EE433-08 Planer Microwave Circuit Design Notes

Returning to the incremental section, we will now solve for V and I using circuit laws.
We will assume time-harmonic excitation.

v(zt) = v(z)cos(wt)

v(zt)= Re{VS (z)ej‘”t}

L o, (2
Applying KVL:
-v(zt)+i(zt)RAz + LAz o E;’t) +v(z+Azt)= 0
Applying KCL:

i(z+Azt) —i(zt) + V(Z+Az,t)GAz+CAZaV(LAZ’t)

Rearranging each equation, dividing by Az, and taking the limit as Az—0, we find...

lim V(z+Az,t) —V(z,t) _ (Z,t) R.L o1 (Z,t)

Az—0 Az ot
lim 1 (z+Az,t) -1 (z,t) Gy (z+AZ,t) C ov (Z+Az,t)
Az—0 Az at

Recognizing that the left hand side of the equations define a derivative, we have the

‘“Telegrapher’ of ‘“Transmission Line’ equations:

8V(z,t) _ —Ri(z,t) 1 61(z,t)
0z ot
81(Z,t) _ Gv(z,t) C 8V(z,t)
0z ot

Under steady-state conditions (suppressing the time factor)...
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=~ -(RtjeL)i(z) (1)
aia(zz) =-(G+joC)v(z) @)

Rewritting equation (2),

1 o1 (z)
== and substituting this result back into equation (1):

V(Z)_ (G+j0)C) oz

2(( ! ]ai(z)—-(RﬂwL)i(z)

0z G+ ij) 0z
2.
aal(f) - (RHoL)(G + joC)i(2)
z
and similarly,
2
)~ (Rejo)(G + o) v(2)
V4

Let

y=a+jB=y(R+joL)(G+ joC)

Y = complex propagation constant
o = attenuation constant [Np/m]
B = phaseconstant [rad/m]

Using the propagation constant we uncover wave equations.

0%i(z :

az(z ) ~7’i(z)=0
0’v(z

az(z ! —1'v(z)=0

The solutions to the wave equations come in the form of traveling waves.
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v(z) = Vje" + Ve 3)
i(z)=Le™+Le™ (4)
e — +z directed wave e "— -z directed wave

Substituting equation (3) into equation (1) ...

-yV, e+ yV;e™ =—(R + joL)i(z)

. 'Y + vz - Z
I(Z)Zm(\/oey — VOCW ) (5)

In comparing equations (4) and (5), we find that we can define a characteristic

impedance.
7 R+joL _ [R+joL _V, V;
° Y G+jeoC I [
R + joL
Z, = |2 (6)
G+ joC

Thus our traveling wave expressions are as follows.

v(z) = Ve + Ve

The propagation constant () and characteristic impedance (Z,) are two fundamental
properties that define the behavior of transmission lines. Both depend on R, L, G and
C of our lumped element model that in turn depend on the geometry of the
transmission line and the relevant material properties.
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Material Properties Relevant To Transmission Lines

Permittivity

When an applied electric field interacts with a material, the field tends to polarize (align)
the atoms or molecules of the material. The ‘permittivity’ of a material defines the extent
to which this polarization occurs. In general, a material’s permittivity is a complex
quantity, the imaginary portion (&¢”) of which is a measure of a material’s loss behavior.
That is,

€= permittivity = € - j&'

In the field of microwaves, a dielectric’s loss is more commonly given by its ‘loss
tangent’ (tand) which includes both damping of the vibrating dipole moments and
conductive loss.

e=¢ (I-jtand)

The permittivity of free space (considered lossless) is:
g, = permittivity of free space = 8.854x10™" F/m .

To simplify matters, when quoting the real part of the permittivity of a material (its
‘dielectric constant’), we normalize the value to that of free space and thus quote the
material’s ‘relative dielectric constant’ (g;).

'

g, = relative dielectric constant = —
€

(4]

Example values around 10 GHz

Material &r tand Frequency
Teflon 2.08 0.0004 | 10 GHz
Al203 9.5-10 0.0003 | 10 GHz
Silicon 11.7-11.9 | 0.004 10 GHz
GaAs 13 0.006 10 GHz
Styrofoam 1.03 0.0001 |3 GHz
Distilled water 76.7 0.157 3 GHz

Note: These values are frequency dependent; tand values depend on resisitivity. For
example the tand value quoted for Si is based on high-resistivity material, not CMOS Si!

Permeability

In a similar fashion to the permittivity, we need a measure of the extent to which a
material is influenced by a magnetic field. The ‘permeability’ of a material describes the
ability of a magnetic field to align the ‘magnetic dipoles’ within the material. The
permeability of free space is
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i, = permeability of free space = 4nx10” H/m.

While magnetic materials find application in microwave systems (phase shifters and
circulators are example microwave components exploiting magnetic behavior), we will
confine ourselves in EE 433 to non-magnetic materials and take the relative permeability
(the analog to relative dielectric constant) to be unity. That is, p, = 1.

Conductivity

While permittivity and permeability are used to describe materials that are poor electrical
conductors (i.e. insulators), a material that readily conducts electrical current is
characterized by its ‘conductivity’ (o) which is often given in 1/(Q2-m). The conductivity
values of several metals are given below.

Example Conductivity Values

Material Conductivity
(S/m)
Aluminum 3.816x10’
Gold 4.098x10’
Copper 5.618x10’
Silver 6.173x10’
Solder 7.0x10°

Note: These are typical values for the given materials.

Resistivity

Resistivity is simply the inverse of the conductivity. The units for resistivity are thus
resistance-length, most often quoted in (Q2-cm).

Skin Depth

High frequency EM fields do not penetrate conductors very far beneath the conductor
surface. The ‘skin depth’ indicates the depth at which the amplitude of the field decays
to 1/e (to ~ 37% of its original value). The skin depth is given by:

o, = skindepthzl: L] 1
o nfuc 207 f[GHZ]G

For example, the skin depth of gold at 6 GHz is approximately 1 um. As a rule of thumb,
one strives to have a metal thickness in a planar circuit that is a few skin depths deep.
Therefore, a gold thickness of a few microns at 6 GHz should be sufficient!

<end lecture 4>
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Transmission Line Parameters for a Simple Coaxial Line

Consider the following cross section of a coaxial cable, recalling that the EM field is
confined to the dielectric region.

conductors dielectric (&)
The lumped element values for the distributed line parameters of a coax may be derived

from electrostatic considerations (see standard EM texts) and are given as follows.

L="1n> C= R=—% —+- G=
2n a (b) 2n\a b
In| —
a

b 2ne R (1 1] 2nwe’

where

R, = surface resistivity = LS [Q]
c

A few things to note...

- Both geometry (a and b) and materials properties (1, €) play a role in defining the line
parameters.
- L and C are lossless, whereas R and G introduce loss.

In general, we will deal with practical TLs, that is, TLs that exhibit low loss. If we
assume that the metal used in the transmission line has infinite conductivity (¢ — oo,
Perfect Electrical Conductor -- PEC) and that the dielectric used is lossless (¢ = 0), from
equation 6 we find that the characteristic impedance of a coax is given by:

R+joL _ \ﬁ——l _\ﬁ
G+ joC C 2n a

Again in the lossless case, the propagation constant of a coax is purely imaginary,
resulting in a phase constant solely dependent on material parameters as given by:
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<end lecture 5>
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Terminated Transmission Lines

Constants, etc.
f :=3.10° (3 GHz) ¢ :=3-10% (m/s) j=v=

2-m-f

p =

Transmission Line Characteristic Impedance: Z =1

Magf\itude of the forward traveling wave: Vo_plus =1

As an example, let's take the load reflection coefficient to be:I'} := 0.5 +j-0.3
0= arg(FL)
Thus,

180
IFL‘ = 0.583 0.~ = 30.964
T

In the general case, the magnitude of the voltagé and current along a
terminated transmission line may be expressed as follows:

VinagD = [Vo plug| |1 + Ty ej'(e*z'ﬁ-l)‘

Irnag(l) = _Y_Q_Z__NU_S\_ \1 - ‘FL‘ _ej-(e—z.B.l)‘
0

In the above expressions, "I" is the distance from the load to the point of interest

onthe TL.
1 := 0,0.00001 .. 0.1 [m]

NOTE: The TL is one wavelength long.

The average power:
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Magnitude of the V and I Waveson a TL

0 0.25 0.5 0.75 1

1-10
Distance From Load [Wavelengths]

Voltage and Current form standing waves -- magnitude oscillates
with position. The average power stays constant.

Special cases of the terminated transmission line...

L OPENCIRCUIT  T'p:=1 6 :=arg(I'y)

Vmagfl) = IVO_plus’ : ‘1 + \rLl_ej-(O—z.B.l)‘
Imag) = !V"Zﬂ, ‘1 _ ‘FL},GJ-(G—ZB-I)‘
0
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<end lecture 6>
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