1-6  introduction to Modern Network Theory

1 —m?
Lo="—"" Lx=0.00552 H 1-7)
C2 = mCx = 0.0460 pF (1-8)
(¢) Compute m-derived end sections using m = 0.6.
Ly=mLx=0.0115H (1-6)
1 —m?
Ly= - Lx=10.0204 H (1-7)
Ca = mCx = 0.0319 pF (1-8)

The resulting circuit is shown in figure 1-6a. By combining elements, the filter
of figure 1-6b is obrained.

Constant-k and m-derived image-parameter design techniques are generally
limited. Filters designed by these methods are inefficient and their response
characteristics are dillicult to predict. Because of these limitations, the subject
will not be carried beyond this point.

1.2 MODERN NETWORK THEORY

A generalized filter is shown in figure 1-7. The filter block may consist of induc-
tors, capacitors, resistors, and possibly active elements such as operational ampli-
fiers and transistors. The terminations shown are a voltage source E, a source
resistance Rs, and a load resistor R;.

2 4

Fig. 1-7 Generahized filter.

The circuit equations for the network of figure 1-7 can be written by using
circuit-analysis techniques. Modern network theory solves these equations to
determine the network valucs for optimum performance in some respect.

The Pole-Zero Cancept

The frequency response of the generalized filter can be expressed as a ratio
of two polynomials in s where s = jo (j = +/—1 and o, the frequency in radians
per second, is 2wf) and is referred to as a transfer function. This can be stated
mathematically as
105y = Bu M)
E;  D(s)
The roots of the denominator polynomial D(s) are called poles and the roots
of the numerator polynomial N(s) are referred to as zeros.
Deriving a network’s transfer function could become quite tedious and is
beyond the scope of this book. The following discussion explores the evaluation
and representation of a relatively simple transfer function.

(1-9)

1.2 Modern Network Theory

Analysis of the low-pass filter of figure 1-8a results in the following tran
function:
S
s34+252+ 254+ 1
Let us now evaluate this expression at different {requencies after substitu

Jo for 5. The result will be expressed as the absolute magnitude of T (jo)
the relative attenuation in decibels with respect to the response at DC.

T(s)= {1
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Fig. 1-8 All-pole N = 3 low-pass filter: (a) filter circuir; (4) frequency response.
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Fig. 1-9 Complex-frequency plane repre-
sentation of equation (1-10).
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The frequency-response curve is plotted in figure 1-84.

Analysis of equation (1-10) indicates that the denominator of the transfer
function has three roots or poles and the numerator has none. The filter is
therefore called an all-pole type. Since the denominator is a third-order polyno-
mial, the filter is also said to have an n = 3 complexity. The denominator poles
are s = —1, s = —0.500 + j0.866, and s = —0.500 — ;0.866.

These complex numbers can be represented as symbols on a complex-number
plane. The abscissa is a, the real component of the root, and the ordinate is
B, the imaginary part. Each pole is represented as the symbol X, and a zero is
represented as 0. Figure 1-9 illustrates the complex-number plane representation
for the roots of equation (1-10).

There are certain mathematical restrictions on the location of poles and zeros
in order for the filter to be realizable. They must occur in pairs which are
conjugates of each other, except for real-axis poles and zeros, which may occur
singly. Poles must also be restricted to the left half plane (i.e., the real coordinate
of the pole must be negative). Zeros may occur in either plane.

Synthesis of Filters from Polynomials

Modern network theory has produced families of standard transfer functions
that provide optimum filter performance in some desired respect. Synthesis is
the process of deriving circuit component values from these transfer functions.
Chapter 12 contains extensive tables of transfer functions and their associated
component values so that design by synthesis is not required. However, in order
to gain some understanding as to how these values have been determined, we
will now discuss a few methods of filter synthesis.

Synthesis by Expansion of Driving-Point Impedance The inputimpedance
to the generalized filter of figure 1-7 is the impedance seen looking into terminals
1 and 2 with terminals 3 and 4 terminated, and is referred to as the driving-
point impedance or Z;; of the network. If an expression for Z;; could be deter-
mined from the given transfer function, this expression could then be expanded
to define the filter.

A family of transfer functions describing the flattest possible shape and a
monotonically increasing attenuation in the stopband is the Butterworth low-
pass response. These all-pole transfer functions have denominator polynomial
roots which fall on a circle having a radius of unity from the origin of the jw
axis. The attenuation for this family is 3 dB at 1 rad/s.

The transfer function of equation (1-10) satisfies this criterion. It is evident
from figure 1-9 that if a circle were drawn having a radius of 1, with the origin
as the center, it would intersect the real root and both complex roots.

If R¢ in the generalized filter of figure 1-7 is set to 1 , a driving-point
impedance expression can be derived in terms of the Butterworth transfer func-
tion as

(1-12)

where D(s) is the denominator polynomial of the transfer function and = is
the order of the polynomial.

After D(s)is substituted into equation (1-12), Z, is expanded using the continu-
ous-fraction expansion. This expansion involves successive division and inversion
of a ratio of two polynomials. The final form contains a sequence of terms
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each alternately representing a capacitor and an inductor and finally the resistive
termination. This procedure is demonstrated by the following example.

Example 1-3
REQUIRED: Low-pass LC filter having a Butterworth n = 3 response.
RESULT: (a) Use the Butterworth transfer function:

N S

3+ 252+ 25+ 1

(b) Substitute D(s) = s3 + 252 + 25+ 1 and s" = s? into equatior
(1-12), which results in

T(s)= (1-10)

2+ 2541
253+ 252+ 25+ 1

(¢) Express Z so that the denominator is a ratio of the higher-orde
to the lower-order polynomial:

Zn (1-12)

-
U234+ 22+ 25+ 1
252+ 25+ 1

(d) Dividing the denominator and inverting the remainder results ir

n= !
s+1

252+ 25+ 1
s+1

(e) After further division and inversion, we get as our final expression

Zy

Zn= !
s+ 1

25+ 1
s+1
The circuit configuration of figure 1-10 is called a ladder network, since it

consists of alternating series and shunt branches. The input impedance can be
expressed as the following continued fraction:

(1-13)
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Fig. 1-10 General ladder network.
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at.. .l
Zna+ 1
Ya

Zn =

(1-14)
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where Y = sC and Z = ;L for the low-pass all-pole ladder except for a resistive
termination where ¥, = sC+ I/R;.

Figure 1-11 can then be derived from equations (1-13) and (1-14) by inspection.
This can be proved by reversing the process of expanding Z,,. By alternately
adding admittances and impedances while working toward the input, Z;, is verified
as being cqual to equation (1-13).
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Fig. 1-11  Low-pass filter for equation (1-13).

Synthesis for Unequal Terminations If the source resistor is set equal to
1 © and the load resistor is desired to be infinite (unterminated), the impedance
looking into terminals 1 and 2 of the gencralized filter of figure 1-7 can be
cxpressed as

_ D(seven)
" D(sodd)

D(s even) contains all the even-power s terms of the denominator polynomial
and D(s odd) consists of all the odd-power s terms of any realizable all-pole
low-pass transfer function. Z;, is expanded into a continued fraction as in example
1-3 to define the circuit.

Zy (1-15)

Example 1-4

REQUIRED: Low-pass filter having a Butterworth n = 3 response with a source
resistance of 1 {1 and an infinite termination.
RESULT: (a) Use the Butterwarth transfer function:

1
s+ 252425+ 1

(b) Substitute D(seven) =252+ 1 and D(s odd) = s* + 25 into equation
(1-15):

I(s)= (1-10)

252 + 1

s34 25

(c) Express Z;, so that the denominator is a ratio of the higher- to
the lower-order polynomial:

Zy= (1-15)

1.2 Modern Network Theory

1
= s34+ 2s
25211
(d) Dividing the denominator and inverting the remainder resu
Zy = 1
055+ 1
252+ 1
1.5s
(e) Dividing and further inverting resulis in the final continued
tion
7y = 1
055+ 1 (
1.333s+1

1.5s

The circuit is shown in figure 1-12.

10 1.333H

YV

Fig. 1-12 Low-pass filter of cxample
1-4.

Synthesis by Equating Coefficients An active three-pole low-pass
is shown in figure 1-13. Its transfer function is given by

where

and

1
)= S T oB Tt 1 U
A= C(CyCs (
B=2C;(Cy+ Cy) = (i
C=C2+3C, C (

If a Butterworth transfer function is desired, we can set equation (1-17) ¢
to equation (1-10).

Fig. 1-13 General N = 3 active low-pass filter.
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1 1
A+ s2B+sCH 1 53+ 252+ 25+ |

By equating coeflicients we obtain

(s)= (1-21)
4=1
B=2
c=2

Substituting these coefhicients in equations (1-18) through (1-20) and solving
for Cy, Ca, and (3 results in (he circuit of figure 1-14.

‘L3546F -
10 19 T 10 °Out
in O—ANMV AN AN —L+

%1 392 F 02024 F

Fig. 1-14 Butterworth N = 3 active low-pass filter.

Synthesis of filters directly from polynomials offers an elegant solution to
filter design. However, it also may involve laborious computations to determine
circuit element values. Design methods have been gready simplified by the
curves, tables, and step-by-step procedures provided in this handbook; so design
by synthesis can be left to the advanced specialist.

Active versus Passive Filters

The LC filters of figures 1-11 and 1-12 and the active filter of figure 1-14 all
satisfy an n = 3 Butterworth low-pass transfer tunction. The filter designer is
frequently faced with the sometimes difficult decision of choosing whether to
use an active or LC design. A number of factors must be considered. Some of
the limitations and considerations for each filter type will now be discussed.

Frequency Limitations At subaudio frequencies, LC filter designs require
high values of inductance and capacitance along with their associated bulk. Active
filters are more practical because they can be designed at higher impedance
levels so that capacitor magnitudes are reduced.

Above 50 kHz, most commercial-grade operational amplifiers have insufficient
opcen-loop gain for the average active filter requirement. However, amplifiers
arc available with extended bandwidth at increased cost so that active filters
at frequencies up to 500 kHz are possible. LC filters, on the other hand, are
practical at frequencies up to a few hundred megahertz. Beyond this range,
filters become impractical to build in lumped form, and so distributed parameter
techniques are used.

Size Considerations Active filters are generally smaller than their £.C coun-
terparts, since inductors are not required. Further reduction in size is possible
with microelectronic technology. By using deposited RC networks and monolithic
operational amplifier chips or with hybrid technology, active filters can be re-
duced to microscopic proportions.

References

Economics and Ease of Manufacture LC filters generally cost more |
active filters because they use inductors. High-quality coils require efficient n
netic cores. Sometimes, special coil-winding methods are needed. These fac
lead to the increased cost of L.C filters.

Active filters have the distinct advantage that they can be easily asseml
using standard off-the-shelf components. LC filters require coil-winding
coil-assembly skills.

Ease of Adjustment In critical LC filters, tuned circuits require adjustn
to specific resonances. Capacitors cannot be made variable unless they are b
a few hundred picofarads. Inductors, however, can easily be adjusted, s
most coil structures provide a means for tuning such as an adjustment sluy

Many active filter circuits are not easily adjustable. They may contain
sections where two or more resistors in each section have to be varied in o
to control resonances. These circuits have been avoided. The active filter de
techniques presented in this handbook include convenient methods for adjus
resonances where required such as for narrow-band bandpass filters.
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Selecting
the Response
Characteristic

2.1 FREQUENCY-RESPONSE NORMALIZATION

Several parameters are used to characterize a filter’s performance. The

commonly specified requirement is frequency response. When given a freque
response specification, the engincer must select a filter design that meets |
requirements. This is accomplished by transforming the required respon
a normalized low-pass specification having a cutoft of 1 rad/s. This norma
response is compared with curves of normalized low-pass filters which also
a 1 rad/s cutoff. After a satisfactory low-pass filter is determined from the cu
the tabulated normalized element values of the chosen filter are transfo
or denormalized to the final design.

Modern network theory has provided us with many different shapes of a
tude versus frequency which have heen analytically derived by placing va
restrictions on transfer functions. The major categories of these low-pas
sponses are:

Butterworth

Chebyshev .
Linear phase o
I'ransitional

Synchronously tuned

Elliptic-function

With the exception of the elliptic-function family, these responses are all no
ized to a 3-dB cutoff of | rad/s.

Frequency and Impedance Scaling

The basis for normalization of filters is the fact that a given filter’s resf
can be scaled (shifted) to a different trequency range by dividing the re:
elements by a frequency-scaling factor (FSF). The FSF is the ratio of a refer
frequency of the desired response to the corresponding reference frequ
of the given filter. Usually 3-dB points arc selected as reference freque
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of low-pass and high-pass filters and the center frequency is chosen as the refer-

ence fo

r bandpass filters. The FSF can be expressed as

_ desired reference frequency
existing reference frequency

(2-1)

The FSF must be a dimensionless number; so both the numerator and denomi-

nator o

f equation (2-1) must be expressed in the same units, usually radians

per second. The following example demonstrates computation of the FSF and
frequency scaling of filters.

Example 2-1

Frequ

REQUIRED: Low-pass filter either LC or active with n = 3 Butterworth transfer
function having a 3-dB cutoff at 1000 Hz.
RESULT: Figure 2-1 illustrates the LC and active n = 3 Butterworth low-pass
filters discussed in chapter 1 and their response.

(a) Compute FSF.

2m1000 rad/s
FSF T rad/s 6280 (2-1)
(b) Dividing all the reactive elements by the FSF results in the filters
of figure 2-2a and b and the response of figure 2-2¢

Note that all points on the frequency axis of the normalized response have been
multiplied by the FSF. Also since the normalized filter has its cutoff at 1 rad/s,
the FSF can be directly expressed by 2af;, where f; is the desired low-pass cutofl
frequency in hertz.

ency scaling a filter has the effect of multiplying all points on the fre-

quency axis of the response curve by the FSF. Therefore, a normalized response

curve can be directly used to predict the attenuation of the denormalized fiter.
10 2 H
3.546 F
10 19 10 Out
1F 1F 10 In
o ] T I1.392 F Io.2024 F
(a) (b)

Fig. 2-1
response.

rad/s
(c)
N =3 Butterworth low-pass filter: (a) LC filter; (b) active filter; (c) frequency

0.318 mH
565

10
N
19 19 | 14q
159 159 Siq - n
uF uF
222 uF 32.2 uF

(a) (b)

[} 6280 12560 rod/s
1000 2000 Hz
(c)
Flg. 2-2 Denormalized low-pass filter of example 2-1: (a) LC hiter; (b) active hlter;
frequency response.

When the filters of figure 2-1 were denormalized to those of figure 2-2,
transfer function changed as well. The denormalized transfer function beca
7y l (‘
)= 4.03 X 107123+ 5.08 X 107952+ 3.18 X 10 45+ | ¢
The denominator has the roots: s = —6280, s = —3140 + ;j5438, and
—3140 — ;5438. )
These roots can be obtained directly from the normalized roots by multiply
the normalized root coordinates by the FSF. Frequency scaling a filter ¢
scales the poles and zeros (if any) by the same factor. ' )
The component values of the filters in figure 2-2 are not very practical. ©
capacitor values are much too large and the 1 — Q resistor values are not v
desirable. This situation can be resolved by impedance scaling. Any linear ac
or passive network maintains its transfer function if all resistor and .indm
values are multiplied by an impedance-scaling factor Z and all capacitors
divided by the same factor Z. This occurs because the Z’s cancel in the tran:

R L ZR ZL

19
I
(a) (0)

Fig. 2-3 Two-pole low-pass LC filter: (a) basic filter; (b) impedance-
scaled filter.
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function. To prove this, let us investigate the transfer function of the simple
two-pole low-pass filter of figure 2-3 a, which is

1

T(s)= X
M= e R+ @-3)
Impedance scaling can be mathematically expressed as
R' = ZR (2-4)
L'=7ZL (2-5)
—
C' = 7 (2-6)

where the primes denote the values after impedance scaling.
If we impedance-scale the filter, we obtain the circuit of figure 2-34. The
new transfer function becomes

1

T(s)= @27

C C
2ZL—+s— +
s 7 SZZR 1

Clearly, the Z’s cancel; so both transfer functions are equivalent.

We can now use impedance scaling to make the values in the filters of figure
2-2 more practical. If we use impedance scaling with a Z of 1000, we obtain
the filters of figure 2-4. The values are certainly more suitable.

1k 318 mH

(o) (#)
Fig. 2-4 Impedance-scaled filters of example 2-1: (a) LC filter; () active filter.

Frequency and impedance scaling are normally combined into one step rather
than performed sequentially. The denormalized values are then given by

R'=RxZ (2-8)
,_LX2Z 9.0
" FSF 2-9)
o C 9
FSF X Z (2-10)

where the primed values are both frequency- and impedance-scaled.

Low-Pass Normalization

In order to use normalized low-pass filter curves and tables, a given low-pass
filter requirement must first be converted into a normalized requirement. The

2.1 Frequency-Response Normalization

curves can now be entered to find a satisfactory normalized filter which is tt
scaled to the desired cutoff.

The first step in selecting a normalized design is to convert the requirem
into a steepness factor 4, which can be defined as

Ag =é (2-
Je
where f is the frequency having the minimum required stopband attenuat
and f is the limiting frequency or cutofl of the passband, usually the 3-
point. The normalized curves are compared with 4, and a design is selec
that meets or exceeds the requirement. The design is then frequency-sca
so that the selected passband limit of the normalized design occurs at /.

If the required passband limit f. is defined as the 3-dB cutoff, the steepn
factor 4; can be directly looked up in radians per second on the frequer
axis of the normalized curves.

Suppose that we required a low-pass filter that has a 3-dB point at 100
and more than 30 dB attenuation at 400 Hz. A normalized low-pass filter ¢l
has its 3-dB point at 1 rad/s and over 30 dB attenuation at 4 rad/s won
meet the requirement if the filter were frequency-scaled so that the 3-dB po
occurred at 100 Hz. Then there would be over 30 dB auenuation at 400 1
or 4 times the cutoff, because a response shape is rerained when a filter
frequency-scaled.

The following example demonstrates normalizing a simple low-pass requi
ment.

Example 2-2
REQUIRED: Normalize the following specification:
Low-pass filter
3 dB at 200 Hz
30 dB minimum at 800 Hz
RESULT: (a) Compute 4,.

_f_800Hz _
f 20011z

(b) Normalized requirement:
3 dB at 1 rad/s
30 dB minimum at 4 rad/s

(2-11

In the event f. does not correspond to the 3-dB cutoff, As can still be comput
and a normalized design found that will meet the specificatiotis. This is illustrat
in the following example.

Example 2-3

REQUIRED: Normalizc the following specification:
Low-pass filter
1 dB at 200 Hz
30 dB minimum at 800 Hz
RESULT: (a) Compute A,

£ 80UHz
= me— = 11
Jo 200Hz @1

(b) Normalized requirement:
1 dB at K rad/s
30 dB minimum at 4K rad/s
(where K is arbitrary)
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function. To prove this, let us investigate the transfer function of the simple
two-pole low-pass filter of figure 2-3 a, which is

1

Ts)=—rm—— -
=BT R+ 1 2-3)
Impedance scaling can be mathematically expressed as
R'=ZR (2-4)
L =7L (2-5)
P
c'= 7 (2-6)

where the primes denote the values after impedance scaling.
If we impedance-scale the filter, we obtain the circuit of figure 2-35. The
new transter function becomes
1
T(J)i_w—(',_ 2-7)
277 = -
s ZLZ+$ZZR+1

Clearly, the Z’s cancel; so both transfer functions are equivalent.

We can now use impedance scaling to make the values in the filters of figure
2-2 more practical. If we use impedance scaling with a Z of 1000, we obtain
the filters of figure 2-4. The values are certainly more suitable,

1kQ 318 mH

0159 0159

T;ﬁ T;LF

L1

(a) (6)
Fig. 2-4 Impedance-scaled filters of example 2-1: (a) LC flter; (b) active filter.

Frequency and impedance scaling are normally combined into one step rather
than performed sequentially. The denormalized values are then given by

R'=R%7Z (2-8)
v LX2Z
FSF 29
. C
¢ FSK¥ X Z (2-10)

where (he primed values are both frequency- and impedance-scaled.

Low-Pass Normalization

In order to use normalized low-pass filter curves and tables, a given low-pass
filter requirement must first be converted into a normalized requircment. The
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curves can now be entered to find a satisfactory normalized filter which is then
scaled to the desired cutoft.

The first step in selecting a normalized design is to convert the requirement
into a steepness factor As, which can be defined as

As:é (2-11)
Je
where f is the frequency having the minimum required stopband attenuation
and f; is the limiting frequency or cutoff of the passband, usually the 3-dB
point. The normalized curves are compared with 4;, and a design is selected
that meets or exceeds the requirement. The design is then {requency-scaled
so that the selected passband limit of the normalized design occurs at f.

If the required passband limit f is defined as the 3-dB cutoff, the steepness
factor A4s can be directly looked up in radians per sccond on the frequency
axis of the normalized curves.

Suppose that we required a low-pass filter that has a 3-dB point at 100 Hz
and more than 30 dB attenuation at 400 Hz. A normalized low-pass filter that
has its 3-dB point at 1 rad/s and over 30 dB aticnuation at 4 rad/s would
meet the requirement if the filter were frequency-scaled so that the 3-dB point
occurred at 100 I1z. Then there would be over 30 dB attenuation at 400 Hz,
or 4 times the cutoff, because a response shape is retained when a filter is
frequency-scaled.

The following example demonstrates normalizing a simple low-pass require-
ment.

Example 2-2

REQUIRED: Normalize the following specification:
Low-pass filter
3 dB at 200 Hz.
30 dB minimum at 800 Hz
RESULT: (a) Compute 4.

_f_800Hz _
f 200Hz

(2-11)

s

(b) Normalized requirement:
3 dB at | rad/s
80 dB mintmum at 4 rad/s

In the event f. does not correspond to the 3-dB cutoft, 4; can still be computed
and a normalized design found that will meet the specifications. This is illustrated
in the following example.

Example 2-3

REQUIRED: Normalize the following specification:
Low-pass flter
1 dB at 200 Hz
30 dB minimum at 800 Hz
RESULT: (a) Compute A,.

_f_800Hz

o 2001z @1h

(b) Normalized requirement:
1 dB at K rad/s
30 dB minimum at 4K rad/s
(where K is arbitrary)



2-6  Selecting the Response Characteristic

A possible solution to example 2-3 would be a normalized filter which has a
1-dB point at 0.8 rad/s and over 30 dB attenuation at 3.2 rad/s. The fundamental
requirement is that the normalized filter makes the transition between the pass-
band and stopband limits within a frequency ratio As.

High-Pass Normalization
A normalized n = 3 low-pass Butterworth transfer function was given in section
1.2 as
T(S):____l.__ (1-10)
s+ 2524+ 25+1

and the results of evaluating this transfer function at various frequencies were:

o 10w )] 20 log | 7)o |
0 1 0dB
1 0.707 —3 dB
2 0.124 —18 dB
3 0.0370 —29 dB
4 0.0156 —36 dB

1.et us now perform a high-pass transformation by substituting 1/s for s in equa-

tion (1-10). After some algebraic manipulations the resulting transfer function
becomes

> 2-12

T(S);.v3+2.v2+ 25+1 @-12)

If we evaluate this expression at specific frequencies, we can generate the follow-
ing table:

@ [T jeo )} 20 log [T(jo )|
0.25 0.0156 —36 dB
0.333 0.0370 —-29 dB
0.500 0.124 —18dB
1 0.707 —3 dB

o 1 0dB

The response is clearly that of a high-pass filter. It i1s also apparent that the
low-pass attenuation values now occur at high-pass frequencies that are exactly
the reciprocals of the corresponding low-pass frequencies. A high-pass transfor-
mation of a normalized low-pass filter transposes the low-pass attenuation values
to reciprocal frequencies and retains the 3-dB cutoff at 1 rad/s. "This relationship
is evident in figure 2-5, where both filter responses are compared.

The normalized low-pass curves could be interpreted as normalized high-
pass curves by reading the attenuation as indicated and taking the reciprocals
of the frequencies. However, it is much easier to convert a high-pass specification
into a normalized low-pass requirement and use the curves directly.

2.1 Frequency-Response Normalization

To normalize a high-pass filter specification calculate A, which in the «
of high-pass filters is given by

_fe
)

Since the A, for high-pass filters is detined as the reciprocal of the A, for 1
pass filters, equation (2-13) can be directly interpreted as a low-pass requirem

As 2

1
025033305

rad/s
Fig. 2-5 Normalized low-pass high-pass relationship.

A normalized low-pass filter can then be selected from the curves. A high-
transformation is performed on the corresponding low-pass filter, and the re:
ing high-pass filter is scaled to the desired cutoff frequency.

The following example shows the normalization of a high-pass filter requ
ment.

Example 2-4

REQUIRED: Normalize the following requirement:
High-pass filter
3 dB at 200 Hz
30 dB minimum at 50 Hz
RESULT: (a) Compute A,.
_fo_200Hz

4 4 .
* f 50Hz @1

(h) Normalized cquivalent low-pass requirement:
3 dB at 1 rad/s
30 dB minimum at 4 rad/s

Bandpass Normalization

Bandpass filters fall into two categories, narrow-band and wide-band. If
ratio of the upper cutoff frequency to the lower cutoff frequency is over 2
octave), the filter is considered a wide-band type.
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Wide-Band Bandpass Filters Wide-band filter specifications can be separated
into individual low-pass and high-pass requirements which are treated indepen-
dently. The resulting low-pass and high-pass filters are then cascaded to meet
the composite response.

Example 2-5
REQUIRED: Normalize the following specification:
Bandpass filter
3 dB at 500 and 1000 Hz
40 dB minimum at 200 and 2000 Hz
RESULT: (a) Determine the ratio of upper cutoff to lower cutoff.

1000 Hz _

50011, 2

wide-band type ) )
(b) Separate requirement into individual specifications.

High-pass filter: Low-pass filter:
3 dB at 500 Hz 3 dB at 1000 Hz
40 dB minimum at 200 Hz 40 dB minimum at 2000 Hz
As=25 (2-13) 4s=2.0 (2-11)

(¢) Normalized high-pass and low-pass filters are now selccted, scaled
to the required cutoff frequencies, and cascaded to meet the com-
posite requirements. Figure 2-6 shows the resulting circuit and
response.

Narrow-Band Bandpass Filters Narrow-band bandpass filters have a ratio
of upper cutoff frequency to lower cutoff frequency of approximately 2 or less

Low-pass High-pass
in— p—— == Out

— 1 —

(o)

e

dB

I
|
|
|
|
I
-40-4——bF—-—————————— +-=

| I
| t
| I
| |

. S B
0 1000 2000
Hz
(6)
Fig. 2.6 Results of example 2-5: (a) cascade of
low-pass and high-pass filters; (b) frequency re-
sponse.

2.1 Freq y-Resp Nor
Low-pass High-poss o
In ﬂ ut
/a
(2}
fe] 0
@ @
o ©
Frequency Frequency

(6) (c)
Fig. 2.7 Limirtation of wide-band approach for narrow-band filters: {a)
cascade of low-pass and high-pass filters; (5) composite response; (c) alge-
braic sum of attenuation.

and cannot be designed as scparate low-pass and high-pass filters. The m
reason for this is evident from figure 2-7. As the ratio of upper cutoff to Ic
cutoff decreases, the loss at center frequency will increase, and it may bec
prohibitive for ratios near unity.

If we substitute s + 1/s for s in a low-pass transfer function, a bandpass {
results. The center frequency occurs at 1 rad/s, and the frequency respc
of the low-pass filter is directly transformed into the bandwidth of the band|
filter at points of equivalent attenuation. In other words, the attenuation b:
width ratios remain unchanged. This is shown in figure 2-8, which shows
relationship between a low-pass filter and its transformed bandpass equival
Each pole and zero of the low-pass filter is transformed into a pair of p
and zeros in the bandpass filter.

In order to design a bandpass filter, the following sequence of steps is invol

1. Convert the given bandpass filter requirement into a normalized low-|
specification.

2. Select a satistactory low-pass filtcr from the normalized frequency-respc

curves.
8. Transform the normalized low-pass parameters into the required band,
filter.

The response shape of a bandpass filter is shown in figure 2-9 along -
some basic terminology. The center frequency is defined as

Jo=~NIifu @

where f;, is the lower passband limit and f, is the uppcr passband limit, usu
the 3-dB attenuation frequencies. For the morc gencral case

h=vFiF @
where f; and f; are any two frequencies having equal attenuation. These relat
ships imply geometric symmetry; that is, the entire curve below f is the mi
image of the curve above f, when plotted on a logarithmic (requency axis.
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An important parameter of bandpass filters is the filter selectivity factor or
(), which is defined as

_ bk
T BW

where BW is the passband bandwidth or f, — fi.

(2-16)

+iB
x
x |t«o
X
+iB
—a —ata
x
—a +a
x
x x —wy
x
—iB —iB

rad/s
Fig. 2.8 Low-pass to bandpass transformation.

As the filter Q increases, the response shape near the passband approaches
the arithmetically symmetrical condition, i.e., mirror-image symmetry near the
center frequency, when plotted using a finear frequency axis. For Q’s of 10 or
morc the center frequency can be redefined as the arithmetic mean of the pass-
band limits; so we can replace equation (2-14) with

+Ju
ﬁa:é—é‘j“ 2-17)

In order to utilize the normalized low-pass filter [requency-response curves,
a given narrow-band bandpass filter specification must be transformed into a
normalized low-pass requirement. This is accomplished by first manipulating

2.1 Frequency-Resp Nor

the specification to make it geometricaily symmetrical. At equivalent attenu:
points, corresponding {requencies above and below f must satisfy

he=13 ¢

which is an alternate form of equation (2-15) for geometric symmetry.
given specification is modified by calculating the corresponding opposite ge:

- @

—

Frequency

Fig. 229 General bandpass hilter response
shape.

tric frequency for each stopband frequency specified. Each pair of stopl
frequencies will result in two new frequency pairs. The pair having the It
separation is retained, since it represents the more severe requirement.

A bandpass filter steepness factor can now be defined as

__stopband bandwidth ¢
¢ passband bandwidth

This steepness factor is used to select a normalized low-pass filter from
frequency-response curves that makes the passband to stopband transition w
a frequency ratio of 4. )

The following example illustrates the normalization ‘of a bandpass filte
quirement.

Example 2-6
REQUIRED: Normalize the following bandpass filter requirement:
Bandpass filter
Center frequency of 100 Hz
3 dB at =15 Hz (85 Hz, 115 1lz)
40 dB at =30 Hz (70 Hz, 130 Hz)
RESULT: (a) First compute center frequency f.

Jo=~/frfu=+/85X115=989 Hz (2-1
(b) Compute two geometrically related stopband frequency pair
each pair of stopband frequencies given.

Let /1 =70 Hz.
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f2=£§=%)—2=139_7 Hz (2-18)
1
Let fa= 130 Hz.
/1——§£2’= (9183'3)2: 75.2 Hz (2-18)
2

The two pairs are

f1="T0Hz, f,=139.7Hz (f:— f=69.7 Hz)
and f1=175.2Hz, f,=180Hz (/> f=54.8 He)
Retain the second frequency pair, since it has the lesser separation. Figure 2-
10 compares the specified filtcr requirement and the geometrically symmetrical

equivalent.
(¢) Calculate 4.

__ stopband bandw.ldlh _b548Hz _ 183 (2-19)
passband bandwidth 30 Hz

(d) A normalized low-pass filter can now be selected from the normal-
ized curves. Since the passband limit is the 3-dB poin, the normal-
ized filter is required to have over 40 dB of rcjection at 1.83
rad/s or 1.83 times the l-rad/s cutoff.

100 Hz
348 30 Hz
85 Hz 15 Hz
40 dB— 60 Hz
/70 Hz 130 H’z\
(o)

989 Hz

40 dB— 548 Hz
/;5.2 Hz 130 Hz\

(5)
Fig.2-10 Frequency-response requirements of ex-
ample 2-6: (a) given filter requirement; (b) geo-
metrically symmetrical requirement.

2.1 Frequency-Response Normalization

Bandpass [ilter requirements are not always specified in an arithmetically

metrical manner as in the previous example. Multiple stopband attenuatic
quirements may also exist. The design engineer is stll faced with the
problem of converting the given parameters into geometrically symmerrical
acteristics so that a steepness factor or factors can be determined. The follc
example demonstrates conversion of a specification somewhat more compli
than the previous example.

Example 2-7

REQUIRED: Normalize the following bandpass filter specification:
Bandpass filter
1 dB passband limits of 12 and 14 kHz
20 dB minimum at 6 kHz
30 dB mnimum at 4 kHz
40 dB minimum at 56 kHz
ReEsuLT: (a) First compute the center trequency.

L=12kHz  fu=14kHz
o= 12.96 kIlz @

(b) Compute the corresponding geometric frequency for each
band frequency given, using equation (2-18).

Nife=f3 @

53 kHz

kHz 56 kHz
(b)

Fig. 2-11  Given and transformed response of ex-

ample 2-7: (a) given requirement; (b) geometrically

symmectrical response.
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It is well known that a square wave can be represented by a Fourier series
of odd harmonic components as indicated in figure 2-18. Since the amplitude
of each harmonic is reduced as the harmonic order increases, only the first

A
¢}
-
Time
A(t)= A(—21'+1—2r cos wxr'—‘siﬂcos Sm,r—%-sl’"cos Bu, T+ .. )
Fig. 2-18 Frequency analysis of a square
wave.

few harmonics are of significance. If a square wave is applied to a filter, the
fundamecntal and its significant harmonics must have the proper relative ampli-
tude relationship at the filter’s output in order to retain the square waveshape.
In addition, these components must not be displaced in time with respect to
each other. Let us now consider the effect of a low-pass filter’s phase shift on
a square wave.

If we assume that a low-pass filter has a linear phase shift between 0° at
DC and n times —45° at the cutoff, we can express the phase shift in the passband
as

457/

= (2-21)
¢ 7.

where £ is any frequency in the passband and f. is the 3-dB cutoff frequency.

A phase-shifted sine wave appears displaced in time from the input waveform.
This displacement is called “phase delay” and can be computed by determining
the time interval represented by the phase shift, using the fact that a full period
contains 360°. Phase delay can then be computed by

¢ 1

=560 (2-22)

Tpa
or, as an alternate form,

Tha——8 (2-23)

(2]

where 3 is the phase shilt in radians (I rad = 360/27 or 57.3°) and w is the
input {requency expressed in radians per second (0 = 27 f£).

Example 2-10
REQUIRED: Compute the phase delay of the fundamental and the third, fifth,
seventh, and ninth harmanics of a 1-kHz square wave applied to an n= 3 Butter-
worth low-pass filter having a 3-dB cutoff of 10 kHz. Assume a linear phase
shift with frequency in the passband.
ResuLT:  Using formulas (2-21) and (2-22), the following table can be computed:

2.2 Transient Response 2

Frequency ¢ Tpa
1 kHz -13.5° 375 ps
3 kHz —40.5° 37.5 ps
5 kHz —67.5° 37.5 pus
7kHz —91.5° 37.5 ps
9 kHz —121.5° 37.5 pus

The phase delays of the fundamental and each of the significant harmon
in example 2-10 are identical. The output waveform would then appear nca
equivalent to the input except for a delay of 37.5 ps. It the phase shift is r
linear with frequency, the ratio ¢//; in equation (2-22) is not constant; so ez
significant component of the input square wave would undergo a different del
This displacement in time of the spectral components, with respect to ez
other, introduces a distortion of the output waveform. Figure 2-19 shows sor
typical effects of nonlinear phase shift upon a squarc wave. Most filters he
nonlinear phase versus frequency characteristics; so some waveform distorti
will usually occur for complex input signals

(a)

(6)

Fig. 2-19  Effect of nonlinear phase: (a)
ideal square wave; (b) distorted square
wave.

Not all complex waveforms have harmonically related spectral componen
An amplitude-modulated signal, for example, consists of a carrier and two sic
bands, cach sideband separated from the carrier by the modulating frequen:
It a filter’s phase characteristic is linear with frequency and intersects zero pha
shift at zero frequency (DC), both the carrier and the two sidebands will ha
the same delay in passing through the flter; so the outpur will be a delay
replica of the input. If these conditions are not satisfied, the carrier and bo
sidebands will be delayed by different amounts. The carrier delay will be
accordance with the equation for phase delay

Tpa = —g (2-23)

(The terms carrier delay and phase delay are used interchangeably.)

A new definition is required for the delay of the sidebands. This delay
commonly called “group delay” and is defined as the derivative of phase vers
frequency, which can be expressed as
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4B
Tya=— E (2-24)
Linear phase shift results in constant group delay, since the derivative of;a
linear function is a constant. Figure 2-20 illustrates a low-pass filter phasc shift
which is nonlinear in the vicinity of a carrier . and the two sidebands w. —
@m and @ + @m. The phase delay at w. is the negative slope of a line drawn

Frequency
0 we-wm wg wetwm
T T T o
Bl
|
N
5 .
e Ll
» | | I
Oo_ | I
[
» |
»
g |
2
a
\
%
%\
A
pﬁ'
-8
Fig. 220 Nonlinear phase shift of a low-
pass filter.

t Input

Fig. 2-21 Effect of nonlinear phase on AM signal.

2.2 Transient Response 2

from the origin to the phasc shift corresponding to @, which is in agreem
with equation (2-23). The group delay at . is shown as the negative slope
a linc which is tangent to the phase response at w. This can be mathematicz
expressed as

aPB
Tou e w~wp

If the two sidebands are restricted to a region surrounding o, having a const:
group delay, the envelope of the modulated signal will be delayed by Tq. Fig
2-21 compares the input and output waveforms of an amplitude-modulated sigi
applied to the filter depicted by figure 2-20. Note that the carrier is delay
by the phase delay while the cnvelope is delayed by the group delay. For tl
reason group delay is sometimes called “envelope delay.”

If the group delay is not constant over the bandwidth of the modulated sign
waveform distortion will occur. Narrow-bandwidth signals are more likely
encounter constant group delay than signals having a wider spectrum. It
common practice to use group-delay variation as a criterion to evaluate phz
nonlinearity and subsequent waveform distortion. The absolute magnitude
the nominal delay is usually of little consequence.

Step Response of Networks

If we were to define a hypothetical idcal low-pass filter, it would have the respon
shown in figure 2-22. The amplitude response is unity from DC to the cut
frequency wc and zcro beyond the cutoff. The phase shift is a linearly increasii
function in the passband, where = is the order of the ideal filter. The groi
delay is constant in the passband and zero in the stopband. If a unity amplitu
step were applied to this ideal filter at ¢ = 0, the output would be in accordan

Tod
nr
2uwg
0 we «

(c)
Fig. 2-22 Ideal low-pass filter: (a) frequency response; (b)
phase shift; (c) group delay.
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sponse, divide the normalized low-pass rise time by 7BW, where BW is 10 Hz.
The resulting rise time is approximately 120 ms, which well exceeds the burst
duration. Also, 10 cycles of center frequency occur during the burst interval;
so the impulse response can be used to approximate the output envelope. To
denormalize the impulse response, multiply the amplitude axis by 7BW and
divide the time axis by the same factor. The results are shown in figure 2-32.

l

(b)

Fig.2-32 Results of example 2-17: (a) normalized low-pass
impulse response; (b) impulse response of bandpass filter

Effective Use of the Group-Delay, Step-Response, and Impulse-Response
Curves Many signals consist of complex forms of modulation rather than pulses
or steps; so the transient response curves cannot be directly used to estimate
the amount of distortion introduced by the filters. Ilowever, the curves are
useful as a figure of merit, since networks having desirable step- or impulse-
response behavior introduce minimal distortion to most forms of modulation.

Examination of the step- and impulse-response curves in conjunction with
group delay indicates that a necessary condition for good pulse transmission
is a Hlat group delay. A gradual transition from the passband to the stopband
is also required for low transient distortion but is highly undesirable from a
frequency-attenuation point of view.

In order to obtain a rapid pulse rise time the higher-frequency spectral compo-
nents should not be delayed with respect to the lower frequencies. The curves
indicate that low-pass filters which do have sharply increasing delay at higher
frequencics have an impulse response which comes to a peak at a later time.

When a low-pass filter is transformed to a high-pass, a band-reject, or a wide-
band bandpass filter the transient properties are not preserved. Lindquist and

2.3 Butterworth Maximally Flat Amplitude

Zverev (see references) provide computational methods for the calculatior
these responses.

2.3 BUTTERWORTH MAXIMALLY FLAT AMPLITUDE

The Butterworth approximation to an ideal low-pass filter is based on the
sumption that a flat response at zero frequency is more important than
response at other frequencies. The normalized transfer function is an all-]
type having roots which all fall on a unit circle. The attenuation is 3 dB :
rad/s.

‘The attenuation of a Butterworth low-pass filter can be expressed by

2
Aap = lOlog[l-l-(%l) "] @

where w: /o is the ratio of the given frequency w; to the 3-dB cutoff freque
we and n is the order of the filter.
For the more general case,

Aap= 10 log (1 + 027 @
where () is defined by the following table:

Filter Type Q
Low-pass @z /o
High-pass we /e
Bandpass BW:/BW; 4
Band-reject BW;an/BW,

The value Q1 is a dimensionless ratio of f{requencies or normalized freque
BWj; a8 is the 3-dB bandwidth and BW; is the bandwidth of interest. At h
values of Q the attenuation increases at a rate of 6n dB per octave, where
octave is defined as a frequency ratio of 2 for the low-pass and high-pass cz
and a bandwidth ratio of 2 for bandpass and band-reject filters.

The pole positions of the normalized filter all lie on a unit circle and
be computed by

o RK-Dm . (2K— 1)
Sin In -+ cos on »

and the element values for an LC normalized low-pass filter opcrating betw:

equal 1-Q terminations can be calculated by

QK- l)n
2n

K=12,...,n (2

Lg or Cx =2 sin K=12 ...,n (2-
where (2K — 1)ar/2n is in radians.

Equation (2-31) is exactly equal to twice the recal part of the pole positi
of equation (2-30) except that the sign is positive.

Example 2-18

REQUIRED: Calculate the frequency response at 1,2, and 4 rad/s, the pole p
tions, and the LC element values of a normalized » = 5 Butterworth low-y
fileer.
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RESULT: (a) Using equation (2-29) with n=5, the following frequency-response
table can bhe derived:

Attenuation

3dB
30 dB
60 dB

-0

(b) The pole positions are computed using equation (2-30) as follows:

. (2K—1 . 2K—Hm
K —sin (2——7—)‘” jcos (W)—
1 —0.309 +70.951
2 —0.809 +70.588
3 —1
4 —0.809 —70.588
5 —0.309 —0.951

(¢) The element values can be computed by equation (2-31) and have
the tollowing values:

L;=0.618H C;=0.618F
C:=1618F L,=1618H
Ly=2H or Cs=2F

Ci=1618F L,=1618H
Ls;=0.618H Cs=0.618F

The results of example 2-18 are shown in figure 2-33.

Chapter 12 provides pole locations and element values for both LC and active
Butterworth low-pass filters having complexities up to n = 10.

The Butterworth approximation results in a class of filters which have moderate
attenuation steepness and acceptable transient characteristics. Their element
values are more practical and less critical than those of most other filter types.
The rounding of the frequency response in the vicinity of cutoff may make
these filters undesirable where a sharp cutoff is required, but nevertheless they
should be used wherever possible because of their favorable characteristics.

Figures 2-34 through 2-37 indicate the frequency response, group delay, im-
pulse response, and step response for the Butterworth family of low-pass filters
normalized to a 3-dB cutoff of 1 rad/s.

2.4 CHEBYSHEV RESPONSE

If the poles of the normalized Butterworth low-pass transfer function were moved
to the right by multiplying the real parts of the pole positions by a constant
k. where k. < 1, the poles would now lie on an ellipse instead of a unit circle.
The frequency response would ripple evenly and have a 3-dB cutoff of 1 rad/s.
As the real part of the poles is decreased by lowering £, the ripples will grow
in magnitude. The resulting response is called the Chebyshev or equiripple
function.

-

2.4 Chebyshev Response M
+iB
-0.309 +.j0.951

-0809 + j0.588

-1

-0809 — j0.588

—0.309 — jO.95184—

0.618 H 2 H 0618 H 1.618 H 1.618 H

1618 F 1618 F 10 or

(c)

Fig. 2-33 Butterworth low-pass filter of example 2-18: (a)} frequency response; (b) g
locations; (c) circuit configuration.

The Chebyshev approximation to an ideal filter has a much more rectangu
frequency response in the region near cutoff than the Butterworth family
filters. This is accomplished at the expense of allowing ripples in the passbai

‘The factor k. can be computed by

ke =tanh A4 (2-:
The parameter 4 is given by
1 1 o
A=- -1 Q¢
" cosh p (2-:
where €=+/10Rap/10 — | (2-

and R is the ripple in decibels.

Figure 2-38 compares the voltage response of an n=3 Butterworth normaliz
low-pass filter and the Chebyshev filter generated by multiplying the real pa
of the roots by k.. Both filters have half-power (3-dB) bandwidths of 1 rad
The ripple bandwidth of the Chebyshev filter is 1/cosh A.

The attenuation of Chebyshev filters can be expressed as

Aan = 10 log [1 + €2C3())] (2-¢

where G,(§)) is a Chebyshev polynomial whose magnitude oscillates betwe
1 for 2 = 1. Table 2-1 lists the Chebyshev polynomials up to order n = !
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v Anatol 1. Zverev, Handbook of
Fig. 2-37 Step response for Butterworth filters. (From a h
FSter Synthesi‘,p johaniley and Sons, Inc., New York, 1967. By permission of the publishers.)

TABLE 2-t Chebyshev Polynomials

1 (]

2 202 —1

3 402 — 30

4 804 — 802+ 1

5 1605 — 200° - 5Q

6. 3208—480++1802—1
7

8

9

0

6407 — 11205 + 5602 — 7Q
12808 — 25606 4 1600+ — 3202 + 1
2560° — 576617 + 43205 — 1200° + 99
512010 — 1280058 + 112006 — 40004 + 50§22 — 1

= 1, Chebyshev polynomials have a value of unity; so the altenuation
de?uzegv!:l by equatioyn (2-315) );vould be equal to the ripple. Thl(_e 3-(}11B cutoff is
slightly above © = 1 and is equal to cosh 4. In order to norma 174;_( e re_spon;e
equation so that 3 dB of attenuation occurs at Q = 1, the Q of equation (2-
35) is computed by using the following table:

Filter Type Q0

Low-pass (cosh 4) o/
High-pass (cosh A4) we/or
Bandpass (cosh 4) BW:/BW; ar
Band-reject (cosh 4) BW3 aa/BW;

Figure 2-39 compares the ratios of 3-dB bandwidth to ripple bandwidth {cosh
A) for Chebyshev low-pass filters ranging from n = 2 through n = 10.

Voltage gain

rad/s

Fig.2-38 Comparison of Butterworth and Chebyshev low-

pass filters.

n 0.001 dB 0.005 dB 0.01 dB 0.05 dB
2 5.7834930 3.9027831 3.3036192 2.2685899
3 2.6427081 2.0740079 1.8771819 1.5120983
4 1.8416695 1.5656920 1.4669048 1.2783955
5 1.5155888 1.3510908 1.2912179 1.1753684
6 1.3495755 1.2397596 1.1994127 1.1207360
7 1.2531352 1.1743735 1.1452685 1.0882424
8 1.1919877 11326279 1.1106090 1.0673321
9 1.1507149 1.1043196 1.0870644 1.0530771
10 1.1215143 1.0842257 1.0703312 1.0429210
n 0.10 dB 0.25 dB 0.50 dB 1.00 dB
2 1.9432194 1.5981413 1.3897437 1.2176261
3 1.3889948 1.2528880 1.1674852 1.0948680
4 1.2130992 1.1397678 1.0931019 1.0530019
5 1.1347180 1.0887238 1.0592591 1.0338146
6 1.0929306 1.0613406 1.0410296 1.0234422
7 1.0680005 1.0449460 1.0300900 1.0172051
8 1.0519266 1.0343519 1.0230107 1.0131638
9 1.0409547 1.0271099 1.0181668 1.0103963
10 1.0331307 1.0219402 1.0147066 1.0084182

“@ripple

I
“3dB

Fig. 2-39 Ratio of 3-dB bandwidth to ripple bandwidih.
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Odd-order Chebyshev LC filters have zero relative attenuation at DC. Even-
order filters, however, have a loss at DC equal to the passband ripple. As a
result the even-order networks must operate between unequal source and load
resistances, whereas for odd n’s, the source and load may be equal. However,
2 mathematical transformation can alter even-order networks for opcration be-
tween equal terminations (see @ = T in table 12-56). The result is a Chebyshev-
like behavior in the passband and a slightly diminished rate of roll-off when
compared with a comparable unaltered network.

The element values for an LC normalized low-pass filter operating between
equal 1-Q terminations and having an odd n can be calculated from the following
series of relations:

G = 24y c;sh A (2-36)
2
o=tz dicosPd ) o34 n (2-37)
By—1 Gr—1
where y=sinh & (2-38)
2n
_ Rap
B=In (coth ——17.37) (2-39)
a=sn PR DT 98 (2-40)
2n
By = Y2+sin’(£rz—r) k=1,2,3,...,n (2-41)

Coefficients G, through G, are the element values.

An alternate form of determining LC element values is by synthesis of the
driving-point impedance directly from the transfer function. This method in-
cludes both odd- and even-order n’s.

Example 2-19
rEQUIRED: Compute the pole positions, the frequency response at 1,2, and 4
rad/s, and the element values of a normalized n = 5 Chebyshev low-pass filter

having a ripple of 0.5 dB.
ResuLT: (2) To compute the pole positions, first solve for k. as follows:

e=+/10Ra"19—1=0.349 (2-34)

A';l cosh“l= 0.355 (2-33)
n €

ke =tanh 4= 0.340 (2-32)

Multiplication of the real parts of the normalized Butterworth
poles of example 2-18 by ke results in the following new pole
pOSIthns:

—0.105 £ ;0.951

—0.275 + j0.588

—0.34

(b) To calculate the frequency response, substitute a fifth-order Che-

byshev polynomial and € = 0.349 into equation (2-35). The follow-
ing results are obtained:

2.4 Chebyshev Response

0 Aan

1.0 3dB
2.0 45 dB
4.0 77db
(¢) The element valucs are computed as follows:

A4,=0.309 (2-4
B =3.55 2-3
Y=0.363 2-3

G,=1.81 (2-3

G:=1.30 2-3

G3y=2.69 2-3

G,=1.30 (2-3

Gs=1.81 2-3

Coelﬂicients G, through Gs represent the element values of a
malized Chebyshev low-pass filter having a 0.5-dB ripple a
3-dB cutoff of 1 rad/s.

Figure 2-40 shows the results of this example.

+iB
—0105 + j0,951
—-0.275 + j0.588
—a -0.34
0 1 2 4 Y 0275
rad/s ’ - ]0.§BB
(a) —0,l05 — j0.951
—iB
(b)
1.81H 269 H 1.81 H 1.3 H 1.3H

19 or

(¢c)
Fig. 2-40 Chebyshev low-pass filter of example 2-19: (a) fi ; ;
locations; (c) circuit configuration. : (#) frequency responsci (0§
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Fig. 2-53 Impulse response for Chebyshev filters with 0.5-dB ripple. (From Anatol 1.
Zuverev, Handbook of Filter Synthesis, John Wiley and Sons, Inc., New York, 1967. By permission
of the publishers.)

12 ,_ r ]
. - N/ N/ N
X \ 4
LY. A SO S Dk
10 SO K ERSX, a2
o b >
// // / / - =
Vi /7
08 /
ne2 3/’ /4 1’5 6 /7 & 1o fio
/ / / /
06 f + / 7
] / / /
/ / / /
04 /f / // /
/ / v
/ / .
Q.2 I’l 7 7 7
/ / 4 /s
Y, // / g v
0O < = ) 8 12 16
g

Fig. 2-54 Step response for Chebyshev filters with 0.5-dB ripple. (From Anatol I.
Zverev, Handbaok of Filler Synthests, John Wiley and Sons, Inc., New York, 1967. By permission

of the publishers.)
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2.5 Bessel Maximally Flat Delay
25 BESSEL MAXIMALLY FLAT DELAY

Butterworth filters have fairly good amplitude and transient characteristics.
Chebyshev family of filters offers increased selectivity but poor transient be
ior. Neither approximation to an ideal filter is directed toward obtaining a
stant delay in the passband.

The Bessel transfer function has been optimized to obtain a linear pt
i.e., a maximally flat delay. The step response has essentially no overshoc
ringing and the impulse response lacks oscillatory behavior. However, the
quency response is much less selective than in the other filter types.

The low-pass approximation to a constant delay can be expressed as the fol
ing general transfer function:

T(s)= !

" sinh s+ cosh s @

If a continued-fraction expansion is used to approximare the hyperbolic fi
tions and the expansion is truncated at diferent lengths, the Bessel famil
transfer functions will resuit.

A crude approximation to the pole locations can be found by locating
the poles on a circle and separating their imaginary parts by 2/n, as show:
figure 2-55. The vertical spacing between poles is equal, whereas in the But
worth case the angles were equal.

The relative attenuation of a Bessel low-pass filter can be approximatec

2
Agg = B(E’) (2
We.

This expression is reasonably accurate for 0./, ranging between 0 anc

Figures 2-56 through 2-59 indicate that as the order n is increased, the reg
of flat delay is extended farther into the stopband. However, the steepnes:
roll-off in the transition region does not improve significantly. This restr
the use of Bessel filters to applications where the transient properties are
major consideration.

|

- e

e N PE )

Fig. 2-55 Approximatc Bessel pole locations.
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2.6 Linear Phase with Equiripple Error
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Fig. 2-57 Group-delay characteristics for maximally flat delay (Bessel) filters. (F»
Anatol 1. Zverev, Handbook of Filter Synthesis, John Wiley and Soms, Inc., New York, 19
By permission of the publishers.)
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Fig. 2-68 Impulse response for maximally flat delay (Bessel) filters. (From Anatol ,
Zverev, Handbook of Filter Synthesis, John Wiley and Sons, Inc., New York, 1967, By permissio
of the publishers.)

A similar family of filters is the Gaussian type. However, the Gaussian ph
response is not as linear as the Bessel for the same number of poles, and
selectivity is not as sharp.

2.6 LINEAR PHASE WITH EQUIRIPPLE ERROR

The Chebyshev (equiripple amplitude) function is a better approximation
an ideal amplitude curve than the Butterworth. Therefore, it stands to reas
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Fig. 2-59 Step response for maximally Hat delay (Bessel) filters. (From Anatol I. Zverev,
Handbook of Filter Synthesis, John Wiley and Sons, Inc., New York, 1967. By permission of
the publishers. )

that an equiripple approximation of a linear phase will be more cfficient than

the Bessel family of filters.

Figure 2-60 illustrates how a linear phase can be approximated to within a
given ripple of € degrees. For the same n the equiripple-phase approximation
results in a linear phase and consequently a constant delay over a larger interval
than the Bessel approximation. Also the amplitude response is superior far
from cutoff. In the transition region and below cutoff both approximations have

nearly identical responses.

-¢

Phase shift

—w

Frequency
Fig. 2-60 Equiripple linear-phase approxima-
tion,

2.8 Synchronously Tuned Filters

As the phase ripple € is increased, the region of constant delay is exter
farther into the stopband. However, the delay develops ripples. The steg
sponse has slightly more overshoot than Bessel filters.

A closed-form method for computation of the pole positions is not avail:
The pole locations tabulated in chapter 12 were developed by iterative t
niqucs. Values are provided for phase ripples of 0.05° and 0.5°, and the ass
ated frequency and time-domain parameters are given in figures 2-61 thro
2-68.

2.7 TRANSITIONAL FILTERS

The Bessel filters discussed in section 2.5 have excellent transient proper
but poor selectivity. Chebyshev filters, on the other hand, have steep rol
characteristics but poor timne-domain behavior. A transitional filter offers a ¢
promise between a gaussian filter, which is similar to the Bessel family,
Chebyshev flters.

Transitional filters have a near linear phase shift and smooth amplitude |
off in the passband. Outside the passband a sharp break in the amplitude cha
teristics occurs. Beyond this breakpoint the attenuation increases quite abru
in comparison with Bessel filters, espcecially for the higher »’s.

In the tables in chapter 12 transitional filters are provided which have gaus
characteristics to both 6 and 12 dB. The transient properties of the gaus
to 6-dB filters are somewhat superior to those of the Butterworth family. Bey
the 6-dB point, which occurs at approximately 1.5 rad/s, the attenuation cha
teristics are nearly comparable with Butterworth filters. The gaussian
12-dB filters have time-domain parameters far superior to those of Butterwe
filters. However, the 12-dB breakpoint occurs at 2 rad/s, and the attenual
characteristics beyond this point are inferior to those of Buttcrworth filters

The transitional filters tabulated in chapter 12 were generated by mathemat
techniques which involve interpolation of pole locations. Figures 2-69 thro
2-76 indicate the frequency and time-domain properties of both the gaus:
to 6-dB and gaussian to 12-dB transitional filters.

2.8 SYNCHRONOUSLY TUNED FILTEHS

Synchronously tuned filters are the most basic filter type and are the eas
to construct and align. They consist of identical multiple poles. A typical appl
tion is in the case of a bandpass amplifier, where a mimber of stages are casca
with each stage having the same center frequency and Q.

The attenuation of a synchronously tuned filter can be expressed as

Aas = 10n log[1+(2V/ " — 1)Q12] (2-
Equation (2-44) is normalized so that 3 dB of attenuation occurs at ) =

The individual section Q can be defined in terms of the composite circui
requirement by the following relationship:

Qsection = Q_ovemll\/ 21/n—1 2-

Alternately we can state that the 3-dB bandwidth of the individual secti
is reduced by the shrinkage factor (27— 1)/2. The individual section Qis )
than the overall , whereas in the case of nonsynchronously tuned filters
section Q’s may be required to be much higher than the composite Q.



