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Intermodulation Distortion in Diodes
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Harmonic Distortion in a BJT
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See the following for discussions on the Third Order Intercept Point.

Page 7 of 19



EE503 notes
Distortion

16.5 SIGNAL DISTORTION DUE TO INTERMODULATION
PRODUCTS

Operating an amplifier under large-signal conditions causes distortions in the output
signal. This distortion is primarily caused by deviation from lincar operation, which
causes new frequencies to appear at the output port. usually referred to as “intermod-
ulation products.”

DEFINITION-INTERMODULATION PRODUCTS: The addiional frequencies at
the output of a nonlinear amplifier (or in general any nonlinear network) when
two or more sinusoidal signals are applied at the input.

To illustrate this concept. let’s consider the following input signal consisting of
two frequencies, each with unity amplitude:

V(1) = cos(2nfit) + cos(2mfor) (16.22)

If V(r) is applied to a nonlinear amplifier (see Figure 16.22) with the output/
input voltage characteristic of:

V(1) = AV,(1) + BV2(1) + CVA(1) (16.23)

FiGU.R‘E 16.22 Nonlincar Vi(t) Volt)
amplifier.

Then, the output signal V,(r) will contain not only the original frequencies fj and
f>, but also the following intermodulation products: DC. 2f). 2f,.3f). 3. fi £ /. 2/ =

froand2f fy.
We may classify these intermodulation products as follows:

Second harmonics: 211, 2> {caused by V,—2 term).
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Third harmonics: 3f,.3/> (caused by Vﬁ term).

Sccond-order intermodulation products: f; + f5 (caused by V,-2 term).

Third-order intermodulation products: 2f; = f5, 2f,  f; (caused by Vf lerm).

These are plotted on the frequency scale along with the original frequencies, as
shown in Figure 16.23. From this figure, we can see that all additional frequencies can
be filtered out except the intermodulation products 2f; - f> and 2f>—fi.which are very
close to f} and f; and fall within the amplifier bandwidth and cannot be filtered out.
Thus, they are capable of signal distortions at the output.

F>ir1 F’Out

¢

. Al

f1 I fi—f2 T f1 f2 T 2f1T 2f2 3]‘1T 3f2
2f1—-f2 2f2—-f1  f1+f2 2f1+ f2
2fo+ f1

FIGURE 16.23 Input and output power spectrum.

Third-order two-tone intermodulation products (2] - f5) and (2, - f1) have spe-
cial importance because they set the upper limit on the dynamic range or bandwidth ot
the amplifier.

A measure of the second- or third-order intermodulation distortion is given by
two theoretical intercept points, as shown in Figure 16.24. As can be seen from
Figure 16.24. the third-order product has a lower intercept point than the second-
order product and thus is more significant in distortion analysis.

If the third-order product output power is measured versus the input power.
then the third-order intercept (TOT) point can be theoretically obtained, as shown in
Figure 16.25. The higher the value of power at TOI (Pyp; or Pip), the larger the
dynamic range of the amplifier will be,

The power at the third-order intercept point can be theoretically and experimen-
tally obtained to be approximately given by:

Pip(dBm) = P yg(dBm) + 10(dB) (16.24)

Furthermore, the ditference between the two curves (Pr1= Py - o) is avariable
quantity and is maximum at P, ,, ;. and zero at Pyp. It can be shown that:
2 ; .

We now define the “spurious free dynamic range” (DRy) to be the difference
between two powers Pf-1 - P2/‘1 _ s, When the third-order intermodulation product is
equal to the minimum detectable signal. That is:
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FIGURE 16.24 Second and third order intercept points.

DRp= Py =Pap_p) when By p = Fonay)

Thus, we can write DRyas:

(dBm) (16.26)

().ma’s) o,mds)

2

where from Equation 16.10,

P, nastdBm) =-174 dBm + 10log;,B + G 4(dB) + F(dB) + X(dB)

Solution:

EXAMPLE 16.7

Calculate dynamic range (DR) and spurious free dynamic range (DRy) for a
microwave high-power/broadband amplifier that has a gain of 20 dB, a noise
figure of 5 dB, a bandwidith of 250 MHz and can deliver a power of P 5 = 30
dBm (assume X = 3 dB).

P, pas(dBm) = —174 dBm + 10 log;B + G 4(dB) + F(dB) + X(dB)
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FIGURE 16.25 Third-order intercept point.
=-174 + 10 log;5(250 x 10) + 5 + 20 + 3 = ~62 dBm

DR =30-(~62) =92 dB
DRy=(2/3)(30 + 10 + 62) = 68 dB

Two-Tone Measurement Technique. Third-order intercept power (Pp)isa

figure of merit for intermodulation product suppression. A high intercept point is a
good indicator and signifies a high suppression of undesired intermodulation products.
An experimental method for finding P,p is by the use of a technique called “two-tone
measurement technique.”
, In this technique, two signals of close but different frequencies that have equal
magnitude are applied to the input of the amplifier, as shown in Figure 16.23. Using a
spectrum analyzer, the outputs are examined (see Figure 16.23), and from a simple
measurement of the difference in power between the main output (Pfl in dBm) and
the third-order intermodulation product (szl_f2 in dBm), we can obtain P;p (in
dBm). To find P;p, first let’s define: ‘

Then, substituting for P2f1 -5 from Equation 16.27a in 16.25, we can write:
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A=2p . -P _2(p,,— (P, -A)] (dB 16.27b
- :‘5\ P~ 2/‘]_]"1) = 3[ [[)’( fl‘ )] ( ) ‘ ( - )

By rcarranging terms in Equation 16.27b we obtain (P;p)s for the third-order
harmonic as :

A
(P[P)3 = Pf\ +§ (dBm) (16283)

Thus, by halving the difference (in dB) between the main output and one of the
third-order intermodulation products and adding it to the main output, we can obtain
the third-order intercept point (in dBm) as in dicated by Equation 16.28a.

EXAMPLE 16.8
© If through measurement we find that P, = 8 dBm and A = 40 dB for the

. . . oo .
third-order intermodulation product, what is the power at the third-order
intercept point?

(P;p)3 can easily be calculated to be:
(P;p)3 =8 +40/2 =28 dBm

NOTE: Ir can be shown that in general, for the n'" order intermodulation product
(n#1), Equation 16.28a can be generalized as:

A |
(Pyp), = Py + —=7 (dBm) (16.28b)

where A is the difference between the fundamental harmonic power and the undesired
n'" intermodulation product power.

16.6 MULTISTAGE AMPLIFIERS: LARGE-SIGNAL DESIGN

As discussed in the last chapter, most practical transistor amplifiers usually consist of a
number of stages connected in cascade forming a multistage amplifier. In a high-power
amplifier, each stage should be designed for operation at maximum power such that
the maximum power transfer condition is met. In the next several sections, we will
present a detailed analysis of a multistage high-power amplifier.

16.6.1 Analysis

Consider a general N-stage amplifier configuration, as shown in Figure 16.26. To have
a stable amplifier, the stability of the individual stages as well as overall stability must
be checked.
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FIGURE 16.26 N-stage FET amplifier configuration.

In this type of amplifier, the goal is to produce the overall highest possible
power. Thus, each stage must operate at or close to its 1-dB gain compression point
under large-signal conditions. This means that using power contours we need to select
I, p at the point where P = P, (Which is at the output port of each transistor)
and then use conjugate matched condition for the input port to minimize VSWR and
create the maximum power transfer condition, i.e.,

Tg=(Tpn) (16.292)
Uiva=Trp (16.29b)
Tovrm=(Tiv2) (16.29¢)
Covurmn = Tvn) (16.29d)
Uy =Tppn (16.29¢)

where T'; p | . T p>...T; p, represent points on the power contours where P, ;.
occurs for transistors Q. Q5. ....Q,,. respectively.

Overall Third-Order Intercept Point Power

High-power amplifiers are designed not only to obtain large amounts of output power
but also to have a high third-order intercept point (7O[). If each individual stage has a
known power valuc at TOI (Pygy;). then assuming in-phase addition (of the Pyg; of
each stage). overall Py, of the multistage power amplifier is given by:

1 1 1 - 1
GPnGPn—l"'GP2PTOI.l

- ; (16.30)
PT()I P'l"()l.n GPHPTOIJI—I

where G pis the power gain.
If all stages are identical.i.e..
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Gl’/\‘ = (;p. k=12...n (163] a)
Proir=P k=12...n © (16.31b)
Then, Equation 16.22 reduces to:
1 1( 11 1
— = =l —+ .+ (16.32)
Pror PL Gp g, G',ilj

Using Equation 15.33, the geometric series identity, Equation 16.32 becomes:
=1 G;j

- (16.33)
P, PI-17G,

For an infinite chain of amplifier stages (i.e.,n — o), we can write Equation 16.32
as:
Pro =PI =-1/Gp) (16.34)
In practice, n may be large (but is not infinite). thus Equation 16.34 gives a best
case scenario for the amplifier’s overall power at the third-order intercept point
(P7oyr). which is a power amplifier’s figure of merit—very similar to noise measure
(M), which is a figure of merit for an LNA as discussed earlier.

16.6.3 Dynamic Range Considerations

As discussed earlier, the dynamic range of an amplifier is bound at the lower end by
noise considerations (P, ,,,,) and at the upper end by 1-dB gain compression point
{(Pgg)- Thus. for an n-stage amplifier. we can write:

a) Lower Limit of Dynamic Range.

(Po.)’n(/s)cas = KT(dBm) +10 IOgl()B + 1010g1()F

cas + GA o (dB) + X(dBm) (16.35)
where (see Equation 15.28):
Gan=GA1Guar . Gay . (16.36)
Fo-1  Fy-1 F -1

F = F, + + +..+
! Ga Gu1Ga, Gr1G 420G uy

cas

(16.37)

Special Case: Identical Amplifiers For identical amplifiers and n very large
(n — o). Equations 16.36 and 16.37 simplify as:

Gar=0y  k=12...n (16.38a)
F.=F k=1.2...n (16.38b)
G o= (Gg)! (16.39)
F-1
F .o o=l+—" =1+M (16.40)
1-1/G,

(P nds)eas = KT(ABm) + 10log o8 + 101logy (1 + M) + nG 4(dB) + X(dB) (dBm)(16.41)
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where (sce Equation 15.36):
F-1
Mz — (16,42
-1/G, ne

NOTE: (P, i) for the first stage is given by:
(P, )1 (dBm) = KT(dBm) + 10log; (B + 101log;of + G4(dB) + X (dB) (1643

Combining Equations 16.4] and 16.43 we can see that:

(Po.mdx)('u;\‘ (dBm) = (P(um!\s)l (dBm) + AP{').H (1644
where
I+ M .
AP, =10logy, (—F—) +(n- DG, (dB) (16,44
Because AP, ,, is always positive, thus we can write:
(P().nulx)un 2 (Pu.mu’\‘)l (16.43:

Equation 16.45 shows an imporiani consideration where the output nunimiin
detectable signal for the whole cascade (P ) Bs determined by and dependy
J o, mds/ cas I
grearly on the minimum detectable signal of the first stage of the cascade,
(P, . Thus, it is important to have the first stage operate at the lowest possible
o,.mds/1 ! J
output noise level.

b) Upper Limit of Dynamic Range. At the upper limit. the total output
power at 1-dB gain compression point (4g ) can be shown to be of similar form to
Equation 16.30:

1 1 1 1

Pranen  Prann CpaPrasa T GGy Gl o
If all stages are identical. i.e.,
Gpr=Gp. k=12.....n (16.47a)
Piapi = Prap- k=1.2.....n (1647
then Equation 16.46 reduces to:
! = 1 |(1+L+ ! ot 1 \ (1o
Piagcas Pras. Op G G

Using Equation 15.33. the geometric series identity, Equation [6.48 becomes:

HoN

P1aB cus PldBLl -1/Gp

RIS

/

For an infinite and idenfical chain of amplifier stages (i.e..n—ee) and very similar
to Equation 16.34, we can write Equation 16.49 as:

PLaB cas = Prap(l - 1/G[’) (16.501)
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NOTE: Because Gp 21 and Pyyg , = P1ap, we can see from Equation 16.50 that
at all times: o

P14 cas < Prapa - (16.51)

That is, the signal at the output of the cascade is below or ar the 1 dB gain compres-
sion point of the last-stage amplifier.

As can be seen from Equation 16.51, the power output at 1 dB gain compression
point for the whole cascade (Pgp () is limited by the last stage 1 dB gain compres-
sion point power capability (P14g ,,). Thus, we can conclude the following:

CONCLUSION: [t is crucial to have the last stage of the cascade be designed such
that it has the highest power handling capabiliry.

16.6.4 Wide Dynamic Range Multi-stage Amplifier Design
For an n-stage amplifier, the actual dynamic range (DR) is given by:

DR = PldB.('aS(dBm) - (P(J.m(l's)('a.\'(dBm) (16.52)

As noted from the previous section, however, for a wide dynamic range design
we need to have the following considerations firmly in place:

a. From Equation 16.45 it can be concluded that the first stage sets the lower limit.
Therefore, ideally we would like to have:

(Po.mds )('as = (P().md.s')l (1653)

b. From Equation 16.51, we can observe that the upper limit is determined by the
1 dB gain compression point of the last stage and ideally, we would like to have:

P1aB.cas = P1aB n (16.54)

Thus, the maximum dynamic range or the best estimate of dynamic range
(DR,,,,v) that we can hope for, can be written as:

DRy = PldB.n(dBm) - (P().mds)l(dBm) (16.55a)
Thus, for n identical amplifiers (n — o ):
DR,y —DR=AP,, + P14p/Gp (16.55b)

POINT OF CAUTION: From Equations 16.44 and 16.45 we can observe that
increasing the number of stages (n) and/or available gain (G 4) of each stage will
increase the overall gain but will reduce the effective dynamic range by increasing
(P, mds)cas- Thus, there is a trade-off between the overall gain and the dynamic
range of a multistage amplifier.
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Fig. 4-21. Device outputs showing the fundamental and 2nd and 3rd order
distortion products together with the extrapolated respective intercept points,
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4.21 SPURIOUS FREE DYNAMIC RANGE

It is informative to determinc the dynamic signal operation range of a system
which is free of spuriaus signals resulting from third erder intermodulation
products. In this definition spurious free means that these spurious signals are
cqual to the noise level. The third order intermodulation product signal levels
are related o the level of the two signals (producing them. respectively, ona
three tor one dB relationship). The spurious free dynamic range 1s related tothe
third order systemn intercept point by the following relationship:

SEDR (dB) = 0.67 (I - AT/MHz - 10 log 8 — NF) (4-57)

where

SFDR is the spurious free dynamic range

j, 15 the system third order input intercept point

k't 15 the thermal nowsse level ina 1 MHz bandwidth
= =114 dBm / MHz

£ 1s bandwidth in MHz

NI 15 the system noise figure ( dB)
An example of the application of this relationship follows.
Example 4-11: .
(siren:
Third order input intercept point = 10 dBm (Note: Given the output
intercept point, the input intercept point is the output intercept point
minus the gain in dB notation.)
Bandwidth 1s 10 kHz
Naoise figure 15 5 dB
Find the spurious free dynamic range.

Selution:

SFDR = 0.67 (10 - {-114) - (=20} - 5)
= 92.67 dB

4.22 IMAGES

In the mixing process it was shown that when two input signals comprised of
an RI" signal and a local oscillator signal are applied to a mixer, inter-
mediate frequency signals are produced at the mixer’s output. More
spectiically:

(4:38)

B = 'wf‘, + ME, _
A4

!I
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~ where

F,1s the intermediate frequency
£, 1s the receive [requency
F_1s the local oscillator frequency
M and N are intergers
The primary or desired outputs result when Af = ¥ = |

Then equation (4-58) resulrs in:

F,= |F,j:F,,,| (4-59)

- Since £, isa constant, then for a given LO frequency there exist two values of #

which satisty the relationship.
EXAMPLE 4-13:

Let F, = 160.7 MHz
F,=10.7 MHz
then F. = |F,, + £,

or J10.7 £ 160.7| =150 and 171.4 MH..

Thus, the mixer 15 equally respopsive to two frequencies, bath of which are
twice the IF apart. Of these, one is the desired response and the other is called
the image frequency. The receiver must reject the image term to provide
satisfactory performance. This is one of the reasons mixers are always preceded
by preselection filtering of somc form. The selectivity requjrements of the
preselector are governed by the frequency separation between the image
frequency and the desired frequency. The amount of image frequency rejection
isstrictly a function of the attenuation, provided by the preselector filter alone
{unless an 1image rejection mixer is used).

Toavoid extreme selectivity requirements from the preselector, the ratio of F to
F!-‘.- should not exceed 10 or 20 to | for a first conversion in a down conversion
superheterodyne receiver.

In up-conversion systems, the high value of intermediate frequency effectively
removes the image frequency out of the preselector bandwidth. Here, sitnple
fixed tuned hlters often suffice as preselector filters, eliminating tracking and
tuning problems. Fig. (4-27) is an example illustrating the relative imaye
frequency behavior between up and down conversion.
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