves alumina
- By product hydrogen gas
 - Do under fume hood
 - Gas bubbles can micro-mask

Montana State University: Solar Cel

8