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Lecture 3,4
Power, Energy,
Time average operator
section 2.1
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Lecture 3,4 EE445 - Outcomes

* In this lecture you:

— be able to use the time average operator ()
for finite time duration signals and periodic
signals

— Be able to find the rms value of a waveform

— be able to find the power or energy of a
waveform in the time domain

— Parseval’s Theorem, find the power or energy
of a waveform in the frequency domain

— Concept of PSD an ESD
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Physically Realizable Waveforms

* measurable in the laboratory

1. waveform has significant nonzero values
over a composite time interval for a finite
time duration

2. continuous function of time
finite peak amplitude
4. real function , no complex values

o
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Figure 2-1 Physical and mathematical waveforms.
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Time average operator

Time Average Operator (mean, of w(t)):

T% fw(t)dt

U
2

<W(t)> = Wdc =
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Time average operator
Time Average Operator for signal of finite time duration:

| =

N

(w(t)) _Tlfw(t)dt W)= w,

For a Periodic Slgnal

w(t) =w(t+aT,) foranyreala

T,
—+a

(w(t)) == j w(t)dt for anyreala
—?+a
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Root Mean Square- rms

Wmeansquare = <W2 (t)> = w? (t)dt (Power R= l)

|~
—ro |

NI

RMS = “root mean square” of a signal of duration T:

W, = (W (1)) =
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RMS

For periodic waveforms:

T
°+r

0] - |2

— IW (t)dt =rms value of w(t)

0 To,,
2

e Where 7 is an arbitrary time shift.
¢ Choose 7 to simplify the integrals!
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RMS example

RMS of a sinwave:

<[Acos(a)ot]2> ——

RMS of a SquareWave = A

MONTANA

A appendix A-4

\/E use: 2cos?(x) =1+ cos(2x)

Example 2-2 EVALUATION OF POWER
Let the circuit of Fig. 2-2 contain a 120-V, 60-Hz fluorescent lamp wired in a high-power-factor
configuration. Assume that the voltage and current are both sinusoids and in phase (unity power
factor), as shown in Fig, 2-3." The DC value of this {periodic) voliage waveform is

Two-lamp fluorescent circuits can be realized with a high-power—factor ballast that gives an overall power

factor greater than 9%0% [Fink and Beaty, 1978],
Copyrighn 2013 Prearion Exdacation, publishing 43 Prentice Hal
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Figure 2—3 Steady-state waveshapes for Example 2—2.
7,
"
) Volage
' \
il S g
Vi $r T [
v
e
| Lu
t 1x T, 1 —
MONTANA RO —-—
Mountains ' Minds

Example 2-2 EVALUATION OF POWER
Vie = (00} = (Vcoswyr)

i Tal2
- / Veosagtdt = 0 2-8)
Ty, Toll

where wy = 25T and fo = 1Ty = 60HZ. Similarly, Jge = 0. The instantaneous power is

|
plt) = (Veosant )(f cosant) =  VI{1 + cos2uyt) (2-9)

The average power is

|
P= <".-’J(I + cos Zmnl]>

v [T
: / (1 + cos 2wgt) di

My Jrp
vl
. 0]
= (2-10
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Power of a signal Power of a signal

Average Power in signal of durationT :
2 3
averagePower (p(t)) =(v(1)i(t)) = Real{<V (t)>} P =% jv(t)i (t)dt =

2

instantanibus Power p(t) = v(t)i(t)

p(t) is the instantaneous
(t)dt power, P is the average
power over time T

==
TS

load

N‘_"—,N\—i

:;<v2(t)> whenZ =R+ j0

.
i E_11 ? - Vrzms For Normalized Power:
o P= T-RT J; (tydt = R R=lohm
C+ =
Iv(f} Z=R+0 Circui %
o RTicmdt =iz R
P=— =
T J; ( rms
Figure 2-2 Polarity convention used for voltage and current. 3
M Dlmm Systems, Seventh Edition ©2007 Pearson Education, Inc. All rights. reserye_d 0-13-142492-0 g&ww'r“{%g% i
Energy of a Signal A communication metric:
Energy in signal of duration T : Signal to Noise Ratio in dB
p-E_Livma  e-pT 2
T RT T IDﬂgnal <S(t) >
= (S/N),, =10Log =10Log| +—k
i T Pn0|se <n(t) >
1 2 2 ) d
E== t)dt = i“(t)dt
R IT ® JT ® signal
s u = 20Log| —ms >
z ’ : V.. hoise
We typically calulate normalized Energy or Power,R =1 U
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EELE445-14

Lecture 4

The Fourier Transform and the
Frequency Domain
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Figure 2-1 Physical and mathematical waveforms.

3 Math Mokl Wavefoem
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The Fourier Transform

We use the Fourier transform to determine the frequencies
of the sinusoids present in a non repetitive waveform.

The fourier series may be considered the fourier transform of a non-repetitive
waveform that is repeated continuously.
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Fourier Transform

W(f)=Fwt)]= Tw(t) o e 12t

Correlation coeff
What s : . j x(t)y(t)dt
[ x@ydt 222 \/ [ x(tyat [ y(tydt
-1<C«1
.
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Fourier Transform

W (f)=Zw(t)]= T[w(t)]- e 12 gt

So the Fourier transform is answering the question:

how much of e **#isin w(t)?

e =cos(x) — jsin(x)

MONTANA
Mountains

STATE UNIVERSITY

Minds

Figure 2—4 Spectrum of a sine wave.
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(a) Magnitude Spectrum (h) Phase Spectrum (8, = 0)
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1gh systems, Seventh Edition
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Figure 2-5 Waveshapes and corresponding symbolic notation.

I |{;]

{a) Rectangular Pulse

~ PN
:“-'/‘_ S NS ” —

{b) Salx) Function
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Figure 2-5 Waveshapes and corresponding symbolic notation.

1.0

(¢) Triangular Function
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Figure 2—6 Spectra of rectangular, (sin x)/x, and triangular pulses. Figure 2—6 Spectra of rectangular, (sin x)/x, and triangular pulses.

Time Domain Frequency Domain

||[%) . T Sa(#Tf)
05T ) Rectanguilar Pubic snd Iis Spoctrm
I_ ITI 0 - / : : : :
- T T A Time - bandwidth product or bandwidth- duration product:
T T T ToT T T T
1
msBrms =
(a) Rectangular Pulse and lis Spectrum 47[
the Gaussianpulse, w(t) = e satifies the condition with the
equality sign.

0 Systems, Seventh Edition ©2007 Pearson Education, Inc. All rights reserved. 0-13-142492-0
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Figure 2-6 Spectra of rectangular, (sin x)/x, and triangular pulses. Figure 2—6 Spectra of rectangular, (sin x)/x, and triangular pulses.
Time Domain Frequency Domain Time Domain Frequency Domain
2WSa( 2w Wr) \ { :} | T Sa2(xTf)
S 1oT
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/‘ () Triangular Pulse and Iis Spectrum
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(b} Serix) Pulse and Iis Spectrum
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Fourier Transform Theorems

TABLE 2-1 SOME FOURIER TRANSFORM THEOREMS2

Operation Function Fourier Transform
Linearity ayw(t) + axws(t) aiWi(f) + aaWs(f)
Time delay w(t—Tg) W(f) eiwla
Scale change w(at) L w L
lal a
Conjugation w*(1) W*(—f)
Duality w(r) w(—f)
Real signal w(t) cos(wet+0) He"W(f = f) + e'W(f +£)]
frequency
translation
[w(r) is real]
Complex signal w(r) edert W(f-f)
frequency
translation

These theorems are useful for the homework and the exams!
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Fourier Transform Theorems

Bandpass signal

Differentiation
Integration

Convolution

Re{g(r) e/}
dmw(t)
dr"

f w(A)dA
wi(t) + )= [ win)
s wat—A) dh

HGU ) + G (=f ~1)]
(2nf)"W(f)
(2mf) " W(f) +W(0) 8(f)
wi(hHwa(f)

Multiplication® wi(t)wa(t) Wi(f) * Wa(f) = f Wi(A) Wy(f—A) dr
Multiplication t"w(t) (=2m)" d"_du;("f_)

by
B w, =2nf,.

b = denotes convolution as described in detait by Eq. (2-62).

Fourier Transform Pairs
TABLE 2-2 SOME FOURIER TRANSFORM PAIRS

Function Time Waveform rwif) Spectrum Wiy}
fry
Rectangular I'.[|l FJ NSa(=T)]
. (1) .
Triangular '\(F) T{Sa(=fT)J*
+1, =0 1
Unit stey £ () + e
step ulr) [0. r<0 B 2wf
- +. =0 1
Signum s 2 —
! w20 <o Jr
Constant 1 8(f)

The rectangular function is used to mathematically truncate
an infinite time waveform w(t). It is the time window that w(t)
is analyzed over. What is the effect on the measurement of w(t)
as T approaches infinity? How about as T approaches 0?
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STATE UNIVERSITY Mountains ' Minds

MONTANA
STATE UNIVERSITY Mountains - Minds
Fourier Transform Pairs
Impulse at r=1 B(r~t) e~2win
" 1 P )
Sine Sa(2xW — L
a(2mi) W ”(zw,
Phasor el ) el 3(f— fy)
Sinusoid cos{w,t + ¢) leie B(f—f) +1ei® 3(f+ 1)
Gaussian g i) foe T
T ;
Exponential. e, >0 _ T
one-sided 0, <0 1+ j2afT
Exponential, e T "':‘r .
two-sided 1+ (27fT)%
k=0g n=og
Impulse train > 8(r-kT) fo Y (- nfo).
k= n=—x
where fo=1/T
compare the Phasor and the sinusoid transforms.
MONTANA
STATE UNIVERSITY
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Energy and Power in a Waveform

Parseval’s Theerem and Energy Spectral Density
Parseval’s Theorem.
[ wouwoa [ wiwio ar @40
If w,(r) = wa(r) = w(1). then the theorem reduces to

Rayleigh’s energy theorem, which is

£=[ e a= oo @-=n

DEFINITION.  The energy spectral densitv (ESD) is defined for energy waveforms by
) =W 2-42)
where w(r) & W(f). €(f) has units of joules per hertz.
Using Eq. (2-41), we see that the total normalized energy is given by the area under the ESD
function:

E=jm%f(f) df (2-43)
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Energy and Power in a Waveform
< Energy Spectral Density, ESD

E(F)=W(H)  W(f)= [w(t)ee*"at

*Power Spectral Density, PSD, for a truncated waveform of duration T

0. t elsewhere

w(r), —T2<r<T2 t .
wile) ={ ® }: w(ll (?) @-64)
Using Eq. (2-13), we obtain the average normalized power:
1 (™ 1 (=
P=lim — w(t) dr= lim — J wi(r) dr
T 2 7o T J

By the use of Parseval’s theorem. Eq. (2-41), the average normalized power becomes

P=lim ~ J’ IWr )2 af:f ( Jim —"l) & (2-65)
Too T J_y o \Tos T
AVANSIN LMWL
STATE UNIVERSITY Mountains - Minds

Energy and Power in a Waveform

DEFINITION.  The power spectral densitv (PSD) for a deterministic power wave-
form is”

Pulf) 2 im ('W’%") 2-66)

where wr(s) € Wr(f) and P .(f) has units of watts per hertz.

Note that the PSD is always a real nonnegative function of frequency. In addition. the PSD
is not sensitive to the phase spectrum of w(r), because that is lost due to the absolute value
operation used in Eq. (2~66). Trom Eq. (2-65). the normalized average power is*

P=w(1))= fm?,,,(f) df (2-67)

That is, the area under the PSD function is the normalized average power.
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Energy and Power in a Waveform

Figure 2—4 Spectrum of a sine wave. Figure 2-9 Power spectrum of a sinusoid.

Vil Pulf)
A Weight 5 Weight is
7 S is Af2. 3 A
1 - T/ 3
~fo fa
| p o —
~Jo 1o
(a) Magnitude Spectrum
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EELE445-13

LECTURE 5
Examples,

Fourier Series from the Fourier
Transform
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Example- Power and Energy in Time.

A 1 KHz sinewave source is applied to a 50 ohm resistor.
fine the power delivered to the load.

R=50Q

v(t) = Acos(2xft)
v(t) r\) §R A=1volt

f =1000 Hz

T, =10"sec

MONTANA
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For a periodic Signal : _A[T, T,
L M2 2
11t :
P= RT, .[DV QL =A7 Mean Squared volts (volts®)
2
T, T, SO
L femat=2 f(acosatyd| p_ A _ 2
[V (dt=— [(Acos(arft)’at p_ A _ = 0.01Watt = 10dBm
T3 To 1, 2R 250
2 2
T, T, 0
A2 2 2
= Ildt+ ~[cos #ft dt
2T0 T, T,
2 2
M MONTANA
STATE UNIVERSITY

Example- Power and Energy in Time.

Mountains - Minds

Fourier Series from Fourier Transforms
1. Find the truncated signal period V(t)

2. Determine the Fourier Transform of the waveform
Vo)

3. Find the value of the Fourier Series coefficients by:
1. Replacing f in the Transform with f=n/T,
2. Scaling the magnitude of the Transform by 1/T,

T

DutyCycIe,D:Ti ----A

0

MONTANA T
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Fourier Series from Fourier Transforms

N |
N e

From Fourier Transform Table:

F| Aell t = ASa(rfr)
T
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Fourier Series from Fourier Transforms

now make a repetitive pulse with period T,

T

T T

o o o

Let f = % and scale byTi c = Az Sa[w}
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Properties of a Repetitive Rectangular Pulse

 The null bandwidth, B,, of the spectrum is equal to
the inverse of the pulse width, <. B 1

h =
» The harmonic frequencies are n/T, ‘
* The number of harmonics, n, from DC to the
spectral nullis: ,_1_T

D r

« Approximately 90 percent of the power of the
signal is in the spectrum from DC to the null
bandwidth frequency, only 10% of the signal power
is in the spectrum frequency range from the null
bandwidth frequency to infinity!

MONTANA
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Repetitive Rectangular Pulse

filename:pulsewaveform med
avo Last edit date: 1/30/08

Definitions

sme(x) =1f| x=0,1,
Tx

(
.0] rect(r,T) = 1f[: I = }],1‘0}
\ 2

el Up waveform *HeHs sk

5(F,R) = if(f= R.1,0) [ sin(m x)]

2t

T
AT zlf[M s?L— T

T=1ms period D=20% dutycycle ©=DT 1=2x 10 4s pulse width
=2V 1 1 1 1 .
A= — = 1x103— pps 7:5x103— First null
T s T s

** Setup Sweep Parameters  wrermeesssmms

MONTANA
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Repetitive Rectangular Pulse

Pulse shape Pt Definition = resmsmemmmmrsmmarans

[ Assume a rectangular pulse shape with an amplitude of 1

X () = A-tsinc(£7)
n=-25,-24.25

AT n-T
Xp(n) = —-sinc| —
() T {Tj

Single Pulse Fourier Transform, "double sided”

Fourier Series for repeatative pulse "double sided”
Xr(0) =04V DCvalue

MONTANA
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Single Rectangular Pulse

Founer Transform of single pulse

Repetitive Rectangular Pulse

Fourier series repetative pulse
T

T
2001~
Xr(n) 10° ‘
. L il ‘ ‘ L UL

Cnin mV

T | 1 1 | |
310 210* -1-10* 0 1-10* 2-10* 3-10*
n
T
Fourter Frequency
MONTANA
STATE UNIVERSITY
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0 5000 110* 1510* 210 2510*
n
T
Fourier Frequency
MONTANA
STATE UNIVERSITY Mountains

0.4
032
>
4 0.24
=
Z X (£)10° 016
=
z
2 0075
a N / N
000574 —— i & N
0,087 NS NS
210* a510* 110 s000 0 soo0 110 1510 210*
fi
Founer Frequency
MONTANA
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Repetitive Rectangular Pulse
2|XT(L)‘
————+-=0529V level of fundamental as seen by SA n=0.25
Spectrum Analyzer display for above
600 T T T T
2100 400r n
g 727(1—5(11,0))
zt
8(n. 0)- X(n)-10° i i
+
o LT[{T\TTTT\rTTT\TTTf

Minds
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Repetitive Rectangular Pulse

...................... Spectrum analyser Voltage lavels s s

- 2 |
k=17 T
Pop=k  Prpe——m |

Jiv
Kyl

Pro

(0 1 2 3 1 H 3 T Harmomic
P=| n4 0329 0428 0285 0132 2208<100 0088 0122 4BV
\-79%9 5528 -7360 —10.89 -17.960 333132 21091 -1823) Vens
L=5

L
5 (P =02 Power to Harmonse L
£=0

L 2
Z (P1.k)

k=a = 90.285% Percent of power to Harmanic |

|
)P

(A
v
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Rectangular Pulse Power to the first null
bandwidth

1
zj sinc(x) > dx-100 = 90.282 4
0

X
P(X) :=2 J sinc(x)zdx -100
0
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Repetitive Rectangular Pulse Power vs
Bandwidth

Percent of Power vs Bandwidth

100, T T T T T T T

97.475 |

I

I

I

I

I

I

P(K) I

oo I

I

I

I

I

I

I

50 !

1

2
0 3 4
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