MSU-Wind Applications Center: Wind Resource Worksheet

Theoretical	Power Ca	lculation
THEOLEHCA	POWELCA	иланон

_				
$-\alpha$	ua	111	าท	C
Lu	uc	יוטו	ווע	Э.

Theoretical Power[w] =
$$\frac{1}{2} * A * \rho * v^3 * .59$$
 $\rho = \frac{Pressure}{R * Temperture}$

A=

Ste

swe	pt area	ρ= air density v= velocity R= universal gas constant
eps	:	
1.	Measu	re wind speed from fan using anemometer and data logger.
	a.	Low Setting:m/s
	b.	High Setting:m/s
2.	Record	l temperature of room from temperature sensor and data logger
	a.	Temp:°C
3.	Calula	e Swept Area (A)
	a.	Measure radius of turbine blade setup. Radius:m
	b.	Area = $\pi r^2 = \pi^* \left(\underline{\hspace{1cm}} \right)^2 = \underline{\hspace{1cm}} m^2$
4.	Air De	nsity (ρ)
	a.	Pressure 1 inHg = 3,386.389 pascals at 0 °C
		Pressure in Hg * 3,386.39 =pa
	b.	Temperture°C + 273 =°K
	C.	Universal Gas Constant (R)
		R = 287.058 J/(kg*K)
	d.	$\rho = $ kg/m ³
5.	Theore	etical Power
	a.	Low Setting Theoretical Wind Power
		i. Power= ½****.59 = (watts)
	b.	High Setting Theoretical Wind Power
		i. Power= ½****.59 = (watts)

MSU-Wind Applications Center: Wind Resource Worksheet

Test Turbine Power Calculation Equations: Power= I*V I= Current V= Voltage Steps: 1. Measure the voltage from turbine using multimeter. a. Low Speed ______ V High Speed ______ V 2. Measure the current using the multimeter with resistor and multimeter a. Low Speed ______ a High Speed ______ a 3. Actual Power Produced from turbine a. Low Speed Power= ____ * ____ = ____ w b. High Speed Power = ____ * ____ = ____ w Turbine Efficiency Equations: Actual Power Produced/ Theoretical Power = ŋ

Steps:

η= efficiency

1.	Low Speed Efficiency	=	*100 = _	%
2.	High Speed Efficiency	/ =	*100 =	%

Summary of Results	Low Wind Speed	High Wind Speed
Theoretical Power		
Actual Power		
Efficiency		