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Example: White noise through filter

n(t)—» % > y(t) output
White Noise RC LPF 50 ohms
No= -100 dBm/Hz Sy(f) o =10 MHz

e Find S, (f) in Watts/Hz

*The equivalent noise bandwidth of the filter

*The output PSD, S(f)

*The total output noise power in dBm and in Watts

*The output rms noise voltage.

*The output Vp-p (assume 6o noise)

*\What would the filter BW have to be to reduce the noise
power by 12 dB?
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Bandlimited Signals

Bandlimited Waveforms
DEFINITION, A wavetorm w(7) is said to be (absolutely) bandlimited to B hertz if
W(f)=F[w(t)]=0, forlff = B (2-156)
DEFINITION. A wavetorm w(¢t) is (absolutely) time limited if
w(t)=0, forl] > T - (2-157)

THEOREM. An absolutely bandlimited waveform cannot be absolutelv time limited,
and vice versa.
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Bandwidth Definitions

1. Absolute bandwidth: B=f,-f,, when the spectrum is zero outside the interval

f,<f <f,along the positive frequency axis. Example, white noise through an
Ideal bandpass filter

2. 3-dB bandwidth (or half-power bandwidth) is B=f,-f, , where for frequencies
Insde the band f,<f <f, , the power spectra, |S(f)|, fall now lower than % the

maximum value of |S(f)|, and the maximum value occurs at a frequency inside
the band.

3 - dB bandwidth (or half - power bandwidth):

S(f) B.=f,— 1
f
‘S( )‘ —oerfl_f<f
S 2
| > f
fi £, f
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Bandwidth Definitions

3. Equivalent noise bandwidth is the width of a fictitious rectangular spectrum such that

the power in that rectangular band is equal to the power associated with the actual

* spectrum over positive frequencies. From Eq. (2-142), the PSD is proportional to the

square of the magnitude of the spectrum. Let f be the frequency at which the magni-

“tude spectrum has a maximum; then the power in the equivalent rectangular band is
proportional o

equivalent power = B.o|H(f;)[2 - (2-190)

where 8. is the equivalent bandwidth that is to be determined. The actual power for
positive frequencies is proportional 10

]

actual power=j H()* df B | (2-191)
0

Setting Eq. (2-190) equal to Eq. (2-191), the formula for the equivalent noise band-
width is

1 [ S
Byy=——— H(A)|= d | 2-192
q |H(_f{])|2 j[] . (f)‘ f . ( )
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Bandwidth Definitions

4. Null-to-null bandwidth (or zero-crossing bundwidth) is f> — £, where £ is the first null
| in the envelope of the magnitude spectrum above fy and. for bandpass systems. f| is
the first null in the envelope below f;, where f; is the {requency where the magnitude
spectrum is a maximum.” For baseband systems, f) is usually zero.

8. Bounded spectrum bandwidih is f; — f such that outside the band f| < f < f, the PSD,
which is proportional to [H(f)!>. must be down by at least a certain amount. say 50 dB,
below the maximum value of the power spectral density.

6. Power bandwidth is f> — f|, where f; < f < f5 defines the frequency band in which 99%
of the total power resides. This is similar to the FCC definition of occupied bandwidth,
which states that the power above the upper band edge f is 1% and the power below
the lower band edge is 5%, leaving 99% of the total power within the occupied band
(FCC Rules und Regulations. Sec. 2.202. Intemet search: 47 CFR 2.202).
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Bandwidth Definitions

- 7. FCC bandwidth is an authorized bandwidth parameter assigned by the FCC to speci-
Ay the spectrum allowed in communication systems. When the FCC bandwidth para-

- meter 1y substituted into the FCC formula. the minimum attenuation is given for the

- power level allowed in a 4-kHz band at the band edge with respect to the total aver-
age signal power. Sec. 21.106 (Internet search: 47 CFR 21.106) of the FCC Rules and
Regulations: asserts, “For operating frequencies below 15 GHz, in any 4 kHz bund, the
center frequency of which is removed from the assiened frequency by more than

50 percent up to and including 250 percent of the authorized bandwidth,-as specified

by the following equation. but in no event less than 50 dB™ T

-

A=35+0.8(P~50) + 10 logy(B) O (2-193)

(Attenuation greater than 80 dB is not required.) In this equation,
A = attenuation (in decibels) below the mean output power level,
P = percent removed from the carrier frequency,

and

B = authorized bandwidth in megahertz.
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Bandwidth Definitions

The FCC definition (as well as many other legal rules and regulations) is somewhat
bscure, but it will be interpreted in Example 2—18. It actually defines a spectral mask. That
5. the spectrum of the signal must be less than or equal to the values given by this spectral
nask at all frequencies. The FCC bandwidth parameter B is not consisient with the other
ctimtions that are listed, in the sense that it is not proportional to 1/7T, the “signaling speed”
f the corresponding signal {Amoroso, 1980]. Thus. the FCC bandwidth parameter B is a
¢gal definition instead of an engineering detinition. The RMS bandwidih, which is very use-
ul in analytical problems, is defined in Chapter 6.

T In cuses where there is no definite nuil in the magnitude spectrum, this definition is not applicable.
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BPSK Signal

Example 2-22 BANDWIDTHS FOR A BPSK SIGNAL

A binary-phase-shift-keyed (BPSK) signal will be used to illustrate how the bandwidth is evalu-
ated for the different definitions just given.
The BPSK signal is described by

s(t) = m(t) cos w,t (2-194)

where w. = 27 f ., f.being the carrier frequency (hertz), and m(f) is a serial binary (£1 values)
modulating waveform originating from a digital information source such as a digital computer, as
illustrated in Fig. 2-23a. Let us evaluate the spectrum of s(7) for the worst case (the widest band-
width).

The worst-case (widest-bandwidth) spectrum occurs when the digital modulating wave-
form has transitions that occur most often. In this case m(f) would be a square wave, as shown in
Fig. 2-23a. Here a binary 1 is represented by +1V and a binary O by —1V, and the signaling rate
is R = 1/T bits/s. The power spectrum of the square-wave modulation can be evaluated by using
Fourier series analysis. Equations (2—126) and (2-120) give

(0.0] o0 - 2
sin(nm/2) R
ti = 3 Jafas-niy = 3 [T a(rny) @
n#0
Copyright ©2013 Pearson Education, publishing as Prentice Hall
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BPSK Signal

Example 2-22 BANDWIDTHS FOR A BPSK SIGNAL
where fo = 1/(2Tp) = R/2. The PSD of s(f) can be expressed in terms of the PSD of m(t) by
evaluating the autocorrelation of s(f)—that is,
R(7) = (s(t)s(t + 7))

= (m(t)ym(t + 7) cos w,t cos w(t + 7))

= %(m(t)m(t + 7)) cos w.r + % (m(t)m(t + 1) cos Qw.t + w.T))
or

T/2
Ry(7) = 3Ru(7) cos w7 + %Tlim — ] m()m(t + 7) cos Qu,t + w,7) dt - (2-196)

B T/2
Copyright ©2013 Pearson Education, publishing as Prentice Hall
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Figure 2—23 Spectrum of a BPSK signal.
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BPSK Signal

Example 2-22 BANDWIDTHS FOR A BPSK SIGNAL

The integral is negligible because m(t)m(t+7) is constant over small time intervals, but cos
(2wt + w 1) has many cycles of oscillation, since f, => R Any small area that is accumu-
lated by the integral becomes negligible when divided by 7, T — oo. Thus,

Ry(T) = 3 Rp(7) cos w,T (2-197)

The PSD is obtained by taking the Fourier transform of both sides of Eq. (2—-197). Using the real-
signal frequency transform theorem (Table 2—1), we get

PLf) = 3 [Pulf — f) + Pullf + fO (2-198)
Substituting Eq. (2-195) into Eq. (2-198), we obtain the PSD for the BPSK signal:

X [ sin(nw/2) |2
R =3 Zoi narl2 }
n#0oo

X{S[f — fo — n(RI2)] + S[f + f. — n(R/2)]} (2-199)

This spectrum is also shown in Fig. 2-23b. See Example 2_22.m for a plot of Eq. (2—199).
The spectral shape that results from utilizing this worst-case deterministic modulation is
essentially the same as that obtained when random data are used; however, for the random case,

T This is a consequence of the Riemann-Lebesque lemma from integral calculus [Olmsted, 1961].
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BPSK Signal

Example 2-22 BANDWIDTHS FOR A BPSK SIGNAL

the spectrum is continuous. The result for the random data case, as worked out in Chapter 3 where
P.(f) is given by Eq. (3-41), is

STl — o) T L { sin wTp(f + f.) ]2
7 Ty(f = fo) L wTp(f + fo)

P(f) = 5 Tp (2-200)

4

when the data rate is R = 1/T, bits/sec. This is shown by the dashed curve in Fig. 2-23b.

The preceding derivation demonstrates that we can often use (deterministic) square-wave
test signals to help us analyze a digital communication system, instead of using a more compli-
cated random-data model.

The bandwidth for the BPSK signal will now be evaluated for each of the bandwidth defi-

nitions given previously. To accomplish this, the shape of the PSD for the positive frequencies is
needed. From Eq. (2-200), it is

- = 2
P(F) s mIylF — 1g (2201

WTb(f o fc)

Copyright ©2013 Pearson Education, publishing as Prentice Hall
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BPSK Signal

Example 2-22 BANDWIDTHS FOR A BPSK SIGNAL

Substituting Eq. (2-201) into the definitions, we obtain the resulting BPSK bandwidths as shown
in Table 2—4, except for the FCC bandwidth.

The relationship between the spectrum and the FCC bandwidth parameter is a little more
tricky to evaluate. To do that, we need to evaluate the decibel attenuation

Py (f) ]

total

A(f) = —10 1og10{ (2-202)

where P, (f) 1s the power in a 4-kHz band centered at frequency f and Py, 1s the total signal
power. The power in a 4-kHz band (assuming that the PSD is approximately constant across the
4-kHz bandwidth) is

Py, (f) = 4000P(f) (2-203)

and, using the definition of equivalent bandwidth, we find that the total power is

Piotar = BegP(f () (2-204)

Copyright ©2013 Pearson Education, publishing as Prentice Hall
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BPSK Signal

TABLE 2-4 BANDWIDTHS FOR BPSK SIGNALING WHERE THE BIT RATE IS R = 1/T;, BITS/S.

Bandwidths (kHz)

for R = 9,600

Definition Used Bandwidth bits/s

1. Absolute bandwidth 00 00

2. 3-dB bandwidth 0.88R 8.45

3. Equivalent noise bandwidth 1.00R 9.60

4. Null-to-null bandwidth 2.00R 19.20

5. Bounded spectrum bandwidth (50 dB) 201.04R 1,930.0

6. Power bandwidth 20.56R 197.4

Copyright £2013 Pearson Educi
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Example 2—-22 (continued)

Example 2-22 BANDWIDTHS FOR A BPSK SIGNAL

where the spectrum has a maximum value at f = f.. With the use of these two equations,
Eq. (2-202) becomes

4000 P(f) ] (2-205)

A(f) = —10 loglo{ B.P(f.)
eq c

where A(f) is the decibel attenuation of power measured in a 4-kHz band at frequency f compared
with the total average power level of the signal. For the case of BPSK signaling, using Eq.
(2-201), we find that the decibel attenuation is

. e oy 2
A(f) = —10 1og10{ 4(;?0 { SIZ;Z;U: f{ J } } (2-206)

where R = 1/T} is the data rate. If we attempt to find the value of R such that A(f) will fall be-
low the specified FCC spectral envelope shown in Fig. 2-24 (B = 30MHz), we will find that R
is so small that there will be numerous zeros in the (sin x)/x function of Eq. (2-206) within the

desired frequency range,—50MHz < (f — f,) < 50MHz. This is difficult to plot, so by

Copyright ©2013 Pearson Education, publishing as Prentice Hall

MONTANA

STATE UNIVERSITY Mountains £~ Minds



BPSK Signal
Figure 2-24 FCC-allowed envelope for B = 30 MHz.
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Example 2-22 BANDWIDTHS FOR A BPSK SIGNAL

replacing sin wT(f — f.) with its maximum value (unity) we plot the envelope of A(f) instead.
The resulting BPSK envelope curve for the decibel attenuation is shown in Fig. 2-24, where
R = 0.0171 Mbits/s.

It is obvious that the data rate allowed for a BPSK signal to meet the FCC B = 30-MHz
specification is ridiculously low, because the FCC bandwidth parameter specifies an almost
absolutely bandlimited spectrum. To signal with a reasonable data rate, the pulse shape used
in the transmitted signal must be modified from a rectangular shape (that gives the BPSK
signal) to a rounded pulse such that the bandwidth of the transmitted signal will be almost
absolutely bandlimited. Recalling our study of the sampling theorem, we realize that (sin x)/x
pulse shapes are prime candidates, since they have an absolutely bandlimited spectrum.
However, the (sin x)/x pulses are not absolutely timelimited, so that this exact pulse shape
cannot be used. Frank Amoroso and others have studied the problem, and a quasi-bandlimited
version of the (sin x)/x pulse shape has been proposed [Amoroso, 1980]. The decibel attenua-
tion curve for this type of signaling, shown in Fig. 2-24, is seen to fit very nicely under the
allowed FCC spectral envelope curve for the case of R = 25 Mbits/s. The allowable data rate
of 25 Mbits/s is a fantastic improvement over the R = 0.0171 Mbits/s that was allowed for
BPSK. It is also interesting to note that analog pulse shapes [(sin x)/x type] are required

instead of a digital (rectangular) pulse shape, which is another way of saying that it is vital for
digital communication engineers to be able to analyze and design analog systems as well as
digital systems.

Copyright ©2013 Pearson Education, publishing as Prentice Hall
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Sampling
PAM- Pulse Amplitude
Modulation
PCM- Pulse Code Modulation

EELE445-14
Lecture 12
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Sampling — The Cardinal Series

Sampling Theorem: Any physical waveform may be represented
over the interval — oo <t <o by

w(t) = ”\:;?j p sin{afs[t — (w/f)]]
ni_:m " Wﬁ[f - (”’U»J]

sin{f.|t - (/N
777:.[? o (’”fr)]

where f, Is a parameter assigned some convenient value
greater than zero

an=fs fm w(i) dt
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Sampling — The Cardinal Series

if w(t) is bandlimited to B hertz and f, = 2B, then Ey. (2-158) becomes the sampling func-
tion representarion, where

a,=wn/f) SRR (2-160)

That is, for f; = 2B, the orthogonal series coefficients are simply the values of the wave-
form that are obtained when the waveform is sampled every 1/f, seconds.

(fS)min = 2B  Nyquist Frequency
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Sampling — The Cardinal

sin{wf.[t — (W]}

Series

(1) = L (2-161)
) = )]

n=m+N
w(t)= > aup(r) (2-169)

and there are N orthogonal functions in the reconstruction algorithm. We can say that N is
approximation of the

the

]} -:H|

Ty

1 fs

=fTo = 2BTy

(2-170)

number of dimensions needed to reconstruct the Tg-second

- waveform.

MONTANA

STATE UNIVERSITY

Mountains

Minds



Figure 2-17 Sampling theorem.
Sampling — The Cardinal Series

T
| 0 |
| |

—»qu:} - =

(a) Waveform and Sample Values

The voltage at t=nT is only due

to the voltage at sample nT, and is
not dependent on any other sample.
(Orthogonal in time!)
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Figure 2-18 Impulse sampling.

w(t) W(f)
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Impulse Sampling ,

T, 2 Y TTT

5 (t)= i5(t —nT.)= D, + i D. cos(nat + @)
n=1

N=—00

O, (t) = — [1 +2cos(w,t) +2cos(2amt) + 2cos(3m,t) + - ]
MO A
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Impulse Sampling

w (1)

w(t)
IW(f)|=0 for [f|>B

Impulse sampling 5 25(’[ -nT,)
series =0

w, (t) = w(t)s; (t)= _I_()[l+2cos(a)t)+Zcos(2a)t)+ZCos(3a)t)+ ]

S

Ws(f)=F[ws(t>]— Zvv(f—nf)
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Impulse Sampling- text

w(t) =w(t)2,,_, o(t-nT,)
=> " w(nT)S(t—nT,) eq2 171

w,(t) =w(t)> w?e’“”s

W,(F) =3 W(F -n)
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Impulse Sampling

The spectrum of the impuse sampled signal is the spectrum of the
unsampled signal that is repeated every f, Hz, where f, Is the
sampling frequency or rate (samples/sec). This is one of the
basic principles of digital signal processing, DSP.

Note:

This technigue of impulse sampling is often used to
translate the spectrum of a signal to another frequency band that
IS centered on a harmonic of the sampling frequency, f..

If f>=2B, (see fig 2-18), the replicated spectra around
each harmonic of f, do not overlap, and the original spectrum can
be regenerated with an ideal LPF with a cutoff of f/2.
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Figure 2—-18 Impulse sampling.
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Impulse Sampling

Figure 2-19 Undersampling and aliasing.
W (f)

(a) Spectrum of Unsampled Waveform

Low-pass filter
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Natural Sampling

Generation of PAM with natural sampling (gating).

Analog bilateral switch

w(t) = w(t)s(1)

=
Y
O
pach

Clock
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w(r)

o

Natural Sampling

0

(a) Baseband Analog Waveform

s(1)
] I — —
(b) Switching Waveform with liluty Cycled=7/T,=1/3
ws(t) o] 7 |
] H h N =
0 | |
T;

(c) Resulting PAM Signal (natural sampling, d = 7/T, = 1/3)

N
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Natural Sampling
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(b) Magnitude Spectrum of PAM (natural sampling) withd=1/3 and f,=4 B
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Figure 3—4 Demodulation of a PAM signal (naturally sampled).

Analog multiplier

nt" Nyquist region recovery (four-quadrant multiplier)
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Figure 3-5 PAM signal with flat-top sampling.
it Impulse sample and hold

P

0

(a) Baseband Analog Waveform

xtt11111
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(b) Impulse Train Sampling Waveform
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0 ‘ I LJ

(c) Resulting PAM Signal (flat-top sampling. d =7 /T, = 1/3)
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Figure 3—6 Spectrum of a PAM waveform with flat-

W(f)I

top sampling.

(a) Magnitude Spectrum of Input Analog Waveform
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(b) Magnitude Spectrum of PAM (flat-top sampling), /7, = 1/3 and f, = 4B
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Figure 3—7 PCM trasmission system.
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Figure 3-8 lllustration of waveforms in a PCM system.

Output
voltage

Input voltage = x

(a) Quantizer Output-Input Characteristics
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Figure 3-8 lllustration of waveforms in a PCM system.
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Figure 3-8 lllustration of waveforms in a PCM system.
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Figure 3—9 Compression characteristics (first quadrant shown).
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Figure 3—9 Compression characteristics (first quadrant shown).
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Figure 3-9 Continued

PCM code word structure
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Figure 3—10 Output SNR of 8-bit PCM systems with and without companding.
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Quantization Noise,
Analog to Digital Converter-A/D

EELE445
Lecture 13

MONTANA

STATE UNIVERSITY

Mountains Minds



Figure 3—7 PCM trasmission system.
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Figure 7.7 Block diagram of a PCM system.
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Quantization — Results in a Loss of Information

X(t) ~L

MONTANA

STATE UNIVERSITY

2 X

A — Xmax __ max

N o 2n—1

> Lost Information

After sampling, x(t)=x;
X, e R

After Quantization:

QX)=X, XeR
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Quantization Noise
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Figure 7.3 Example of an 8-level quantization scheme.
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Quantization function:
O (x) = )?z for all x € R;.

Define the mean square distortion:

q(x) = (x-Q(x))* = X"

and

A
X —Q(x)| < >
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Quantization

2
= ();”I‘\E‘I"Z) =P, the gquantization noise

where N=2" and x,..., IS ¥2 the A/D input range

max
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Quantization Noise

Since X is a random variable, so are X and X

So we can define the mean squared error distortion as:

D= E[dX,X)]=E[(X - Q (X))l

~

The pdf of the error is uniformly distributed X = X —Q(X)

f (X)
(1 A _=_ A
2 f@={s 2=t
0 otherwise
X
_A A
2 2
MONTANA
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SQNR — Signal to Quantization Noise Ratio

Definition If the random variable X is quantized to ¢ (X). the signal-
to-quantization noise ratio (SQNR) is defined by

E{X?]

SQNR = .
0 E[X - Q (X)F

When dealing with signals, the quantization noise power is

ol

Py = lim —; CELX() = QX)) dr

[ —

m~—

1

and the signal power 1s

2~

I 5
Py = lim T E{X-(H]dr.

T—o¢

1o~

Hence, the signal-to-quantization noise ratio is

P
SQNR = —.
P;
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SONR - Signal to Quantization Noise
Ratio

Example 7.2.2
Determine the SQNR for the quantization scheme given in Example 7.2.1.

Solution From Example 7.2.1, we have Py =400 and P; = D = 33.38. Therefore,

Py 400

SONR = —= = = 11.98 ~ 10.78 dB. .
P, 33.38

)“( B

Example of SQNR for full scale sinewave done on board
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SONR - Signal to Quantization Noise

Ratio
P, may be found using:

Px = RX(-C)H:()
- [ Sx(f)df
=/ x* fx (x) dx.
MONTANA
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SONR — Signal to Quantization Noise Ratio

The distortion, or “noise”, Is therefore:

+2 1 A2 2 2
27 =2 ~________xmax . X max
E[X]"f_% AT T TN T 3

'. Px 3 x N*P 4P
SQNRZsz X X:3X X

2 2
X2 X max X max

Where P, is the power of the input signal
MONTANA
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SONR — Linear Quantization

E[X? |< X,
The SONR decreases as
PX 1 The input dynamic range
X2 N Increases

| P
SQNR, ~ 10log X +6v+4.8.
dB

2
X max
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U-Law Nonuniform PCM

used to increase SQNR for given P, , xmax, and n

Compressor || Uniform o Decoder Exlzéflmder Reconstruction
2(x) PCM g (%) filter

0.8
| U=255 U.S

0.6

0.5

g

(.4

0.3

0.2

0.1
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g{x)

a-Law Nonuniform

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

—

T T
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g(x) =

PCM

a=87.56 U.S
1 +log A|x|
1+ logA sgnlx).
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u-Law v.s. Linear Quantization

50 —
w0 With companding
= —_—
3
2 301
Without companding
20 |-
<
| | | |
—40 -20 ~10
PX
S. dB
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8 bit
P, Is signal power
Relative to full scale
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(S/N)Dv dB

Pulse Code Modulation, PCM, Advantage
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. alog systems
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Performance comparison of PCM and analog modulation.
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M

r i R
. PCM .
b l: 8 ,’, /l
- e b is the number of bits
PCM s
b=6| is (SIN)
— z r’,/ Y : baseband
WBFM | " L, Relative to full scale
h=6 , /7
' /7 ,’
Eff_l\g Cvan °PM is pulse position
W}T’jﬁé modulation
h=6 ‘/’,// Baseband
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