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A Brief Introduction 
To Microwave Engineering and To EE 433 

The microwave region is typically defined as those frequencies between 300 MHz and 
300 GHz.  (Recall 1 MHz = 1x106 Hz and 1 GHz = 1x109 Hz.)  These frequencies 
include free-space wavelengths between 1 m and 1 mm.  Here’s a look at a few important 
regions in the electromagnetic spectrum… 
 

Region Frequency range Wavelength range 
Microwave 300 MHz – 300 GHz 1 m – 1 mm 
Millimeter-Wave 30 GHz – 300 GHz 1 cm – 1 mm 
Infrared 1000 GHz – 10000 GHz 0.3 mm – 30 μm 
Visible light 430000 GHz – 750000 GHz  700 nm – 400 nm 
 
Note: 1000 GHz = 1 THz = 1x1012 Hz 
 
Why are microwave frequencies of interest? 
 
Perhaps the best way of answering this is to consider a primary application of 
microwaves -- wireless communication 
 
The first application of microwaves that often comes to mind is wireless transmission of 
information.  As we go higher in frequency, fractional bandwidth increases.  For 
example, let’s assume that we wish to transmit a number of 4 kHz wide voice signals 
through a wireless link.  Further let’s assume that we have two wireless systems to chose 
from, one operating at 500 MHz and the second at 4 GHz, each with a 10 % bandwidth 
around its center frequency.   
 
In theory, the 500 MHz system could carry: 
 

Operating frequency x percent BW 0.5 GHz x 0.1Number of channels = = = 12,500
BW per channel 4 kHz

 

 
In theory, the 4 GHz system could carry: 
 

4 GHz x 0.1Number of channels = = 100,000
4 kHz

 

 
From the above, we see that as the system’s operating frequency increases, ideally its 
capacity increases.  Another advantage in going to higher frequency is antenna size.  For 
a given aperture size, the gain of an antenna increases with frequency.  To make portable 
wireless communications possible, we must operate at a frequency at which the required 
antenna size is reasonable!  Another advantage of increased antenna gain with frequency 
is the potential for higher-resolution imaging systems. 
While it may seem that one can simply increase the operating frequency of a microwave 
link to increase capacity, issues such as equipment cost, spectrum licensing, and 
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atmospheric attenuation must be considered.  Other applications of microwaves include 
radar, navigation, remote sensing, and medical instrumentation. 
 
The theoretical foundation for electromagnetics (and thus microwaves) was laid by James 
Clerk Maxwell in 1873.  Oliver Heaviside cast Maxwell’s equations into modern form 
and contributed to a topic particularly relevant to this class, namely, transmission line 
theory. 
 
Recall: 
 

2E Electric Field Intensity [V/m] D Electric Flux Density C/m⎡ ⎤≡ ≡ ⎣ ⎦
r r

 
2H Magnetic Field Intensity [A/m] B Magnetic Flux Density Wb/m⎡ ⎤≡ ≡ ⎣ ⎦

r r
 

ε Permittivity of the medium [F/m] μ Permeability of the medium [H/m]≡ ≡  
 
Maxwell’s Equations: 
 
         Point Form     Integral Form 
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where: 

D = εE and B = μH
r r r r

 
 
• Equation 1 is Gauss’ law and states that the volume charge density is identical to the 
divergence of the electric flux density (flux = charge enclosed).   
• Equation 2 is in a similar form and implies that no isolated magnetic charge exists 
(magnetic flux lines close upon themselves). 
• Equation 3 is Faraday’s Law and states that the circulation of the electric field is equal 
to the negative rate of change of the flux of the magnetic field through a surface formed 
by the circulation contour. 



EE433-08 Planer Microwave Circuit Design Notes  

iii 

• Equation 4 is Ampere’s Law (with Maxwell’s displacement current) and states that the 
circulation of the magnetic field is equal to the surface integral of both the conduction 

current ( J
r

) and the time varying displacement current ( D
t

∂
∂

r

). 

 
Another important equation to include is the so-called “continuity equation” given below: 

VρJ =
t

∂
∇ • −

∂

r
 

The continuity equation states that the current density that leaves a point is equal to the 
negative of the time rate of change of the charge at that point. 
 
Maxwell’s equations and the continuity equation are covered in standard EM courses.  
These courses often use the static form (non-time varying) of Maxwell’s equations to 
calculate fields based on stationary electric charges or constant currents.  Waves are then 
introduced through a manipulation of the time-varying equations.  We will make scant 
reference to Maxwell’s equations during this course.  We will use the equations to 
investigate the dominant mode in a rectangular waveguide, but little else. 
 
Why not dig deeply into Maxwell’s equations? 
 
We don’t need to.  Using Maxwell’s equations to analytically solve problems can shed 
great light on many interesting EM problems.  The number of problems that can be 
solved analytically using Maxwell’s equations is rather limited however.  Modern “full-
wave” design tools utilize the equations, but make thousands of calculations behind our 
backs to generate a solution! 
 
If we don’t use Maxwell’s equations, then what can we do? 
 
Simplify the problems, and let simulators clean up the details.  Let’s take a step back to 
simple circuit theory and see how this might work… 
 
Ohm’s Law: 

V = IZ  
 

Voltage across element is proportional to the current through the element.  
 

Kirchhoff’s Voltage Law (KVL):  
 

around a 
closed loop

V = 0∑  

 
The algebraic sum of all the voltages around any closed loop in a circuit equals zero. 

 
Kirchhoff’s Current Law (KCL): 
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into a node
i = 0∑  

 
The algebraic sum of all the currents at any node in a circuit equals zero. 

 
It is interesting to note that the basic circuit laws given above are simplifications of the 
EM equations we have discussed previously.  Let’s see how. 
 
Kirchhoff’s Voltage Law  
 
Let’s start with the following from Maxwell’s equations:   
 

L S
E dl = B dS

t
∂

• − •
∂∫ ∫

r rr r
 

 
What happens if zero magnetic field leaves a surface (or if the time rate of change of the 
magnetic field is zero leaving the surface)?  
 

L
E dl = 0•∫

rr
 

 
But what is the line integral of the electric field across an element?  It is the voltage 
across the element.  Thus, if the surface (S) we are considering is in fact a loop in a 
circuit… 

L
around a

closed loop

E dl = V= 0• ∑∫
rr

 

Derivation of Ohm’s Law 
 
Let’s derive Ohm’s law in the case of a capacitor (and assume similar derivations for an 
inductor and resistor).  Consider the illustration of a parallel plate capacitor given below.  

A 

B 

VAB 

- 

+ 

I 

I  
Consider the circulation of the electric field assuming that the magnetic field is zero as 
before. 
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L S
E dl = B dS = 0

t
∂

• − •
∂∫ ∫

r rr r
 

Let’s break up the integral as follows and integrate counterclockwise around the loop. 
 

L
Along wires Between capacitor Across AB gap

plates

E dl= E dl + E dl + E dl• • • •∫ ∫ ∫ ∫
r r r rr r r r

 

Assuming that the wires are perfect electrical conductors (PEC), the first term is zero.  
We may say this as a PEC can maintain no voltage drop (think of what happens to the 
current in Ohm’s law if the resistance drops to zero).  Taking the charge on the top plate 
to be Q, the charge on the bottom plate is –Q and the voltage across the plates is Q/C and 
thus 

Between capacitor
plates

QE dl 
C

• =∫
rr

 

The final term is simply the voltage from B to A (counterclockwise rotation), that is, 
 

AB
Across AB gap

E dl V• = −∫
rr

 

The voltage around the closed loop must be zero and thus we find, 

AB
Q V
C
=  

Taking the time derivative of both sides, 
 

ABV1 Q
C t t

∂∂
=

∂ ∂  

The derivative of charge with respect to time is simply the current I.  Thus, 
 

AB
AB

V1 I jωV
C t

∂
= =

∂  

 

AB AB
1V I V IZ

jωC
= → =  

 
Derivation of Kirchhoff’s Current Law 
 
Let’s start with the continuity equation. 
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VρJ =
t

∂
∇ • −

∂

r
 

For steady state currents, 

Vρ 0
t

∂
=

∂  

and thus, 
 

into a node
J = 0 i = 0∇ • → ∑
r

 

 
This states that the current leaving a point (node) under steady-state conditions is zero. 
 
 
The upshot of all this: The circuit laws (Ohm’s Law, KCL, KVL) may be derived from 
Maxwell’s equations.   
 
Clearly, the circuit laws are easier to understand and apply when compared with 
Maxwell’s equations.  Can we use the simple circuit laws, in favor of Maxwell’s 
equations, in designing and describing our microwave circuits? 
 
The answer: sometimes. 
 
Whether the simple circuit laws may be used depends on the size of our circuit in 
relation to the wavelength corresponding to the operating frequency. 
 
The free-space wavelength is related to the operating frequency by  

cλ =
f  

where λ is the wavelength, c is the speed of light in vacuum (~ 3x108 m/s), and f is the 
frequency in Hz. 
 
If the size of the circuit (or element) in question is much smaller that the operating 
wavelength (~ λ/100 or smaller), the simple circuit laws apply.  In such as case, we say 
that the elements of the circuit are “lumped” elements.  
 
If the size of the circuit in question is comparable to that of the operating wavelength 
(~ λ/10 to ~λ), the simple circuit laws do not apply.  In such as case, we say that the 
elements of the circuit, are “distributed” elements.  In situations in which the largest 
dimensions fall between the λ/10 and λ/100 guidelines, it is safest to assume a 
distributed character, though the 5% guideline is often invoked.  The 5% guideline 
maintains that when the size of the element in question is smaller than 5% of the 
guided wavelength, it can be treated as a lumped element.  
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Phase variations of currents and voltages across elements are insignificant when 
dealing with lumped elements, whereas accounting for the phase variations across 
elements is critically important when dealing with distributed circuits. 
 
It is of interest to note what happens when elements are much greater than the operating 
wavelength.  Such a case often arises in optics and the simplified rules of geometric 
optics (refection, refraction laws) apply.  
 
Since the operating wavelength is quite small at microwave frequencies, we often will not 
use circuit theory.  In such cases, we may always fall back on Maxwell’s equations as 
they are universally valid.  That being said, Maxwell’s equations are too cumbersome to 
handle in all but the most simple of situations.  Thus we seek tools to describe microwave 
circuits that, while perhaps not as simple as Ohm’s Law, KCL and KVL, are much 
simpler than direct application of Maxwell’s Equations.   

 
 Enter Transmission Line Theory… 

 
Transmission Line Examples: 

   
 
Microstrip              Microstrip Power Amplifier 

                

 Outer conductor

Inner conductor

Dielectric core 

                  
154 GHz receiver in Coplanar Waveguide (CPW)                     Coaxial line 

 

<emd lecture 1.  Thank Jim Becker for these excellent notes> 
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Definitions For The Common Microwave Impedances 
 

In discussing microwave propagation, one may hear a variety of uses of the word 
impedance.  A few follow. 

 

Impedance 
 

The “traditional” definition of impedance for ac circuits is simply the complex ratio of 
the voltage to current. 
 

VZ =
I

 

 

Intrinsic Impedance 
 
The intrinsic impedance of a medium depends only on the dielectric properties of the 
medium.  The intrinsic impedance is identical to the impedance of a plane wave in that 
medium. 
 

μη =
ε

 

 
ε is the permittivity of the medium (F/m) 
μ is the permeability of the medium (H/m) 

 
Wave Impedance 

 
The wave impedance is a characteristic of the particular type of wave (i.e. its field configuration) and depends on the material 
properties in which the wave propagates and on frequency. 

 
Characteristic Impedance 

 
The characteristic impedance is given by the ratio of voltage and current waves.  The characteristic impedance is predominantly a 
transmission line concept and is unique if the propagating mode is transverse electromagnetic (TEM).  If the transmission line is 
lossless, 

o
LZ =
C

 

 
where L and C depend on transmission line geometry and material properties. 
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Transmission Line Summary Sheet 
 

This short note is meant to condense the lecture material into a few equations and a few 
concepts that you should understand and be able to apply. 
 
Familiar depiction of a general transmission line… 
 

Zo,β 

l  
 
Transmission line theory demonstrated that the voltage and current on a transmission line 
are in the form of traveling waves and may be expressed as shown below. 
 

+ -γz - γz
o oV(z) = V e + V e  

 
+ -

-γz γzo o

o o

V VI(z) = e e
Z Z

−  

 
From these equations, we see that a transmission line is characterized by two key 
parameters, characteristic impedance (Zo) and propagation constant (γ).  Both 
parameters are defined by the transmission line geometry and the properties of the 
material(s) upon which the transmission line is built. 
 
The characteristic impedance is the ratio of the forward voltage wave to the forward 
current wave traveling along the transmission line.  From transmission line theory we 
found the characteristic impedance to be given by: 
 

o
R+jωLZ =
G+jωC

 [Ω] 

 
where R, L, G and C represent resistance, inductance, conductance and capacitance per 
unit length along the TL. 
 
In the case of a lossless transmission line, this reduces to: 

 

o
LZ =
C
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The propagation constant is the sum of two terms, the attenuation constant (α) and the 
phase constant (β) and describes both the change in amplitude (via α) and phase (via β) 
of the wave as it travels along the TL.  The propagation constant can be related to the 
distributed parameters as follows: 
 

( )( )γ = α + jβ = R + jωL G + jωC  [1/m]. 
 

In the case of a lossless transmission line, the propagation constant reduces to 
 

γ = jβ = jω LC ,  
 

and thus phase constant alone dictates the wave’s propagation constant.  In this case, 
 

β = ω LC         [radians/m] 
 
The velocity of a fixed phase point on a wave, its phase velocity, is given by: 
 

p
ωv
β

=  [m/s] 

 
A lossless transmission line is thus dispersionless.  (Do you remember why?  What is the 
significance to signal transfer along the TL?)  
 
The wavelength on a given transmission line is: 
 

2πλ =
β  [m] 

 
The wavelength on a given transmission line is often referred to as the “guided 
wavelength” and is equally well represented by: 
 

o
g

eff

λλ = λ =
ε

 [m] 

 
where λo is the free-space wavelength and εeff, is the effective dielectric constant of the 
transmission line (a parameter determined by line geometry and material properties). 
 
The electrical length of a section of transmission line of length l, is given by: 
 

Electrical Length = βl  [degrees or radians] 
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EE433-08 Planer Microwave Circuit Design Notes  
 

7 

 
 
 
 
 

 <end lecture 2 > 
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SEE SECTION 3.8 IN OUR TEXT FOR DETAILED THEORY ON MICROSTRIP 
LINES.  WE WILL BE USING A PROGRAM CALLED ‘MLIN” THAT IS PART 
OF THE ADS SOFTWARE.  A FREE PROGRAM FROM AGILENT CALLED 

“APPCAD” ALSO GIVE CLOSE RESULTS FOR MICROSTRIP AND 
STRIPLINE CALCULATIONS.  A LINK WILL BE  PROVIDED ON THE 

WEBSITE TO GET  APPCAD  (avo) 
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A Brief Overview Of Transmission Line Theory 
 
Transmission lines are often depicted as two wire lines: 
 

 i(z,t)

 v(z,t) 

 + 

 - 
 z 

ΔZ 
 

An incremental length of TL 
 

Think about a coaxial line for a moment.  It seems reasonable to consider that the 
conductors contribute both a series resistance and a series inductance.  The resistance 
would come from the finite conductivity of the metal and the inductance from magnetic 
flux linkage.  In the coax, a dielectric separates the two conductors.  A dielectric 
separating two conductors sounds like a capacitance.  Naturally, the dielectric will have 
some loss associated with it.  Since the capacitance and this dielectric loss go from one 
conductor to another, we should include both shunt capacitance and a shunt conductance 
to our model.  We will now create a lumped element model of an incremental section of 
TL based on our reasoning. 
 

 
i(z,t) 

v(z,t) 

 + 

 -  - 

GΔZ CΔZ 

LΔZ RΔZ 
 i(z+Δz,t) 

 + 

 v(z+Δz,t)

 
Equivalent circuit of an incremental (length Δz) section of TL 

 
R ≡  Series resistance per unit length [Ω/m]    (represents conductive loss) 
L ≡  Series inductance per unit length [H/m] 
C ≡  Shunt capacitance per unit length [F/m] 
G ≡  Shunt conductance per unit length [S/m]  (represents dielectric loss) 

 
These elements are actually distributed along the length of the TL.  That is, 

<end lecture 3> 


