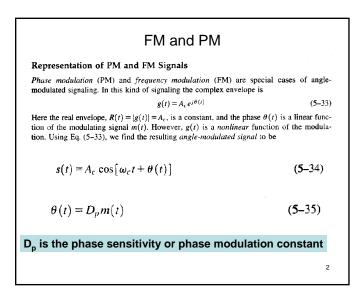
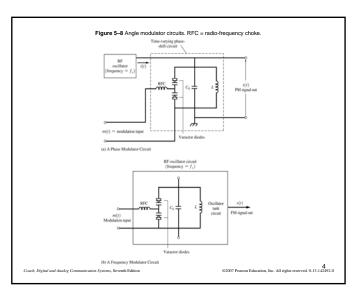
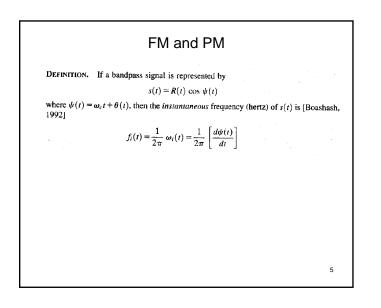


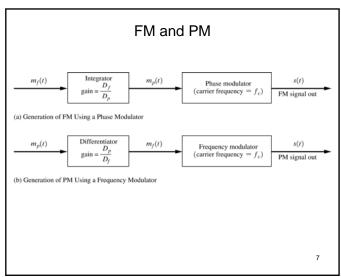
EE445-10

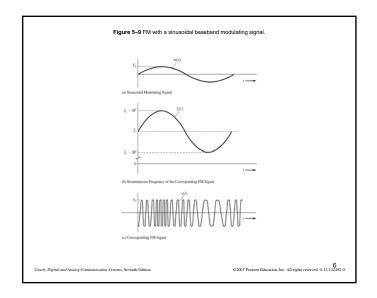
FM and PM for FM: $\boldsymbol{\theta}(t) = D_f \int_{-\infty}^t m(\sigma) \ d\sigma$ (5-36) Relationship between $m_f(t)$ and $m_p(t)$: $m_f(t) = \frac{D_p}{D_f} \left[\frac{dm_p(t)}{dt} \right]$ (5-37) where the subscripts f and p denote frequency and phase, respectively. Similarly, if we have an FM signal modulated by $m_t(t)$, the corresponding phase modulation on this signal is $m_p(t) = \frac{D_f}{D_p} \int_{-\infty}^t m_f(\sigma) \, d\sigma$ (5-38) 3

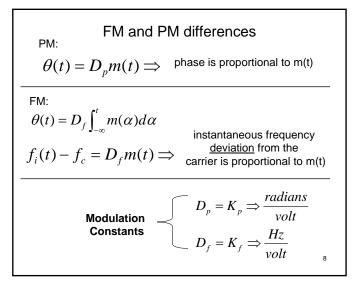


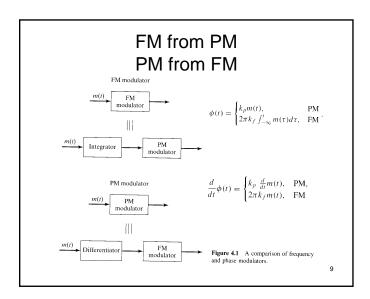




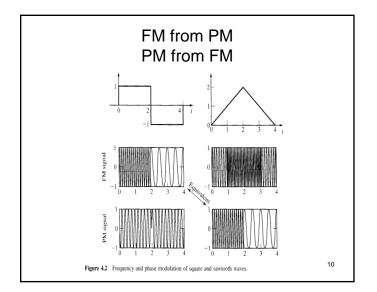




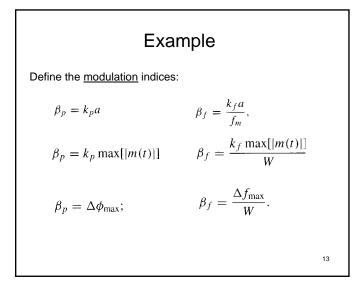




FM and PM SignalsMaximum phase deviation in PM:
$$\Delta \phi_{\max} = k_p \max[|m(t)|],$$
Maximum frequency deviation in FM: $\Delta f_{\max} = k_f \max[|m(t)|].$



Example Let $m(t) = a \cos(2\pi f_m t)$
For PM $\phi(t) = k_p m(t) = k_p a \cos(2\pi f_m t)$, For FM $\phi(t) = 2\pi k_f \int_{-\infty}^t m(\tau) d\tau = \frac{k_f a}{f_m} \sin(2\pi f_m t)$.
$u(t) = \begin{cases} A_c \cos\left(2\pi f_c t + k_p a \cos(2\pi f_m t)\right), & \text{PM} \\ A_c \cos\left(2\pi f_c t + \frac{k_f a}{f_m} \sin(2\pi f_m t)\right), & \text{FM} \end{cases}$
Define the modulation indices: $\beta_p = k_p a$ $\beta_f = \frac{k_f a}{f_m}$,

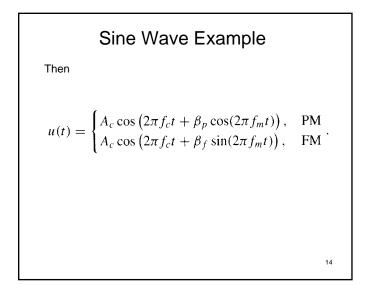


FM/PM is exponential modulation
Let φ(t) = β sin(2πf_mt)

 $u(t) = A_c \cos(2\pi f_c t + \beta \sin(2\pi f_m t))$ $= \operatorname{Re}\left(A_c e^{j(2\pi f_c t + \beta \sin(2\pi f_m t))}\right)$

 $u(t) \mbox{ is periodic in } f_m \mbox{ we may therefore use the Fourier series}$

15



Spectrum Characteristics of FM

• FM/PM is exponential modulation

$$c(t) = A_c \cos(2\pi f_c t + \beta \sin(2\pi f_m t))$$
$$= \operatorname{Re}\left(A_c e^{j(2\pi f_c t + \beta \sin(2\pi f_m t))}\right)$$

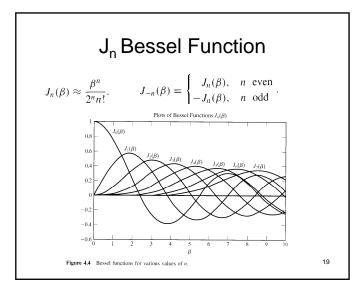
c(t) is periodic in ${\rm f}_{\rm m}$ we may therefore use the Fourier series

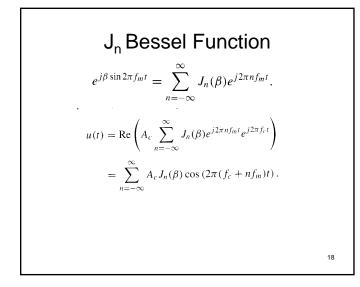
Spectrum Characteristics with Sinusoidal Modulation

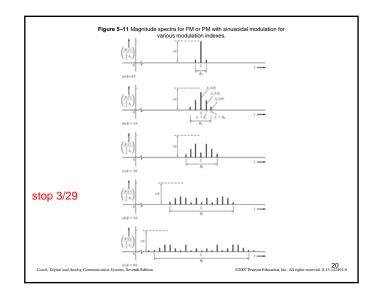
 $e^{j\beta\sin 2\pi f_m t}$.

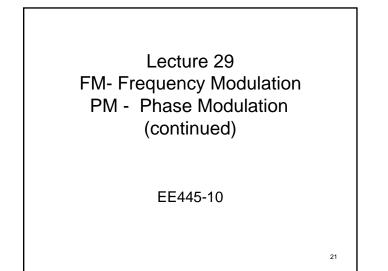
u(t) is periodic in ${\rm f}_{\rm m}$ we may therefore use the Fourier series

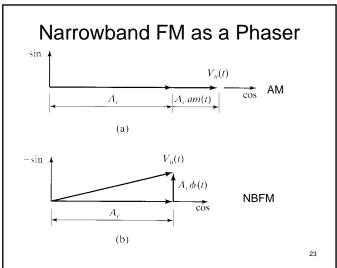
$$c_n = f_m \int_0^{\frac{1}{f_m}} e^{j\beta \sin 2\pi f_m t} e^{-jn2\pi f_m t} dt$$
$$\stackrel{u=2\pi f_m t}{=} \frac{1}{2\pi} \int_0^{2\pi} e^{j\beta(\sin u - nu)} du.$$

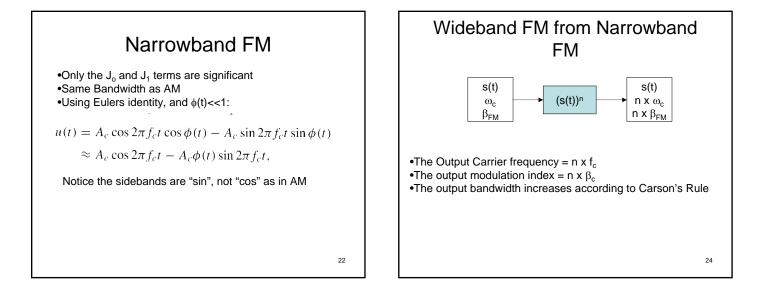


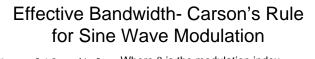








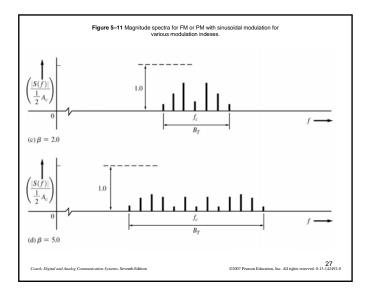


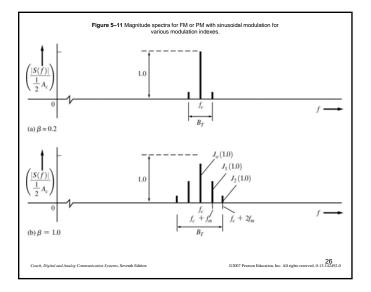


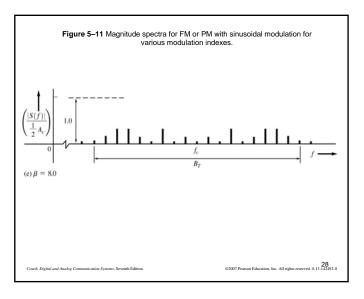
$$B_{c} = 2(\beta + 1) f_{m}, \text{ Where } \beta \text{ is the modulation index} \\ f_{m} \text{ is the sinusoidal modulation frequency} \\ m(t) = a \cos(2\pi f_{m} t). \\ B_{c} = 2(\beta + 1) f_{m} = \begin{cases} 2(k_{p}a + 1) f_{m}, & \text{PM} \\ 2\left(\frac{k_{f}a}{f_{m}} + 1\right) f_{m}, & \text{FM} \end{cases}$$

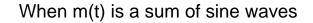
25

-Notice for FM, if $k_{f}a\!\!>\!\!s_m$ increasing fm does not increase B_c much -B_c is linear with f_m for PM









Consider now the case where m(t) is the sum of K separate sine waves. That is, let

$$m(t) = \sum_{i=1}^{K} C_i \cos(\omega_i t + \theta_i)$$
 (2.4.14)

where $C_i,\,\omega_i,\,$ and θ_i are the corresponding deviations, frequency, and phase angles. We then have

