MEMORANDUM

TO: University Facilities Planning Board: Nancy Cornwell - Chair, Walt Banziger - Vice Chair, Kurt Blunck, Allyson Brekke, Jeff Butler, ASMSU President, Anne Camper, Glenn Duff, Michael Everts, Chris Fastnow, Greg Gilpin, Mandy Hansen, Carsten Kirby – ASMSU, Terry Leist, Robert Marley, Martha Potvin, Fatih Rifki, Tom Stump, Julie Tatarka, Jim Thull, Brenda York

FROM: Victoria Drummond, Assoc. University Planner; Planning, Design & Construction

RE: July 29, 2014, meeting of the University Facilities Planning Board to be held in the Facilities Meeting Quonset at 3:30 pm

ITEM No. 1 – APPROVAL OF NOTES
Approval of the draft notes from July 1, 2014.

ITEM No. 2 – EXECUTIVE COMMITTEE REPORT
Report on any current Executive Committee actions.

ITEM No. 3 – CONSENT AGENDA -

ITEM No. 4 – RECOMMENDATION -
Presenters – Victoria Drummond and EJ Hook, FPDC and Facilities Services
Andy Hansen and Sarah Eastin from NEON

ITEM No. 5 – INFORMATIONAL -
Residence Hall Update
Presenter – Andy Allen

ITEM No. 6 – INFORMATIONAL -
Classroom Design Guidelines Revision
Presenter – Randy Stephens

ITEM No. 7 – INFORMATIONAL -
Campus Planning Overview-Upcoming Project Considerations
Presenter – Walt Banziger

ITEM No. 8 – INFORMATIONAL -
Garfield St & S. 19th Ave Intersection
Presenter – Bob Lashaway

HORIZON ITEMS
• External Building Signage Policy
• Seminar Materials
• Master Planning Issues
• Revisit and Update Policies
• HBO5 Amendment for Lab Facility

VCD/lsb
PC:
President Cruzado
Melissa Hill, President’s Office
Maggie Hammett, President’s Office
Keely Holmes, Provost Office
ASMSU President
Diane Heck, VP Admin & Finance
Heidi Gagnon, VP Admin & Finance
Jennifer Joyce, VP Student Success
Linda LaCrone, VP Research Office
Bonnie Ashley, Registrar
Robert Putzke, MSU Police
Becky McMillan, Auxiliaries Services
Heidi Gagnon, VP Admin & Finance
Jennifer Joyce, VP Student Success
Linda LaCrone, VP Research Office
Bonnie Ashley, Registrar
Robert Putzke, MSU Police
Becky McMillan, Auxiliaries Services
Julie Kipfer, Communications
Jody Barney, College of Agriculture
Susan Fraser, College of Agriculture
Robin Happel, College of Agriculture
JoDee Palin, College of Arts & Arch
Victoria Drummond, Planning D&C
MEETING NOTES OF THE
UNIVERSITY FACILITIES PLANNING BOARD
July 1, 2014

Members Present: Nancy Cornwell - Chair, Walt Banziger - Vice Chair, Jeff Butler, Tom Stump, Julie Tatarka, Carsten Kirby,

Proxy: Walt Banziger for Bob Lashaway, Brenda York and Ritchie Boyd, Victoria Drummond for Allyson Brekke

Members Absent: Terry Leist, Renee Riejo Pera, Kurt Blunck, Michael Everts, Fatih Rifki, Jim Thull, Glen Duff, Martha Potvin, Robert Marley, Brett Gunnick, Greg Gilpin, Chris Fastnow

Staff & Guests: Randy Stephens, Victoria Drummond, Ryan Diehl

The University Facilities Planning Board met beginning at 3:30 pm to discuss the following:

ITEM No. 1 – Approval of Meeting Notes
Butler moved to approve the meeting notes from June 17, 2014. Drummond seconded the motion. The meeting notes were approved unanimously.

ITEM No. 2 – Executive Committee Report
There was no action from the Executive Committee to report.

ITEM No. 3 – Consent Agenda – No items

ITEM No. 4 – Recommendation- Outdoor Recreation Fence Screening
Victoria Drummond presented the blue tarp that has been added to the chain link fence surrounding the parking area of ASMSU Outdoor Recreation Building. The tarp was installed as a temporary security measure to deter theft of equipment, including large rafts which are expensive and not insured. Ryan Diehl is the Director of Outdoor Recreation and has been in the position for about a year. He immediately identified security of this area as a concern, and made the decision to install the tarp as a temporary solution. Outdoor Recreation would also like to expand their program and equipment inventory in the future, as there is not enough room indoors to store the equipment.

Butler asked what Diehl would ideally like to do to make the area more secure; Diehl stated he would like to extend the roof and raise the height of the fence, to make the area inaccessible through improper means. Butler explained that when the Outdoor Recreation building was being designed that a variety of security measures were discussed and cut from the project. He suggested leaving the blue tarp as a temporary solution for the duration of construction on the Freshman Residence Complex, until move in day in August 2016. Cornwell and Diehl thought this seemed reasonable. Drummond read a proxy vote from Allyson Brekke, which stated that she would agree with allowing the tarp to remain in place as a temporary measure but also recommended more permanent solutions including grey-color slats and security cameras. Banziger also suggested a camera system and signage, and that Outdoor Recreation could consult with University Police Department and Chief Putzke for security recommendations and improvements. Cornwell added that the Marching Band may be moving to practice on the Intramural Fields and install a storage area, so there might be an opportunity for Marching Band to partner together.

Drummond recommended retroactive approval of the blue tarp installed on the chain link fence located at the Outdoor Recreation yard area, through August 15, 2016, to provide visual screening of the yard during construction of the Freshman Residence Complex. During this time if the tarp deteriorates to less than original installed condition, it needs to be replaced or removed. Outdoor Recreation will consult with Facilities Planning, Design & Construction for permanent security screening solutions. Tatarka seconded the motion. The motion passed unanimously.

The vote:
Yes: 10
No: 0

This meeting was adjourned at 4:30p.m.
<table>
<thead>
<tr>
<th>VCD: lsb</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC:</td>
</tr>
<tr>
<td>President Cruzado</td>
</tr>
<tr>
<td>Melissa Hill, President’s Office</td>
</tr>
<tr>
<td>Maggie Hammett, President’s Office</td>
</tr>
<tr>
<td>Julie Heard, Provost Office</td>
</tr>
<tr>
<td>ASMSU President</td>
</tr>
<tr>
<td>Diane Heck, VP Admin & Finance</td>
</tr>
<tr>
<td>Julie Kipfer, Communications</td>
</tr>
<tr>
<td>Jody Barney, College of Agriculture</td>
</tr>
<tr>
<td>Susan Fraser, College of Agriculture</td>
</tr>
<tr>
<td>Robin Happel, College of Agriculture</td>
</tr>
<tr>
<td>JoDee Palin, College of Arts & Arch</td>
</tr>
<tr>
<td>Victoria Drummond, Facilities PDC</td>
</tr>
</tbody>
</table>
NEON Project - Continued

• Core site slated to operate for the 30-year lifetime of NEON (D11- LBJ National Grassland, etc)

• Relocatable site related to land use, invasive species, urban effects to operate for 7 - 10 years (Klemme Range Research Station, Wichita Mountain Wildlife Refuge, MSU, etc).

• Aquatic sites including passive monitoring systems (Klemme South Pond and Pringle Creek).

NEON Project

• National Science Foundation (NSF) funded project to create a new national observatory to collect ecological and climatic observations across the continental United States, including Alaska, Hawaii and Puerto Rico.

• NEON partitioned the U.S. into 20 eco-climatic domains, each of which represents different regions of vegetation, landforms, climate, and ecosystem performance.

• NEON will collect site-based data about climate and atmosphere, soils and streams and ponds, and a variety of organisms.

Domain Map

[Map showing NEON field sites with various regions and sites marked, including NEON field sites, Great Lakes, and variousNão especificado]
TOS: Terrestrial Organismal & Biogeochemical Observations

<table>
<thead>
<tr>
<th>Beetles</th>
<th>Mosquitoes</th>
<th>Ticks</th>
<th>Mammals</th>
<th>Birds</th>
<th>Microbes</th>
<th>Soil</th>
<th>Plants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diversity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abundance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Function</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Productivity & Biomass</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pathogens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pools/fluxes: Biogeochemistry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NEON TOS Sampling Schematic

Sampling is designed to facilitate linkages

- Between NEON systems (e.g. sensors on the towers, organismal measurements, and remote sensing data)
- Between biogeochemistry and organismal observations taken at the plot scale

Sampling includes

- **Tower plots** located within and potentially around the airshed (depending on airshed size)
- **Distributed plots** throughout a site using a stratified-random design.
- **Gradient plots** throughout site, added after AOP flies the site.

NEON TOS Sampling Schematic

Legend:
- Tower, soil array
- Precipitation grid
- Distributed Base plot
- Gradient Base plot
- Tower Base plot
- Tower Phenology plot
- Tick plot
- Mammal grid
- Bird grid
- NEEM veg type A
- NEEM veg type C
- NEEM veg type D
- Veg type C
- Veg type D

TOS Sampling at Bozeman Urban Relocatable

Tower Plots: 30 plots (20 x 20 m) located within the tower airshed (located within the dominant air flow near the tower site) to optimize linkages with flux and phenocam data from tower infrastructure. Protocols associated with tower plots include:

- **Plant** productivity, belowground biomass, aboveground biomass, litter, biogeochemistry, and large woody debris (5-20 plots)
- **Soil** microbes and biogeochemistry (soil cores and underground sensors in 5-20 plots)

Tower Plant phenology: (200 x 200 m) (one or two square ‘loop’ transects)
TOS Sampling at Bozeman Urban Relocatable

Distributed Plots are located throughout the site according to a stratified random sampling design. Sampling includes the following:

- Distributed Base Plots: 40 x 40 m
- Distributed Mosquito: Trap
- Distributed Tick transect loop: 40 x 40 m
- Distributed Small Mammals grid: 90 x 90 m
- Distributed Bird grid: 500 x 500 m

TOS Sampling at Bozeman Urban Relocatable

Distributed Plot Sampling (Cont.)

- Distributed Bird: breeding landbird point counts.
- Distributed Small Mammals: small mammal trapping grids
- Distributed Mosquito: mosquito CO₂ light trap collections
- Distributed Tick: Tick collections (drag cloth)

TOS Sampling at Bozeman Urban Relocatable

Distributed Base

- Plant biodiversity observations
- Above-ground biomass and plant productivity measurements (woody stem mapping, sampling includes clipping, harvesting of herbaceous vegetation, leaf area index measurements)
- Coarse woody debris monitoring (and when necessary collection of small samples to determine biomass)
- Litter collections using baskets and soil samples
- Beetle pitfall trap collections
- Plant and soil biogeochemistry
- Soil microbe collections

TOS Sampling at Bozeman Urban Relocatable

Gradient Plots:

Established as needed along topographical and/or vegetation gradients in order to optimize sampling and validation of AOP data.

Locations for these plots cannot be determined prior; 1-3 years of data is necessary to determine if the Distributed Plots described above sufficiently capture gradients present at a site.
Example: NEON TOS Plots at Disney (Domain 3)

Soil Measurements

Tower Measurements

Sensors

- Tower and Soil Array at all 60 sites
- 37 Instrument Assemblies
- Over 2000 measurements per core site at frequencies of daily, and ~0.1 to 40 Hz
 - Meteorology
 - Radiation
 - Atmospheric Chemistry and Air Quality
 - Dust and Aerosols
 - Fluxes of CO2, H2O, and Energy
 - Soil Measurements
Physical Infrastructure

Airborne Observatory Platform

• Aircraft with specially mounted instrumentation will fly routine patterns over all NEON sites and surrounding areas (~300km² range) approximately once every two years to collect detailed aerial data about the regional landscape and vegetation.

• Each site fly-over will last approximately four hours, with planes flying at an altitude between three and five thousand feet. All flights will be coordinated with the site host.

NEON Site Activities

• NEON Site Selection
• FIU Site Characterization
• FCC Site Characterization (Geotechnical work, survey)
• Site permitting efforts
• Completed building permit/land use permit
• Construction initiation
• Tower Instrument Deployment
• Estimated timeframe: 1.5-2 years

NEON Site Components

• Tower: Square lattice tower equipped with internal ship ladder system for access.
 - Foundation footprint: usually 8’x8’

• Instrument Hut:
 - 8’x20’x9’
 - Footprint: 10’x20’ foundation footprint

• Access Path:
 - Width: 4’ to 2.5’
 - Gravel, roll-mat, or boardwalk.

• Soil Array: soil monitoring underground (2.5 inch diameter casing, no more than 7 feet in depth).
 - Requires power which will have a post and communication box mounted to post.

• Soil Pit: 6’x6’: Open for 3-5 days, construction supervisor on site.

• Power: Requires Grid Power

• Data: Requires data connectivity, may use cellular depending on cell coverage.
Site Construction

Scheduled to begin Summer, 2015

Duration approximately 4-6 months.

NEON Construction limits: Strict limits are delineated to restrict equipment to construction area (6 feet wide at typical NEON sites).

Construction staging: 40' x 40' parking area

Construction equipment may include:
- Mini-excavators
- Skid-Steer
- Pickup trucks

Rehabilitation and Reclamation

• After the 7 - 10 year life of the tower site, NEON will restore the site to MSU / Planning Board requirements.

• NEON can remove all infrastructure as well as restore the area impacted by NEON with native vegetation per site host requirements.

• The existing components described above will be removed and disassembled, any foundations removed and ground disturbance mitigated via Board / MSU direction.
STAFF COMMENTS:

The National Ecological Observatory Network (NEON) has been deliberating with MSU over the past two years to expand their grant-funded research project to the campus.

On May 20, 2014 Walt Banziger updated the UFPB with the final site selected the area south of College Street and west of S 13th Avenue – in the area where the Family Graduate Houses were removed.

This site will have the full spectrum of activities for the NEON science, and will include a tower, path, hut, soils array. See the accompanying power point and proposed site plan.

NEON is a continental-scale ecological observation system for examining critical ecological issues. Enabling a Better Understanding of Continental-Scale Ecology NEON is designed to gather and synthesize data on the impacts of climate change, land use change and invasive species on natural resources and biodiversity. Data will be collected from 106 sites (60 terrestrial, 36 aquatic and 10 aquatic experimental) across the U.S. (including Alaska, Hawaii and Puerto Rico) using instrument measurements.
and field sampling. The sites have been strategically selected to represent different regions of vegetation, landforms, climate, and ecosystem performance. NEON will combine site-based data with remotely sensed data and existing continental-scale data sets (e.g. satellite data) to provide a range of scaled data products that can be used to describe changes in the nation’s ecosystem through space and time. The MSU site is one of three planned for Montana, and is a terrestrial site, and relocatable, because it will only be in operation for 7 to 10 years collecting data.

<table>
<thead>
<tr>
<th>Site Name</th>
<th>State</th>
<th>County</th>
<th>Type</th>
<th>Latitude, Longitude</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bozeman Creek (Sourdough Creek)</td>
<td>MT</td>
<td>Gallatin County</td>
<td>Aquatic</td>
<td>45.63718,-111.031868</td>
<td>12</td>
</tr>
<tr>
<td>Bozeman, MT</td>
<td>MT</td>
<td>Montana State University</td>
<td>Relocatable</td>
<td>45.66985,-111.0559</td>
<td>12</td>
</tr>
<tr>
<td>Paradise Valley, MT</td>
<td>MT</td>
<td>Montana Department of Natural Resources</td>
<td>Relocatable</td>
<td>45.392911,-110.7163</td>
<td>12</td>
</tr>
</tbody>
</table>

NSF has committed to funding the NEON observatory and the entire project, so there will be no cost to the Bozeman community or any other entities. NEON’s standard Tower design planned for MSU is 105 feet tall (see the photo attached for a similar sized tower). The nature of the data collected dictates this height. This tower will be steel. The instrument hut dimensions are 8’ W x 20’ L x 9’ T. Five (5) device posts will also be installed – these support a power/communication box. And there will be access paths.

NEON Education Mission: Enable society and the scientific community to use ecological information and forecasts to understand and effectively address critical ecological questions and issues. Educational Goals Promote and facilitate public understanding of ecological science (i.e., scientific literacy). Educate the next generation of scientists Enhance diversity of ecological research and education communities. Provide tools for students, educators and decision makers to use NEON data to make informed decisions about ecological issues - See more at: http://www.neoninc.org/education#sthash.eyk4sEhW.dpuf

Free and Publicly Accessible Resources Continental-scale environmental data Infrastructure for research (PDF) Educational tools. NEON’s open-access approach to its data and information products will enable scientists, educators, planners, decision makers and the public to map, understand and predict the effects of human activities on ecology and effectively address critical ecological questions and issues. The tentative construction start date is June 2015, and construction duration will be approximately 4 months. It
will be NEON’s responsibility to coordinate necessary permits and other approvals. NEON will decommission when the project is complete and restore the site to University standards. See more at: http://neoninc.org/about#sthash.Q7GuVjGl.dpuf

<table>
<thead>
<tr>
<th>COMPLIANCE:</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSU POLICIES</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>COMMITTEE OR APPROPRIATE REVIEW</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>MASTER PLAN</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

BOARD ACTION REQUIRED:

Recommend approval of the NEON site plan and location on campus.
ITEM # 5
Freshman Residence Hall Update

PRESENTERS:

Andy Allen, Project Manager FPDC

<table>
<thead>
<tr>
<th>PROJECT PHASE:</th>
<th>PLANNING</th>
<th>SCHEMATIC</th>
<th>DESIGN DOCUMENTS</th>
<th>CONSTRUCTION DOCUMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VICINITY MAP:

![Map of University Campus with red circle highlighting Freshman Residence Hall](image)

STAFF COMMENTS:

Andy Allen will be presenting an update on the Freshman Residence Hall.

<table>
<thead>
<tr>
<th>COMPLIANCE:</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSU POLICIES</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>COMMITTEE OR APPROPRIATE REVIEW</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>MASTER PLAN</td>
<td>NA</td>
<td></td>
</tr>
</tbody>
</table>

BOARD ACTION REQUIRED:

No action needed as this is informational only
ITEM # 6 Classroom Design Guidelines Revision

PRESENTERS:

Randy Stephens, University Architect FPDC

<table>
<thead>
<tr>
<th>PROJECT PHASE:</th>
<th>PLANNING</th>
<th>SCHEMATIC</th>
<th>DESIGN DOCUMENTS</th>
<th>CONSTRUCTION DOCUMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

VICINITY MAP:

Applicable to all MSU Bozeman Classrooms

STAFF COMMENTS:

This design guide is intended to provide information and a framework for the design, remodeling, construction and maintenance of classrooms and instructional spaces at Montana State University. It compiles the knowledge and experience of those responsible for day to day campus operations as well as those who plan for the future. Research on the latest trends in teaching in higher education was reviewed as well as design guidelines from other colleges and universities. We expect this document to continue to be refined as we learn more, grow in experience, and receive more input from those who use the spaces.

The planning and writing of this design guide was carried out by representatives from the Classroom Committee, a subcommittee of the University Facilities Planning Board of Montana State University, with input from the University’s Facilities Planning Design & Construction (FPDC) department, the office of Facilities Services (FS), Registrar’s office, office of the Provost, MSU Information Technology Center, as well as faculty and student representatives.

<table>
<thead>
<tr>
<th>COMPLIANCE:</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSU POLICIES</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>COMMITTEE OR APPROPRIATE REVIEW</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>MASTER PLAN</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

BOARD ACTION REQUIRED:

No action needed as this is informational only
UNIVERSITY FACILITIES PLANNING BOARD
July 29, 2014

ITEM # 7
Campus Planning Overview – Upcoming Project Considerations

PRESENTERS:

Walt Banziger, Project Manager FPDC

<table>
<thead>
<tr>
<th>PROJECT PHASE:</th>
<th>PLANNING</th>
<th>X</th>
<th>SCHEMATIC</th>
<th>DESIGN DOCUMENTS</th>
<th>CONSTRUCTION DOCUMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>VICINITY MAP:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Applicable to multiple campus sites and functions

STAFF COMMENTS:

Many of the below projects are either in the planning stages or are in some sort of planning/consideration stage for the foreseeable future. The primary issue at hand is where these potential projects might and should be located on our campus. UFPB will get an overview of these projects, to approach the planning and development of our campus in a comprehensive manner rather than a project by project approach.

ROTC Field Storage Facility – Site Location
HHD Human Performance Lab – Site Location
Romney - Third Floor Class/Dance uses
Marching Band Storage – Site location
Student Health Services Facility – Future Site Location
Outdoor Recreation – Expansion
Athletics Indoor Practice Field – Site location
Student Indoor Sports Complex – Future Considerations and Site Location
Parking Structure – Site Location
SOB Barn – Potential future uses associated w/projects noted
Facilities Relocation – Existing Site Consideration
ITC/Admin Building – Site Considerations
USDA Site – Disposition
Lease Opportunities – Consider options for any of the above

COMPLIANCE: | YES | NO |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MSU POLICIES</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>COMMITTEE OR APPROPRIATE REVIEW</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>MASTER PLAN</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

BOARD ACTION REQUIRED:

No action needed as this is informational only
ITEM # 8 Campus Planning Overview – Upcoming Project Considerations

PRESENTERS:

Bob Lashaway, Assoc. VP University Services

PROJECT PHASE: PLANNING X SCHEMATIC DESIGN DOCUMENTS CONSTRUCTION DOCUMENTS

VICINITY MAP:

STAFF COMMENTS:
The intersection at S. 19th Ave and Garfield St. currently accommodates full north/south traffic movements, but limits east and west bound traffic on Garfield to right-turns only onto S. 19th Ave. The Montana Department of Transportation will be installing a new traffic signal which will allow full crossing and full turning movements from all four directions. The new signal will include controlled pedestrian crosswalks.
<table>
<thead>
<tr>
<th>COMPLIANCE:</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSU POLICIES</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>COMMITTEE OR APPROPRIATE REVIEW</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>MASTER PLAN</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

BOARD ACTION REQUIRED:

No action needed as this is informational only