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Returning to the incremental section, we will now solve for V and I using circuit laws.  
We will assume time-harmonic excitation. 
 

( ) ( )v z,t = v(z)cos ωt  
 

( ) ( ){ }jωt
sv z,t = Re V z e  

 
( ) ( )s

v z,t
= jωV z

t
∂

∂
 

 
Applying KVL: 
 

( ) ( ) ( ) ( )i z,t
-v z,t + i z,t RΔz + LΔz + v z+Δz,t = 0

t
∂

∂
 

 
Applying KCL: 
 

( ) ( ) ( ) ( )v z+Δz,t
i z+ z,t i z,t + v z+Δz,t G z +CΔz = 0

t
∂

Δ − Δ
∂

 

 
Rearranging each equation, dividing by Δz, and taking the limit as Δz→0, we find… 
 

( ) ( ) ( ) ( )
z 0

v z+Δz,t -v z,t i z,t
lim -i z,t R-L

Δz tΔ →

∂
=

∂
 

 
( ) ( ) ( ) ( )

z 0

i z+Δz,t -i z,t v z+Δz,t
lim -Gv z+Δz,t -C

Δz tΔ →

∂
=

∂
 

 
Recognizing that the left hand side of the equations define a derivative, we have the 
 

‘Telegrapher’ of ‘Transmission Line’ equations: 
 

( ) ( ) ( )

( ) ( ) ( )

v z,t i z,t
Ri z,t - L

z t
i z,t v z,t

Gv z,t - C
z t

∂ ∂
= −

∂ ∂
∂ ∂

= −
∂ ∂

 

 
 
 
Under steady-state conditions (suppressing the time factor)… 
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( ) ( ) ( )v z

= - R+jωL i z
z

∂
∂

                                    (1) 

( ) ( ) ( )i z
= - G + jωC v z

z
∂

∂
                                    (2) 

 
Rewritting equation (2), 
 

( ) ( )
( )i z1v z

G + jωC z
∂

= −
∂  and substituting this result back into equation (1): 

 

( )
( ) ( ) ( )i z1 = - R+jωL i z

z G + jωC z
⎛ ⎞ ∂∂

−⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
 

 
( ) ( )( ) ( )

2

2

i z
= R+jωL G + jωC i z

z
∂

∂
 

 
and similarly, 

 
( ) ( ) ( ) ( )

2

2

v z
= R+jωL G + jωC v z

z
∂

∂
 

 
Let  
 

( )( )γ =α+ jβ R + jωL G + jωC≡  
 

γ complex propagation constant≡  
attenuation constant [Np/m]α ≡  

phase constant [rad/m]β ≡  
 
Using the propagation constant we uncover wave equations. 
 

( ) ( )

( ) ( )

2
2

2

2
2

2

i z
γ i z 0

z
v z

γ v z 0
z

∂
− =

∂
∂

− =
∂

 

The solutions to the wave equations come in the form of traveling waves. 
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( ) + -γz - +γz
o ov z = V e + V e                                           (3) 

 
( ) + -γz - +γz

o oi z = I e + I e                                                  (4) 
 

-γz +γze +z directed wave e -z directed wave→ →  
 

Substituting equation (3) into equation (1) … 
 
 

( ) ( )+ -γz - +γz
o o-γV e + γV e = R + jωL i z−  

 
 

( ) ( ) ( )+ -γz - +γz
o o

γi z V e V e
R + jωL

= −               (5) 

 
In comparing equations (4) and (5), we find that we can define a characteristic 
impedance. 
 

+ -
o o

o + -
o o

V VR + jωL R + jωLZ =
γ G + jωC I I

= = = −  

 

o
R + jωLZ
G + jωC

=                                                       (6) 

 
Thus our traveling wave expressions are as follows. 
 

( ) + -γz - +γz
o ov z = V e + V e  

 

( )
+ -

-γz +γzo o

o o

V Vi z = e e
Z Z

−  

 
The propagation constant (γ) and characteristic impedance (Zo) are two fundamental 
properties that define the behavior of transmission lines.  Both depend on R, L, G and 
C of our lumped element model that in turn depend on the geometry of the 
transmission line and the relevant material properties. 
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Material Properties Relevant To Transmission Lines 
 
Permittivity 
 
When an applied electric field interacts with a material, the field tends to polarize (align) 
the atoms or molecules of the material.  The ‘permittivity’ of a material defines the extent 
to which this polarization occurs.  In general, a material’s permittivity is a complex 
quantity, the imaginary portion (ε’’) of which is a measure of a material’s loss behavior.  
That is, 
 

' ''ε permittivity = ε - jε≡  
 

In the field of microwaves, a dielectric’s loss is more commonly given by its ‘loss 
tangent’ (tanδ) which includes both damping of the vibrating dipole moments and 
conductive loss. 

( )'ε = ε 1-jtanδ  
 

The permittivity of free space (considered lossless) is: 
 

-12
oε permittivity of free space = 8.854×10 F/m≡ . 

 
To simplify matters, when quoting the real part of the permittivity of a material (its 
‘dielectric constant’), we normalize the value to that of free space and thus quote the 
material’s ‘relative dielectric constant’ (εr). 
 

r
o

ε'ε relative dielectric constant =
ε

≡  

 
Example values around 10 GHz 

Material εr tanδ Frequency 
Teflon 2.08 0.0004 10 GHz 
Al2O3 9.5-10 0.0003 10 GHz 
Silicon 11.7-11.9 0.004 10 GHz 
GaAs 13 0.006 10 GHz 
Styrofoam 1.03 0.0001 3 GHz 
Distilled water 76.7 0.157 3 GHz 

Note: These values are frequency dependent; tanδ values depend on resisitivity.  For 
example the tanδ  value quoted for Si is based on high-resistivity material, not CMOS Si! 
 
Permeability 
 
In a similar fashion to the permittivity, we need a measure of the extent to which a 
material is influenced by a magnetic field.  The ‘permeability’ of a material describes the 
ability of a magnetic field to align the ‘magnetic dipoles’ within the material.  The 
permeability of free space is        
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-7

oμ permeability of free space = 4π×10 H/m≡ . 
 

While magnetic materials find application in microwave systems (phase shifters and 
circulators are example microwave components exploiting magnetic behavior), we will 
confine ourselves in EE 433 to non-magnetic materials and take the relative permeability 
(the analog to relative dielectric constant) to be unity.  That is, μr = 1.  
 
Conductivity 
 
While permittivity and permeability are used to describe materials that are poor electrical 
conductors (i.e. insulators), a material that readily conducts electrical current is 
characterized by its ‘conductivity’ (σ) which is often given in 1/(Ω-m).  The conductivity 
values of several metals are given below. 
 

Example Conductivity Values 
Material Conductivity 

(S/m) 
Aluminum 3.816x107 
Gold 4.098x107 
Copper 5.618x107 
Silver 6.173x107 
Solder 7.0x106 

Note: These are typical values for the given materials. 
 
Resistivity 
 
Resistivity is simply the inverse of the conductivity.  The units for resistivity are thus 
resistance-length, most often quoted in (Ω-cm). 
 
Skin Depth 
 
High frequency EM fields do not penetrate conductors very far beneath the conductor 
surface.  The ‘skin depth’ indicates the depth at which the amplitude of the field decays 
to 1/e (to ~ 37% of its original value).  The skin depth is given by: 
 

[ ]s
1 1 1 1skin depth =
α πfμσ 20 f σGHz

δ
π

≡ = =  

 
For example, the skin depth of gold at 6 GHz is approximately 1 μm.  As a rule of thumb, 
one strives to have a metal thickness in a planar circuit that is a few skin depths deep.  
Therefore, a gold thickness of a few microns at 6 GHz should be sufficient! 
 

<end lecture 4> 
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Transmission Line Parameters for a Simple Coaxial Line 
 
Consider the following cross section of a coaxial cable, recalling that the EM field is 
confined to the dielectric region. 

          

a 

b 

conductors dielectric (εr)
 

The lumped element values for the distributed line parameters of a coax may be derived 
from electrostatic considerations (see standard EM texts) and are given as follows. 
 

' ' ''
sRμ b 2πε 1 1 2π εL = ln C = R = + G =

b b2π a 2π a bln ln
a a

ω⎛ ⎞
⎜ ⎟⎛ ⎞ ⎛ ⎞⎝ ⎠

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
where 

[ ]s
s

1R surface resistivity =
σδ

≡ Ω  

 
A few things to note… 
 
⋅ Both geometry (a and b) and materials properties (μ, ε) play a role in defining the line 
parameters. 
⋅ L and C are lossless, whereas R and G introduce loss. 
 
In general, we will deal with practical TLs, that is, TLs that exhibit low loss.  If we 
assume that the metal used in the transmission line has infinite conductivity (σ → ∞, 
Perfect Electrical Conductor -- PEC) and that the dielectric used is lossless (ε’’ = 0), from 
equation 6 we find that the characteristic impedance of a coax is given by: 
 

o
R + jωL L 1 b μ'Z = = ln
G + jωC C 2π a ε'

= . 

 
Again in the lossless case, the propagation constant of a coax is purely imaginary, 
resulting in a phase constant solely dependent on material parameters as given by: 
 

μ' b 2πε'β= ω LC = ω ln ω μ'ε'b2π a ln
a

=  
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<end lecture 5>
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<end lecture 6> 


