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Abstract

Many aquatic invertebrates are declining or facing extinction from stressors
that compromise physiology, resource consumption, reproduction, and phe-
nology. However, the influence of these common stressors specifically on
consumer-resource interactions for aquatic invertebrate consumers is only
beginning to be understood. We conducted a field study to investigate
Pteronarcys californica (i.e., the “giant salmonfly”), a large-bodied insect that is
ecologically and culturally significant to rivers throughout the western
United States. We sampled gut contents and polyunsaturated fatty acid compo-
sition of salmonflies to compare resource consumption across river (Madison
or Gallatin, Montana), sex (male or female), and habitat (rock or woody
debris). We found that allochthonous detritus comprised the majority of sal-
monfly diets in the Gallatin and Madison Rivers, making up 68% of the gut
contents on average, followed by amorphous detritus, diatoms, and filamen-
tous algae. Diets showed little variation across river, sex, or length. Minor dif-
ferences in diets were detected by habitat type, with a higher proportion of
diatoms in the diets of salmonflies collected from rocky habitat compared to
woody debris. Fatty acid composition generally supported the results of gut
content analysis but highlighted the importance of primary producers. The
presence of eicosapentaenoic acid (20:5n-3) and alpha linolenic acid (18:3n-3)
indicated consumption of diatoms and filamentous green algae, respectively.
Our research underscores the importance of a healthy riparian zone that pro-
vides allochthonous detritus for invertebrate nutrition as well as the role of
algae as an important source of fatty acids.
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INTRODUCTION

Freshwater ecosystems are experiencing high levels of bio-
diversity loss due to pervasive anthropogenic climate
warming and land-use change (Dudgeon et al., 2006; Sala
et al., 2000). Freshwater invertebrates, in particular, are sus-
ceptible to myriad environmental stressors (i.e., warming
temperatures, sedimentation, nutrient pollution, and
altered flow regimes), and many taxa are consequently fac-
ing extinction or reduced abundance (Collier et al., 2016).
Invertebrate physiology, resource consumption, reproduc-
tion, and phenology all respond to environmental stressors
(Shah et al.,, 2020), but relatively little is known about
emerging responses of consumer-resource interactions to
these stressors. Although patterns of resource preference
and dietary analysis have been central components of fresh-
water conceptual frameworks, including the river contin-
uum concept, ecological stoichiometry, and food web
analysis (Benke & Wallace, 1980; Cross et al., 2005; Rosi-
Marshall, Vallis, et al., 2016; Vannote et al., 1980), limited
information regarding diet composition of key taxa has
made specific conservation actions that target invertebrates
and the food resources that they require under global
change challenging (Amarasekare, 2015; Cross et al., 2011).
Pteronarcys californica (i.e., the “giant salmonfly”) is a
large-bodied insect that is ecologically and culturally signif-
icant to rivers throughout the western United States. Their
large body size makes them an important prey item for
aquatic consumers, including trout, and their highly syn-
chronous emergence provides an important seasonal food
resource for terrestrial consumers, including birds and spi-
ders (Rockwell & Newell, 2009; Walters et al., 2018). Addi-
tionally, recreational fishing during salmonfly emergence is
an economic boost for local communities. However,
salmonflies are declining in abundance in many western
rivers and their range is contracting due to rising water
temperatures and sedimentation (Anderson et al., 2019;
Birrell et al., 2019; Kowalski & Richer, 2020). Salmonflies
are already extirpated from certain river systems in Mon-
tana, Utah, and Colorado (Birrell et al., 2019; Elder &
Gaufin, 1973; Stagliano, 2010). Efforts to conserve and
restore populations of salmonflies in western rivers will
require comprehensive knowledge of habitat requirements,
life history patterns, and feeding preferences.
Understanding salmonfly diets may have implications
for restoration and conservation efforts targeting these
insects. Salmonflies are often classified as shredders and
presumed to consume allochthonous detritus. However,
the few studies that have quantified salmonfly diets by
gut content analysis indicate substantial variation in allo-
chthony by location and season, with sometimes heavy
reliance on autochthonous production (Blackadar
et al., 2020; Rosi-Marshall, Vallis, et al., 2016). In addition

to traditional methods of gut content analysis, fatty acid
(polyunsaturated fatty acid [PUFA]) composition of
macroinvertebrate tissues can provide information on
origins and quality of macroinvertebrate diets (Lau
et al., 2009; Torres-Ruiz et al., 2007). Omega-3 long-chain
polyunsaturated fatty acids (n-3 LCPUFAs) are a critical
diet component for growth and reproduction in both
aquatic and terrestrial consumers (Olsen, 1999; Twining
et al., 2016). Eicosapentaenoic acid (EPA; 20:5n-3), an
n-3 LCPUFA, is found in aquatic primary producers, but
not terrestrial primary producers, whereas its n-3 PUFA
precursor alpha linolenic acid (ALA; 18:3n-3) is found in
both aquatic and terrestrial primary producers (Hixson
et al., 2015; Twining et al., 2016). Aquatic invertebrates
can accumulate EPA through consumption of diatoms
whereas dietary sources of other PUFAs like ALA include
filamentous algae, terrestrial detritus, and bryophytes
(Guo et al., 2016; Torres-Ruiz et al., 2007, Twining
et al., 2017; Whorley et al., 2019). Investigating the fatty
acid composition of salmonflies can thus provide addi-
tional insight into their feeding ecology as well as their
importance as a prey item for terrestrial consumers that
gain n-3 LCPUFAs through consumption of adult aquatic
insects (e.g., Twining et al., 2018, 2019).

Our objective was to quantify the diets and whole-
body PUFA composition of giant salmonflies, which are
ecologically, culturally, and economically important to
rivers in the western United States. We used gut content
analysis and fatty acid composition to elucidate dietary
composition and to compare different rivers, habitats,
and sexes. We hypothesized that different rivers (Gallatin
or Madison) and habitats (rocky or woody) might supply
different food resources because of variation in watershed
size, land cover, damming status, and resource material
itself (Wellard Kelly et al., 2013). We also hypothesized
that diet might be different between the sexes because
females consistently reach larger body sizes, perhaps due
to differences in either resource amount or type con-
sumed (Anderson et al., 2019), and females may have dif-
ferent diet requirements to support reproductive tissues.
Understanding feeding habits of salmonflies could have
important implications for the conservation of this eco-
logically significant insect and help guide future river res-
toration efforts.

METHODS
Study area
This study was conducted in the Madison and Gallatin

Rivers, located in Southwest Montana (Figure 1). The
Madison and Gallatin Rivers originate in Yellowstone
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National Park, Wyoming, and flow north for 295 and
193 river kilometers, respectively. Both rivers join the
Jefferson River near Three Forks, Montana, to form the
Missouri River.

Study sites on the Madison River were located
between Hebgen and Ennis Reservoirs, which were cre-
ated by dams constructed in 1914 and 1906, respectively.
In this area, the Madison River flows through a broad
valley, with riparian vegetation dominated by willow and
grasses. The Madison watershed (6620 km?) is 39% wood-
lands and 48% grass and shrublands (Anderson
et al., 2019). Near our study sites, mean July water tem-
perature and discharge were 14.7°C and 31.99 m%/s,
respectively, in 2020 (USGS gage 06038800). Because the
Gallatin River does not have a present-day USGS water
temperature sensor, we evaluated historical temperature
at the same location as the USGS gage from NorWeST
(Isaak et al., 2017) to compare water temperature
between rivers. NorWeST reported mean August water
temperature of 16.4°C from 1993 to 2011.

Study sites on the Gallatin River were located
between the towns of Big Sky and Gallatin Gateway. The
Gallatin River in the study area flows through both valley
and canyon topography. The Gallatin River is free
flowing, with riparian vegetation dominated by willow
and conifer forest. The Gallatin watershed (4784 km?) is
70% woodlands and 18% grass and shrublands (Anderson

Varney

Bridge

Palisades

0 5 10 15km
[ -

FIGURE 1

et al., 2019). Mean July discharge was 27.6 m>/s in 2020
(USGS gage 06043120). Because the Gallatin River does
not have a present-day USGS water temperature sensor,
we collected historical temperature from NorWeST
(Isaak et al., 2017) at the same location as the USGS gage.
NorWeST reported mean August water temperature of
10.7°C from 1993 to 2011.

Salmonfly collection

Salmonflies were collected from three sites each on the
Madison and Gallatin Rivers on 9-10 July 2020. Sites
were chosen to span the length of each river known to
support relatively dense salmonfly populations and were
spaced at minimum approximately 12.5 river kilometers
apart. We collected salmonflies in the evening between
the hours of 5:00 PM and 9:00 PM to increase the likeli-
hood of sampling a full gut and to maintain a consistent
sampling window across all sites. At each site, we col-
lected three male and three female late instars from two
habitat substrate types: rock surfaces and woody debris
(n = 12 individuals per site; 36 per river). Individuals
were collected directly from substrates using forceps.
Salmonflies were immediately preserved in Kahle’s
solution in individual vials and transported to the
laboratory.

(a) Sampling locations on the Madison and Gallatin Rivers in Southwest Montana (inset); collecting salmonflies on the

(b) Madison River and (c) Gallatin River; (d, e) larval salmonflies have been observed to congregate on woody debris. Salmonfly photo

credits: M. MacDonald; location: Madison River, Montana



40f10 |

ALBERTSON ET AL.

Gut content analysis

Gut contents were identified and analyzed in the labora-
tory following the methods described by Rosi-Marshall,
Wellard Kelly, et al. (2016). We measured salmonfly body
length (mean = 34.86; SE = 0.46 mm) and dissected each
individual to remove the gut tract. Gut contents from the

upper portion of the gut tract were emptied into water,
the gut wall was removed, and contents were placed in a
beaker. We placed each beaker in a water bath sonicator
for 30 s to disperse clumps. Gut contents were then fil-
tered onto Metricel membrane filters (25-mm diameter,
0.45-pm pore size). Filters were dried at 60°C for 10 min
and then mounted onto slides using standard immersion

FIGURE 2 Representative images of diet items found in salmonfly guts, including (a) amorphous detritus, (b) animal material,
(c) filamentous algae, (d) diatoms, (e) fungi, (f) leaf material, and (g) woody debris. Panels (a)-(e) were photographed at 200x magnification
and panels (f) and (g) were photographed at 40 x magnification. Scale bars are 30 pm (a, b, d, and e); 10 pm (c); or 100 pm (f and g). Photo

credits: M. Briggs and S. Swart
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oil. We photographed particles at 100x to 400x magnifi-
cation depending on the size of item and the resolution
required to accurately identify the item type. We identi-
fied and measured the area of up to 150 particles per slide
using NIS-Elements imaging software (Nikon Instru-
ments Inc., Melville, New York, USA) and estimated the
proportion of area comprised of each diet item type as
our response variable. Diet item types identified included
wood and leaf debris combined, amorphous detritus, ani-
mal material, fungi, diatoms, and filamentous algae
(Figure 2).

Fatty acid analysis

Late-instar larval salmonflies were collected from two
sites on the Madison River, Palisades and Varney Bridge,
on 27 November 2019. We collected three females and
three males from each site for fatty acid composition ana-
lyses. Salmonflies were frozen, shipped overnight, and
stored at —80°C upon arrival at the processing facility.
We freeze-dried and then weighed salmonflies prior to
extracting fatty acid methyl esters (FAMEs) for composi-
tion analyses. Freeze-dried salmonflies were deposited in
7 ml dichloromethane: methanol (2:1, v:v), crushed using
a glass rod, vigorously sonicated, and stored over night at
—20°C. Total lipids were extracted three times from tis-
sues with dichloromethane:methanol (2:1, v:v). Pooled
cell-free lipid extracts were evaporated to dryness under
N,-atmosphere and transesterified with methanolic HCI1
(3 mol/L, 60°C, 15 min, Sigma-Aldrich 33050-U). FAMEs
were extracted three times with isohexane (2 ml). Pooled
FAME-containing fractions were evaporated to dryness

0.8
0.6

0.4

Proportion

0.2

0.0

Diet Item

FIGURE 3
guts of all salmonflies collected (n = 72) from sampling locations

Mean proportion by area of diet items found in the

on the Madison and Gallatin rivers in Southwest Montana 9-10
July 2020. Error bars indicate SE

under N, and resuspended in 50 pl of isohexane. FAMEs
were analyzed by gas chromatography (GC) using a
HP 6890 gas chromatograph (Agilent Technologies)
equipped with a flame ionization detector (FID) and a
DB-225 (J&W Scientific, 30 m x 0.25 mm inner diameter
[id] x 0.25pum film) capillary column. Configuration
details are given elsewhere (Martin-Creuzburg et al., 2010,
2017). FAMEs were quantified by comparison to internal
standards (C17:0, C23:0 ME) of known concentrations
(adapted to dry mass in the sample), using multipoint cali-
bration curves generated using FAME standards (Sigma).
FAMEs were identified by their retention times and their
mass spectra, which were recorded with a quadrupole gas
chromatograph-mass spectrometer (GC-MS; Agilent
Technologies, 5975C inert MSD) equipped with a DB-
225MS fused-silica capillary column (J&W Scientific,
30 m x 0.25 mm id x 0.25 pm film); gas chromatographic
settings as for FID. Mass spectra were recorded between
50 and 600 m/z in the electron ionization mode. The limit
of quantitation was 10 ng of fatty acid.

Data analysis

We used both multivariate and univariate approaches to
analyze diet proportions for differences by sex, habitat,
and river. We used nonmetric multidimensional scaling
based on Bray-Curtis dissimilarities to visualize how sal-
monfly gut contents differed by sex, habitat, and river. To
test whether the multivariate position of diets differed by
these variables, we used a mixed effects permutational
multivariate analysis of variance (PERMANOVA) includ-
ing sex, habitat, and river as fixed effects and site as a
random effect. Testing for differences in multivariate
position provides information on the composition of the
diet items. We used a permutational analyses of multivar-
iate dispersions to test whether multivariate dispersion of
diets differed across the same three covariates. Testing for
differences in multivariate dispersion, or spread, provides
information about how variable the diet items were
(Anderson, 2006). Multivariate analysis was conducted
using the vegan package (Oksanen et al., 2018).

We used a univariate approach to determine if the
proportions either of wood and leaf material or of dia-
toms, two of the most abundant diet groups, differed by
length, sex, habitat, and river. We constructed linear
mixed effects models with either proportion of wood and
leaf or proportion of diatoms as the response variable.
We included site as a random effect and each combina-
tion of length, river, habitat, and sex as fixed effects. We
chose not to include any interaction terms as we had no
a priori reason to do so. We constructed a total of
16 models for each response variable, ranging from a
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model including all four fixed effects to a null model
which included only the random effect. We used Akaike’s
information criterion adjusted for small sample sizes
(AIC,) for model selection, and we selected the models
with the lowest AIC, scores for each response variable as
our final models. Linear mixed effects models were fit
using the lme4 package (Bates et al., 2015), and we used
the MuMIn package for AIC. model selection (Barton
2015). We used two-sided Student’s ¢ tests to determine if

(@)
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the percent composition of fatty acids differed by site. All
statistical analysis was completed in R version 4.0.4
(R Core Team, 2019).

RESULTS

Wood and leaf debris combined made up the majority of
salmonfly gut contents, comprising a mean of 68.2%
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FIGURE 4 Standard box plots depicting proportional area of diet items in guts of salmonflies across (a) sex, (c) habitat type, and

(e) river. Nonmetric multidimensional scaling (NMDS) based on Bray-Curtis dissimilarities of salmonfly diet items grouped by (b) sex

(F = female; M = male), (d) habitat type, and (f) river. Ellipses show standard deviation. Diets were consistent across sex, habitat type, and

river, with wood and leaves comprising the majority of gut contents, followed by amorphous detritus and diatoms. For all panels, site (n = 3

per river) is treated as a random effect. Salmonflies were collected from locations on the Madison and Gallatin rivers in Southwest Montana

9-10 July 2020
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FIGURE 5 Standard box plot depicting percent composition
(percent of total fatty acids) of two omega-3 polyunsaturated fatty
acids, ALA (o-linoleic acid; 18:3n-3) and EPA (eicosapentaenoic
acid; 20:5n-3), and two omega-6 polyunsaturated fatty acids, LIN
(linoleic acid; 18:2n-6) and ARA (arachidonic acid; 20:4n-6), in
salmonflies (n = 12) in the Madison River, Montana, collected 9-10
July 2020. Omega-3 polyunsaturated fatty acids in salmonflies
support the gut content results showing that salmonflies consume
diatoms and filamentous algae. Filamentous green algae are likely
the source of ALA, diatoms are likely the source of EPA, and
terrestrial detritus is likely the source of LIN, the precursor to ARA

(SE = 2.6 of the diet by area, Figure 3). The next most
common diet categories included amorphous detritus
(mean = 22.3%, SE = 2.1) and diatoms (mean = 9.0%,
SE = 1.4). Filamentous algae, fungus, and animal mate-
rial each comprised <1.0% of gut contents, on average.
Results of a PERMANOVA indicated that the multi-
variate position of diets, which represents diet composi-
tions, differed by habitat (p = 0.037) but not by sex or
river (Figure 4). Results of a PERMDISP indicated that
multivariate dispersion of diets differed by river
(p = 0.018) but not by sex or habitat, with higher disper-
sion among salmonfly diets from the Madison River than
for those from the Gallatin River (Figure 4f). This result
indicates that salmonfly individuals were more variable in
their diet composition in the Madison River compared to
the Gallatin River. Based on AIC. model selection, the best
model for the proportion of wood and leaves in salmonfly
diets was the null model, which only included site as a
random effect (Appendix S1: Table S1). The best model for
the proportion of diatoms in salmonfly diets included hab-
itat type as a fixed effect (t = —3.267, p = 0.002) and site
as a random effect (Appendix S1: Table S2). Results of this

model indicated that diatoms comprise an additional 8.3%
of diet items in the guts of salmonflies collected from
rocky habitat when compared to salmonflies collected
from woody debris.

Salmonflies collected from the Madison River con-
tained EPA, ALA, LIN, and ARA, common and expected
types of fatty acids in aquatic insect tissues. We expected
LIN > EPA > ALA > ARA based on the areal propor-
tions of diet items from the gut content analysis.
However, we found that ALA > EPA > LIN > ARA
(Figure 5). ALA, an n-3 precursor to EPA that is likely
acquired through the consumption of filamentous green
algae, comprised an average of 14.0% of total fatty acids.
EPA, a n-3 LCPUFA that can be acquired from the con-
sumption of aquatic primary producers such as diatoms,
comprised an average of 7.22% of total fatty acids in
salmonflies. LIN, a precursor to ARA that is generally
acquired from terrestrial detritus, made up an average of
7.15% of total fatty acids, while ARA made up an average
of 1.05% of total fatty acids.

DISCUSSION

A comprehensive understanding of the influence of land-
use change, pollution, flow modification, and other
stressors on energy flows through food webs requires
knowledge of feeding habits. Establishing diet patterns of
freshwater insects may help evaluate how stressors affect
resource quantity, resource quality, and the resulting eco-
system services associated with high biodiversity and
densities of insects that support food webs and angling
economies. We found that allochthonous detritus
(i.e., particulate wood and leaves) comprised the majority
of salmonfly diets in the Gallatin and Madison Rivers,
followed by amorphous detritus, diatoms, and filamen-
tous algae. Diets showed little variation across river, sex,
or length. Minor differences in diets were detected by
habitat type, with more diatoms in guts of salmonflies
sampled from rocky habitat compared to woody debris.
Fatty acid composition generally supported the results of
gut content analysis. The presence of EPA and ALA in
salmonfly bodies is consistent with consumption of dia-
toms and filamentous algae, respectively. The percent
composition of LIN was lower than expected for the high
amount of terrestrial wood and leaf resource found in gut
content analysis of the salmonfly diets.

Terrestrial detritus is a commonly consumed food
item for shredders and detritivores, which likely gain
much of their nutrition from fungi and bacteria growing
on wood and leaves in streams (Eggert & Wallace, 2007).
Thus, our finding that salmonflies consume primarily
allochthonous material aligns with expectations for diets
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of shredding invertebrates (Cummins et al., 1989). How-
ever, our findings contrast with previous studies of sal-
monfly diets which found a much greater dependence on
autochthonous material, including diatoms and animal
parts (Blackadar et al., 2020; Freilich, 1991; Rosi-Mar-
shall, Vallis, et al., 2016). Both seasonal and site-specific
factors may contribute to the differences between our
findings and previous studies. For example, both the
Madison and Gallatin Rivers achieve stream order
7, while sites in previous studies were in 4-6th order
streams (Blackadar et al.,, 2020; Rosi-Marshall, Vallis,
et al., 2016). Leaf litter standing stocks are likely rela-
tively low during mid-summer, when we sampled in
these rivers. However, biofilms on slowly decomposing
woody debris can provide a year-round source of nutri-
tion for invertebrates when leaf litter availability is low
(Eggert & Wallace, 2007). Although we did not separately
distinguish aquatic macrophyte leaf material from terres-
trial leaf material in this study, macrophytes at our study
sites are anecdotally rare. Future work might investigate
salmonfly use of aquatic macrophyte beds as both food
and habitat, especially during warm summer months
(Angradi, 1993). Seasonal flow patterns, competition with
other invertebrates, or availability of particular diet items
in the environment may regulate salmonfly resource use,
leading to a higher dependence on terrestrial detritus
than documented in previous studies on salmonfly diets.
In particular, the dependence on terrestrial detritus in
rivers such as the Madison, which is an open-canopy
water body flowing through a wide, agricultural valley,
deserves further exploration. The absolute inputs of ter-
restrial, detrital particles to rivers such as the Madison
might be small relative to algal production, but the inter-
stitial benthic habitat may sufficiently retain allo-
chthonous materials from the large upstream drainage
area, as well as from riparian and upland soils. Future
targeted work could establish the mechanisms responsi-
ble for driving variation in salmonfly reliance on allo-
chthonous inputs across additional rivers.
Autochthonous resources like diatoms and green
algae typically contain higher proportions of n-3
LCPUFA than terrestrial sources and therefore represent
a high-quality food for macroinvertebrate consumers
(Cashman et al., 2016; Guo et al., 2016; Torres-Ruiz
et al.,, 2007). While gut content analysis demonstrated
that salmonflies in these rivers primarily consume terres-
trial detritus, EPA and ALA suggest a reliance on autoch-
thonous food resources as well. Although we expected
high proportions of LIN given the large consumption of
terrestrial diet items, we found relatively small propor-
tions of these LCPUFAs. The presence of EPA in sal-
monfly tissues suggests that they have the potential to
serve as an important direct dietary source of n-3

LCPUFA for terrestrial consumers, such as birds and spi-
ders, which consume aquatic n-3 LCPUFA sources dur-
ing large emergence events (Twining et al., 2018, 2019).
Together, gut contents and fatty acids provide a more
complete understanding of salmonfly feeding ecology
and their role in aquatic and terrestrial food webs.

We detected small differences in diets of salmonflies
collected on rocky habitat compared to woody debris,
with more diatoms consumed by salmonflies sampled
from rocks. Perhaps salmonflies using rocks are consum-
ing more diatoms, which is a high-quality food source for
invertebrates (Guo et al., 2021; Marcarelli et al., 2011).
The underside of rocks could also provide a refuge from
potential predation. However, future work could examine
the extent of habitat fidelity (Freilich, 1991) to evaluate
whether the minor differences in diet composition we
detected relate to limited movement and habitat fidelity
of salmonflies across different substrate types.

Salmonflies in the Madison and Gallatin Rivers
depend on wood and leaf debris as a primary food source.
A healthy and intact riparian area that provides wood and
leaf detritus to streams is vital for salmonflies in South-
western Montana and is likely important throughout the
range of this ecologically significant insect. Yet, riparian
zones face many threats, including clear-cutting, lack of
floodplain connection, invasive species establishment,
and intense grazing pressure (Goodwin et al., 1997; Poff
et al., 2011). In addition, reliance on high-quality autoch-
thonous primary producers such as diatoms that are also
sensitive to anthropogenic river alteration may further
limit availability of preferred food resources (Larras
et al., 2017). Salmonflies are declining throughout the
western United States and this trend is likely to continue
as the climate warms (Anderson et al., 2019; Kowalski &
Richer, 2020; Walters et al., 2018). Maintaining habitat
that meets the need of salmonflies will be key to conserv-
ing and restoring salmonfly populations in reaches where
they are at risk of extirpation. Our research underscores
the importance of a healthy riparian zone that provides
allochthonous detritus for invertebrate nutrition as well
as invertebrate habitat (Benke & Wallace, 2003; Fenoy
et al., 2021). Understanding invertebrate diets and feeding
ecology can guide future efforts to restore and conserve
imperiled freshwater biodiversity.
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