

Architecture Guide: Intel® Active Management
Technology

Published On: Thursday, February 15, 2007 | Last Modified On: Wednesday, September 19, 2007

Intel® AMT Capabilities Overview

Intel provides software developers with excellent support to take advantage of the next-generation
manageability capabilities of Intel® Active Management Technology (Intel® AMT). This overview
introduces developers to the hardware, firmware, and software architecture that underlie Intel AMT,
preparing them to get started with the technology.

Intel® Active Management Technology (Intel® AMT) is a silicon-resident management mechanism for
remote discovery, healing, and protection of computing systems. It provides the basis for software
solutions to address key manageability issues, improving the efficiency of remote management and
asset inventory functionality in third-party management software, safeguarding functionality of critical
agents from operating-system (OS) failure, power loss, and intentional or inadvertent client removal:

Remotely Discover Computing Assets in Any Operational State: Intel® AMT stores hardware asset
information in flash memory that can be read anytime, even if the PC is powered off or has an
inoperable OS. Intel AMT does not rely on software agents to prevent accidental data loss. It also
provides management applications with a general-purpose, non-volatile data store that accepts local
or network-based storage commands.

Remotely Heal Computing Assets: Proactive alerting notifies IT of a system problem, even when the
system is down. Intel AMT provides out-of-band (OOB) access to remotely diagnose, control, and
repair PCs after software, OS, or hardware failures. Alerting and event logging assists IT to diagnose
problems quickly to reduce end-user downtime. Intel AMT also supports IDE-Redirection and Serial-
Over-LAN capabilities for management applications.

Remotely Protect Computing Assets: Through Out of Band communication, each system’s software
version numbers are checked and, if necessary, system software and virus protection are remotely
updated with the most recent patches and virus definitions. Viruses and worms can also be
contained at their source, if needed, by means of built-in circuit-breaker functionality.

Intel AMT infrastructure supports the creation of setup and configuration interfaces for management
applications, as well as network, security, and storage administration. The platform provides standards-
1.1 based encryption support by means of Transport Layer Security (TLS), as well as robust
authentication support via Kerberos.

1.1 Intel AMT Use Case Features

The technical capabilities and business value of Intel AMT are summarized in the use cases linked to the
descriptions below:

Home › Intel Software Network › Manageability Software Developers

Use Case Purpose
Intel AMT Features
Implemented (Typical)

UC1 (Discover):
Platform Auditing

Reduce or eliminate manual inventory audits by being
able to locate systems regardless of power state or
health. Improve asset management.

Out of Band (OOB) access, Power
Status Control/ Monitoring, Intel® AMT
Flash, Remote platform inventory,
Tamper-resistant agent, Network
Admin Interface

UC2 (Discover):
Software
Inventory

Improve the software-inventory process; optimize
maintenance contracts, licensing, and configurations
inventory through firmware (FW) resident SW info.

Out-of Band (OOB) access, Remote
software inventory, 3rd Party Data
Store,Tamper-resistant agent, Network

Page 1 of 14Architecture Guide: Intel® Active Management Technology

10/10/2007http://softwarecommunity.intel.com/articles/eng/1032.htm

2. Intel AMT Hardware Architecture

Intel AMT's core hardware architecture is resident in firmware, as shown at a high level in Figure 1. The
micro-controller within the chipset's graphics and memory controller hub houses the Management
Engine (ME) firmware, which implements various services on behalf of management applications. Flash
memory houses system BIOS, code used by the management engine, and a third-party data store
(3PDS) that enables applications to store information as needed in non-volatile memory.

Management Admin Interface

UC3 (Discover):
Hardware
Inventory
Management

Reduce manual audits and better manage hardware
inventories, recalls, warranties. Efficiently manage
hardware inventories.

Out-of Band (OOB) access, Intel® AMT
Flash, Remote Hardware Inventory,
Tamper-resistant agent, Network
Admin Interface

UC4 (Heal):
Remote Diagnosis,
Remote Repair

Remotely diagnose and repair client machines,
reducing on-site visits to resolve SW problems, even
when OS is down.

Out-of Band (OOB) access, Remote
troubleshooting and recovery, Tamper-
resistant agent, Alert Handling, Read
Event Logs, Network Admin Interface

UC5 (Heal):
Remote Diagnosis,
Local Repair

Reduce visits to resolve HW problems with improved
remote diagnosis and hardware information.

Out-of Band access, Remote
troubleshooting and recovery, Remote
field-replaceable unit(FRU) inventory,
Intel® AMT Flash, Tamper-resistant
agent, Event Logs, Alert Handling,
Network Admin Interface

UC6 (Protect):
Software Version
Compliance

Ensure up-to-date software versions, virus
signatures, etc. Improve accuracy, speed and
efficiency of anti-virus software updates regardless of
OS or power state.

Out-of Band (OOB) access, IDE-R/SOL,
3rd Party Data Storage, System
Defense, Agent Presence, Alert
Handling, Read Event Logs, Network
Admin Interface

UC7 (Protect):
Hardware-based
Isolation and
Recovery

Detect and stop malware from propagating.
Suspicious activity detected at a node, alert sent to
console, IT quarantines system and updates policy
out of band. Monitors out-bound traffic by comparing
a timeslice of network traffic to enhanced filters in
the system defense engine to obtain data on the
timeframe and number of occurrences of a particular
network traffic event.

IDE-R/SOL, System Defense, Alert
Handling, Read Event Logs, Network
Admin Interface, Wired and/or
Wireless Network Filters, Flash Memory
for Enhanced Filter Storage, Worm-
Detection Filters

UC8 (Protect):
Presence Checking
of User Partition
Agents

Virtually eliminate the ability of users or malware to
circumvent protection. If the user disables agents,
that action triggers alerts, quarantines the system,
and re-initializes agent.

Agent Presence, Alert Handling, Read
Event Logs, IDE-R/SOL, Network
Admin Interface

UC9 (Protect):
Endpoint Access
Control (EAC)

Limit network access by visitor, rogue systems, and
systems that do not conform to company policies for
virus protection, OS patches, etc. Force systems that
do not meet corporate policy onto a remediation
network.

NAC server plug-in to read posture,
verify AMT signature and return health
statement; posture is created by Intel
AMT firmware from system and BIOS
data and then given to the Intel AMT
Posture Plugin in Host OS

UC10
(Configure):
One-Touch
Configuration

Perform automated setup and configuration of an
Intel AMT device, either using credentials stored on a
USB key storage device or by keying credential
information manually into BIOS.

Intel AMT firmware image, LMS driver,
MEI driver, Intel Setup and
Configuration Service (if a
corresponding service is not provided
by third-party software)

UC11
(Configure):
Remote (Zero-
Touch)
Configuration

Automatically set up and configure an Intel AMT
device upon connection to the network, either using a
third-party management software agent resident on
the client OS or from a 'bare-metal' state, without
requiring a host OS.

Intel AMT firmware image, LMS driver,
MEI driver, Intel Setup and
Configuration Service (if a
corresponding service is not provided
by third-party software)

Page 2 of 14Architecture Guide: Intel® Active Management Technology

10/10/2007http://softwarecommunity.intel.com/articles/eng/1032.htm

Figure 1. Intel AMT silicon architecture

The ME, which resides in the micro-controller within the graphics and memory controller hub, is shown
in more detail with associated architectural components in Figure 2. Note that the ME runs on auxiliary
power and is available at all system power states (S0-S5). The shared SPI interface allows multiple
masters to use a single FLASH device, including BIOS, firmware, 3PDS, and communications.

While one of the key usage models for Intel AMT is that it allows management applications to access
client computers when they are in a powered-off state, the radio in a wireless network interface card
(NIC) is typically not operational in power states other than S0. Thus, no wireless Intel AMT
functionality is available when laptops are powered down or in low-power modes (sleep, hibernate,
etc.).

Note: Intel AMT Releases 2.5 and 3.0 are concurrent releases, with Release 2.5 supporting wireless
capabilities on mobile platforms and Release 3.0 supporting wired PCs. For complete details about the
capabilities of each Release, see the Intel® Active Management Technology SDK Start Here Guide. For
details about Intel AMT wireless functionality, see "Technical Considerations for Intel® AMT in a
Wireless Environment."

Page 3 of 14Architecture Guide: Intel® Active Management Technology

10/10/2007http://softwarecommunity.intel.com/articles/eng/1032.htm

Figure 2. Management Engine (ME) architecture

2.1 ME External Memory (UMA)

A small amount of main memory (typically less than 1% of total system memory) is dedicated to
execute ME code and store ME run-time data. This characteristic is similar in concept to UMA for
Graphics, and this memory will be located adjacent to the Graphics UMA memory space. From the OS's
perspective, the Graphics UMA space will simply appear to be slightly larger. ME code is stored
compressed in Flash, so no hard drive access is required to make use of it.

The chipset protects this memory range from being accessed by the main CPU, preventing the ability of
malicious software to access this space. Note that this space is always taken from memory channel 0;
thus, the channel 0 DIMM slot must be populated. If memory slot 0 is not populated, no UMA is
available to the ME.

The ME can access its dedicated memory space even when the system is in S3 state, and the graphics
and memory controller hub can dynamically switch memory power state to allow ME access. This
capability allows for low average power, since the memory is 'on' only when needed.

2.2 LAN Out-of-Band Communications Architecture

Intel AMT provides for remote communication of PCs with a central management console via SOAP,
regardless of power state and OS condition, as shown in Figure 3. This mechanism allows the ME
firmware to share a common LAN MAC, hostname, and IP address with the OS, helping to minimize the
IT infrastructure cost to support functionality based on Intel AMT.

Page 4 of 14Architecture Guide: Intel® Active Management Technology

10/10/2007http://softwarecommunity.intel.com/articles/eng/1032.htm

Figure 3. Intel AMT out-of-band communications architecture

The out-of-band communications architecture supports the following filters:

ARP: Forwards ARP packets containing a specific IP address to the host and/or the micro-controller

DHCP: Forwards DHCP Offer and ACK packets to the host and/or the micro-controller

IP Port Filters (HTTP and Redirection): Redirects incoming IP packets on a specific port to the
micro-controller

2.3 Intel AMT Host and Network Access Framework

As shown in Figure 4, communication between the host OS and the ME is accomplished by means of the
Host Embedded Controller Interface (HECI). HECI is bi-directional, and either the host or Intel AMT
firmware can initiate transactions. In addition, transactions can be completed asynchronously by the
firmware and then synchronized later.

Page 5 of 14Architecture Guide: Intel® Active Management Technology

10/10/2007http://softwarecommunity.intel.com/articles/eng/1032.htm

Figure 4. Intel AMT host and network access

Message flow between one client pair does not impede message flow between a separate client pair,
and messages may be of any length, subject to the limitations of the client's receive buffer (rather than
limitations of the HECI drivers). HECI software and firmware drivers can break messages into packets in
order to support long messages. Flow control is communicated by HECI bus messages, and the HECI
driver will not transmit a message until the associated client has a buffer ready to receive it.

2.4 Shared Flash Architecture and Permissions

The Flash memory associated with Intel AMT is shared by multiple masters (Host, ME, and LAN). The
Flash protection scheme does not allow any master to perform a direct write to Flash, and read/write
permissions to each Flash region are enforced in hardware. Each master has a Grant Override register
that can override its descriptor permissions, giving other masters access to the region they own. A
security-override strap is used during initial manufacturing and service returns to program (or re-
program) the Flash.

Region boundaries are defined for BIOS, ME, GbE, and the Flash Descriptor. Master requester IDs are
defined for BIOS, GbE, and ME, and read/write access is defined for each master in each region. The
I/O controller hub hardware reads the Flash Descriptor at offset 0 at power-on reset. A 32-bit Flash
signature is used to determine whether the system is operating in Descriptor Mode (with security). If an
invalid signature is read, Descriptor Mode is disabled, and any master can have access to the entire
Flash.

2.5 Third-Party Data Storage (3PDS)

Intel AMT provides a general-purpose non-volatile data store for use by applications that provides
security equivalent to that provided by the OS for the file system. This data store is not a trusted-
platform module; it is provided through a Storage Manager implemented in the ME firmware.

The data store accepts storage commands over local host and network interfaces. Applications are
uniquely identified using a concatenation of strings selected by the software vendor and platform
owner, plus a unique user ID. It uses allocation lists to 'over-subscribe' the right to allocate, while only
allocating actual storage to applications that are registered with the system, protecting the space
allocated by one application from other applications unless the owning application grants permission.

The structure, meaning, and sensitivity of data placed into the non-volatile data store is transparent to
the Storage Manager. Applications are responsible for any security mechanisms necessary to protect
their stored data (e.g., encryption of sensitive data or keys). Applications are also responsible for

Page 6 of 14Architecture Guide: Intel® Active Management Technology

10/10/2007http://softwarecommunity.intel.com/articles/eng/1032.htm

backup and recovery of their Application ID, data-store configuration, and any stored data.

The current minimum Flash size is 2MB, defined as the sum of space allocated to BIOS, ME firmware,
and 3PDS. It supports partner space for four partners at 48KB each, with no support for non-partner
space.

2.6 Management Capability Evolution

The following table summarizes the evolution of management capabilities in Intel AMT, relative to
previous-generation management technologies.

3. Intel AMT Platform Security

Intel AMT integrates comprehensive security measures to protect data integrity throughout the system.

3.1 ME Firmware Security: Firmware Image Protection

The primary goal of ME firmware security is to ensure that only Intel-approved firmware images can run
on the Intel AMT subsystem hardware, and that only IT administrators can apply approved Intel
firmware update images.

During the design phase, a Firmware Signing Key (FWSK) public/private pair is generated at a secure
Intel Location, using the Intel Code Signing System. The Private FWSK is stored securely and
confidentially by Intel. Intel AMT ROM includes a SHA-1 Hash of the public key, based on RSA, 2048 bit
modulus fixed. Each approved production firmware image is digitally signed by Intel with the private
FWSK. The public FWSK and the digital signature are appended to the firmware image manifest.

At runtime, a secure boot sequence is accomplished by means of the boot ROM verifying that the public
FWSK on Flash is valid, based on the hash value in ROM. The ROM validates the firmware image that
corresponds to the manifest’s digital signature through the use of the public FWSK, and if successful,

Capabilities
Alert Standard
Format (ASF):
Client

Intelligent Platform
Management
Interface (IPMI):
Server

Intel® AMT

Event Alerting Yes Yes Yes

Event Logging No Yes Yes

Remote Reboot Yes Yes Yes

Secure Communications Simple Authentication RMCP+
HTTP Digest
Authentication, TLS
Encryption

Connection Protocol RMCP
IPMI = RMCP+Advanced =
HTTP

HTTP

Layer 4 Stack UDP UDP TCP

Persistent Asset
Information

No Yes Yes

OOB Management (OS
State Independent)

No Yes Yes

Remote Control
Capabilities

Remote Reboot Only
Serial Over LAN, KVM (with
additional hardware)

Serial Over LAN

Remote Media
Capabilities

PXE IDE/USB Redirect IDE Redirect

Remote BIOS Update No In Some Servers Yes

Page 7 of 14Architecture Guide: Intel® Active Management Technology

10/10/2007http://softwarecommunity.intel.com/articles/eng/1032.htm

the system continues to boot from Flash code.

3.2 Network and Local Host Traffic Security

Network security is provided by TLS, and XML-encoded messages are encapsulated in SOAP over HTTP.
TLS mutual authentication is carried out using the cipher suites TLS_RSA_WITH_AES_128_CBC_SHA,
TLS_RSA_WITH_RC4_128_SHA, TLS_RSA_WITH_NULL_SHA (export/import), and RSA certificates and
keys generated off-line and provisioned (2048 bit modulus). Mutual authentication is required by means
of preinstalled certificates on both the client and server.

Two local Intel AMT features exist: 3PDS and Local Agent Presence. The traffic between these two
features running on the host and Intel AMT goes over SOAP/TLS. The local interface is aligned with
network interface security.

3.3 Authentication

Each Intel AMT device must be provisioned with at least one username/password pair, preferably
unique. Because it is difficult to guarantee uniqueness, common username/passwords are a potential
vulnerability. In response to that challenge, Intel AMT systems support Kerberos in order to achieve
integration with Windows* domain authentication. This mechanism is based on a well-accepted set of
Internet standards, including Kerberos v5 (RFC 1510), GSS-API (RFC 1964), and SPNEGO (RFC 2478).

This approach simplifies User ID management by using the group-based Windows authorization
approach, rather than placing responsibility for creating a new approach on administrators. IT
administrators are allowed or denied privileges to manage Intel AMT devices based on their group
memberships in Active Directory.

3.4 Intel AMT Wireless Security

Wireless profiles, including network keys and other authentication information, must be programmed
directly into the firmware, since the ME cannot synchronize directly with the host-resident set of
wireless profiles.

Management applications that support the configuration of the wireless Intel AMT interface must
address the variety of security topologies employed by their customers' wireless networks. The Intel
AMT wireless management interface does not support open wireless networks, nor does it support
Wireless Equivalency Protocol (WEP). Use of Intel AMT wireless connectivity typically requires the use of
security included in or related to the 802.11i specification, such as Wi-Fi Protected Access (WPA) or
Robust Security Network (RSN). It also optionally supports 802.1x authentication.

Note that, when the wireless Intel AMT interface is initially accessed for setup and configuration, it will
by definition not yet have any wireless security profiles configured on it. For this reason, initial setup
and configuration of the wireless Intel AMT interface must be accomplished by a wired, rather than a
wireless connection.

3.5 3PDS Security

Command Path Security utilizes security mechanisms contained in the local and remote OS network
stacks (i.e., TLS with mutual authentication) to secure the path over which an application’s storage
commands travel. Access to administrative commands is controlled by a separate HTTP authentication
ACL (StorageAdministration). Access to registration and storage commands is controlled by another
separate HTTP authentication ACL (Storage).

Physical protection and isolation of the Flash device is provided by the chipset hardware. Because Flash
devices provide a limited number of write cycles (~100K operations per 4Kb Flash block), the chipset
also provides mechanisms to detect and prevent flash wear-out, as well as to prevent Flash wear-out
attacks by malware and non-partner applications. This functionality is augmented by mechanisms to
prevent Application ID masquerade attacks (ID/interface binding).

3.6 Export/Import Considerations

Page 8 of 14Architecture Guide: Intel® Active Management Technology

10/10/2007http://softwarecommunity.intel.com/articles/eng/1032.htm

Intel AMT systems are classified as 'commodity' for purposes of export from the United States, and as
such, they are not subject to export restrictions. If an importing country objects to confidentiality, a
SKU can be created with confidentiality disabled by setting the silicon fuse CRYPTO_ENA = FALSE, and
for TLS, using cipher suite RSA_WITH_NULL_SHA.

4 Intel AMT Interfaces

Intel AMT provides two general types of interfaces: network and local. Network interfaces consist of two
types: a SOAP interface and an embedded web user interface. The SOAP interface is the enterprise
model, enabling robust functionality designed to be controlled by management console applications
created by third-party software makers. The full range of APIs associated with the SOAP interface are
documented in the freely available Intel AMT SDK. The embedded web user interface has more limited
functionality and is intended for use without enterprise management software, such as in small-to-
medium business environments. The local host interface is used by software agents to access 3PDS and
to support agent presence.

4.1 Network Interface Overview

The Intel AMT network interface, represented in Figure 5, is OS-independent and always available,
assuming that the system is connected to the network and auxiliary power (with the caveat noted
above that the wireless management interface is not available in low system-power states). It is
manifested as a SOAP-based API based on Web Services Description Language (WSDL) 1.1. Each
service supported by the network interface is provided by a distinct WSDL file. Security measures for
the network interface include the use of HTTP Digest (RFC 2617) authentication by username/password
credentials. The interface also supports TLS-secured connections and mutual authentication. Intel AMT
Releases 2.5 and higher also support 802.11x., as well as Cisco Network Access Control (NAC).

Figure 5. Intel AMT network interface topology

4.2 SOAP API Realms

Page 9 of 14Architecture Guide: Intel® Active Management Technology

10/10/2007http://softwarecommunity.intel.com/articles/eng/1032.htm

Realms are a method of partitioning areas of responsibility within the administration of the firmware.
Authentication occurs over HTTP or HTTPS, and Access Control Lists are maintained in firmware.

4.3 API Overview

The following table provides an API overview:

GeneralInfo APIs:

The GeneralInfo APIs provides general (read only) information for various (local or network access)
management applications.

Realm Controls access to: Network Local

Administration
All of the Intel® AMT
interfaces X

General Info
General Information
Interface

X X

Hardware Asset Hardware Asset Interface X

Remote Control Remote Control Interface X

Event Manager Event Manager Interface X

Redirection
Redirection interfaces
(SOL/IDER)

X

Storage (3PDS) ISV Storage Interface X X

Storage Admin Storage Admin Interface X

Local Agent Presence
Local Agent Presence
Interface

 X

Remote Agent Presence
Remote Agent Presence
Interface

X

Circuit Breaker Circuit Breaker Interface X

Method Description & Compatibility

GetCoreVersion()

Reads the firmware version information from the Intel AMT.

Supported in Intel AMT Release 1.0 and later.

GetCodeVersions()

Reads the BIOS and firmware information from the Intel AMT

Supported by Intel AMT Release 2.0 and later.

GetProvisioningMode()

Gets the current provisioning mode (Enterprise or Small Business) from the
Intel AMT device.

Supported in Intel AMT Release 1.0 and later

GetProvisioningState()

Gets the current provisioning (configuration) state from Intel AMT.

Supported by Intel AMT Release 2.0 and later

GetVlanParameters()

Gets the VLAN mode and ID used by the Intel AMT device.

Supported by Intel AMT Release 1.0 and later

Gets the host name currently used by the Intel AMT device.

Page 10 of 14Architecture Guide: Intel® Active Management Technology

10/10/2007http://softwarecommunity.intel.com/articles/eng/1032.htm

HardwareAsset APIs:

The HardwareAsset APIs perform operations that return hardware asset data.

Remote Control APIs:

The Remote Control APIs managing the power and booting state of the Intel AMTmanaged system.

GetHostName() Supported by Intel AMT Release 1.0 and later

GetConfigServerInfo()

Gets Configuration Server Information from Intel AMT.

Suuported by Intel AMT Release 2.0 and later

GetAdminAclEntryStatus()

Reads Admin ACL entry status from Intel AMT.

Supported by Intel AMT Release 2.0 and later.

GetAdminNetAclEntryStatus()

Reads remote Network Admin ACL entry status from Intel AMT

Supported by Intel AMT Release 2.0 and later.

GetPasswordModel()

Gets the BIOS password mode of work from Intel AMT.

Supported by Intel AMT Release 2.0 and later

GetEnabledInterfaces()

Gets enabled interfaces information of Intel AMT device

Supported by Intel AMT Release 2.0 and later

GetNetworkState()

Reads Network State information from Intel AMT

Supported by Intel AMT Release 2.0 and later

GetSecurityParameters()

Reads local interface security parameters.

Supported by Intel AMT Release 2.0 and later.

GetIderSessionLog()

reads the IDER session log.

Supported by Intel AMT Release 2.0 and later.

Method Description & Compatibility

EnumerateAssetTypes()

Enumerates the names of hardware asset types supported by the Intel AMT
device.

Supported in Intel AMT Release 1.0 and later.

GetAssetData()

Returns hardware asset data of Intel AMT device

Supported by Intel AMT Release 1.0 and later.

Method Description & Compatibility

GetRemoteControlCapabilities()

Gets the remote control capabilities supported by the Intel AMT device

Supported in Intel AMT Release 1.0 and later.

RemoteControl() Remotely controls the boot and power state of the Intel AMT-managed
PC

Page 11 of 14Architecture Guide: Intel® Active Management Technology

10/10/2007http://softwarecommunity.intel.com/articles/eng/1032.htm

ISV Storage APIs:

The ISV storage APIs are used by ISVs to access the Intel AMT non-volatile storage feature

SOL Handling APIs:

IDER Handling APIs:

Event Manager APIs:

Event Manager APIs include operations that can be used by a remote application to subscribe for
events, set event filters and manage the event log

Supported by Intel AMT Release 1.0 and later

GetSystemPowerState()

Returns the power state of the Intel AMT-managed PC system

Supported by Intel AMT Release 1.0 and later.

Method Description & Compatibility

ISVS_GetAPIVersion()
Gets the ISVS API version supported by the Intel AMT device
(deprecated since AMT 2.0).

ISVS_GetAPIVersionEx()
Gets the ISVS API version supported by the Intel AMT device.
Extended version of ISVS_GetAPIVersion.

Function Description

IMR_SOLOpenTCPSession () Opens an SOL session with the specified client over a new TCP connection

IMR_SOLCloseSession() Closes an open SOL session with the specified client

IMR_SOLSendText()
Sends text (keyboard input) to the client, where it will be received as
incoming data from the serial controller

IMR_SOLReceiveText()

Data sent by the client on the serial controller is received by the library and
stored in an internal buffer.

This function retrieves SOL data that has been stored

Function Description

IMR_IDEROpenTCPSession() Opens an IDER session with the specified client over a new TCP connection

IMR_IDERCloseSession() Closes an open IDER session with the specified client

IMR_IDERClientFeatureSupported()
Queries the client about the special features that it supports. Currently the
only special feature defined is an ability to disable/enable host IDE devices.

IMR_IDERGetDeviceState() Queries the state of client IDE devices.

IMR_IDERSetDeviceState()
Controls the client IDE device(s) state. Devices can be disabled and enabled
through this function.

IMR_IDERGetSessionStatistics() Polls the active IDER session

SubscribeForAlert()
Adds an alert subscription to the Intel
AMT device.

EnumerateAlertSubscriptions() Enumerates alert subscriptions in the Intel AMT device.

Page 12 of 14Architecture Guide: Intel® Active Management Technology

10/10/2007http://softwarecommunity.intel.com/articles/eng/1032.htm

5. Intel AMT Software Development Kit and Other Developer Tools

GetAlertSubscription()

Gets value of one alert subscription from the Intel AMT
device.

CancelAlertSubscription()

Removes an alert subscription from Intel AMT device

EnumerateAlertPolicies() Enumerates alert policies in the Intel AMT device

SetAlertCommunityString()

Sets the community string in the Intel AMT device PET
alerts.

GetAlertCommunityString()

Gets the community string used in the Intel AMT
device PET alerts.

AddEventFilter() Adds an event filter to the Intel AMT device

EnumerateEventFilters()

Enumerates the event filters in the Intel AMT device

GetEventFilter()

Gets the value of one event filter from the Intel AMT
device

UpdateEventFilter()

Updates value of one event filter in the Intel AMT

device

RemoveEventFilter() Removes an event filter from the Intel AMT device

GetEventLogStatus() Gets the attributes of the event log status

ReadEventLogRecords()

Reads all event log records stored in the Intel AMT

device.

ClearEventLog() Clear the event log in the Intel AMT device

FreezeEventLog()

Freezes the event log in the Intel AMT device to
prevent modification

SetEventLogTimestampClock() Sets the time used to timestamp the event log

GetEventLogTimestampClock()

Gets the current time used to timestamp the event log

EnumerateSensors()

Enumerates all sensors controlled by the Intel AMT

Device

GetSensorAttributes()
Gets sensor attributes from a sensor controlled by the
Intel AMT device

SubscribeForGeneralAlert() Register to receive a selected alert type

EnumerateGeneralAlertSubscriptions() Enumerate subscriptions for events created by the user

GetGeneralAlertSubscription() Returns details of a selected general alert

Page 13 of 14Architecture Guide: Intel® Active Management Technology

10/10/2007http://softwarecommunity.intel.com/articles/eng/1032.htm

The Intel AMT Software Development Kit (SDK) provides tools and capabilities that enable developers to
develop manageability applications that take full advantage of Intel AMT. The latest version of the Intel
AMT SDK is freely downloadable from http://www.intel.com/cd/ids/developer/asmo-
na/eng/321157.htm. The SDK includes the following components:

Intel AMT Storage Library and API provides abstraction of Intel AMT non-volatile storage calls. The
library enables local and remote access to the non-volatile store on Intel AMT machines in all power
states, and it includes a static library, headers, and sample code, as well as a C-based API.

Intel AMT Redirection Library and API provides abstraction of redirection calls, Serial over LAN (SoL)
console redirection, and IDE Redirection (IDER). The library enables remote management of Intel
AMT machines through SoL and IDER sessions, and it includes a dynamic library (Windows), static
library (Linux*), header files, and sample code, as well as a C-based API.

Intel AMT Network Interfaces include the SOAP-based network interfaces defined in WSDL files.

Documentation includes a User Guide, Storage Design Guide, Network Design Guide, and Validation
Design Guide. Also included are a Redirection Library User Guide, Developer Guide to the sample
setup, Small Business Configuration User Guide, and System Defense Feature & Agent Presence
Overview.

The Intel AMT SDK can be used with any language that includes a SOAP stack, including gSOAP (C++),
ATL SOAP (MS C++, although optional parameters are not supported and a memory leak has been
reported), and C#. The SDK requires the Microsoft .NET Framework v1.1 (some samples and other
components require the .NET Framework 2.0), and Windows Storage library requires the Microsoft
Platform SDK (for WinHTTP).

Additional freely downloadable tools are also provided by Intel for use by developers in creating
management applications that support Intel AMT. For a full discussion of these tools, please see the
Intel® AMT Developer Resource Guide.

6. Intel AMT Developer Support

Developers creating products that take advantage of Intel AMT are entitled to technical support from
Intel. A Manageability developer forum exists for the purpose of providing support for
architect/developer questions regarding Intel manageability technologies, including the Intel AMT
Software Development Kit (SDK), Developer Tool Kit (DTK), and Setup and Configuration Service
(SCS). Intel is in the process of building a community around manageability to help foster growth and
promote development efforts. Questions are answered by both peers and Intel representatives that
monitor this forum.

7. Additional Resources

The Intel Manageability Community is a core developer resource for manageability technologies from
Intel that provides tools, documentation, use cases, blogs, and user forums.

Intel AMT Technology & Research provides in-depth information about the hardware and software
features and capabilities that underlie Intel AMT.

Intel AMT Technology Brief (PDF 424KB) provides a concise overview of the technology from a
business perspective, with a focus on features and benefits to IT organizations and software
vendors.

Post a comment If you have any questions, please contact our support team.

Page 14 of 14Architecture Guide: Intel® Active Management Technology

10/10/2007http://softwarecommunity.intel.com/articles/eng/1032.htm

