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EELE445-14
Lecture 3,4

Power, Energy,
Time average operator

section 2.1
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• In this lecture you:
– be able to use the time average operator     

for finite time duration signals and periodic 
signals

– Be able to find the rms value of a waveform
– be able to find the power or energy of a 

waveform in the time domain
– Parseval’s Theorem, find the power or energy 

of a waveform in the frequency domain
– Concept of PSD an ESD

Lecture 3,4 EE445 - Outcomes

[]
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• measurable in the laboratory
1. waveform has significant nonzero values 

over a composite time interval for a finite 
time duration

2. continuous function of time
3. finite peak amplitude
4. real function , no complex values

Physically Realizable Waveforms
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Figure 2–1   Physical and mathematical waveforms.
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Time average operator

Time Average Operator (mean, of w(t)):
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Time average operator
Time Average Operator for signal of finite time duration:

∑∫ =

−

==
N

n nn

T

T

w
N

wdttw
T

tw
1

2

2

1)(1)(

adttw
T

tw

aaTtwtw
aT

aTo

o

o

realanyfor

realanyfor

∫
+

+−

=

+=

2

2

0

)(1)(

)()(
For a Periodic Signal:
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Root Mean Square- rms

RMS =  “root mean square” of a signal of duration T:
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RMS example
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Figure 2–3   Steady-state waveshapes for Example 2–2.
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Power of a signal

Z=R+j0

Figure 2–2 Polarity convention used for voltage and current.
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Power of a signal
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For Normalized Power:
R=1 ohm

p(t) is the instantaneous 
power, P is the average 
power over time T
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Energy of a Signal

1R Power, or Energy  calulate typically We =
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A communication metric:
Signal to Noise Ratio in dB
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Lecture 4 
The Fourier Transform and the 

Frequency Domain
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Figure 2–1 Physical and mathematical waveforms.
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The Fourier Transform
We use the Fourier transform to determine the frequencies
of the sinusoids present in a non repetitive  waveform.  

The fourier series may be considered the fourier transform of a non-repetitive
waveform that is repeated continuously.
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Fourier Transform
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Fourier Transform
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Figure 2–4 Spectrum of a sine wave.
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Figure 2–5 Waveshapes and corresponding symbolic notation.
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Figure 2–5 Waveshapes and corresponding symbolic notation.
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Figure 2–6 Spectra of rectangular, (sin x)/x, and triangular pulses.
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Figure 2–6 Spectra of rectangular, (sin x)/x, and triangular pulses.
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Figure 2–6 Spectra of rectangular, (sin x)/x, and triangular pulses.

Time Domain                                          Frequency Domain  
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Figure 2–6 Spectra of rectangular, (sin x)/x, and triangular pulses.

Time Domain                                          Frequency Domain  
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Fourier Transform Theorems

These theorems are useful for the homework and the exams!
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Fourier Transform Theorems

31

Fourier Transform Pairs

The rectangular function is used to mathematically truncate 
an infinite time waveform w(t).  It is the time window that w(t)

is analyzed over.  What is the effect on the measurement of w(t)
as T approaches infinity? How about as T approaches 0?
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Fourier Transform Pairs

compare the Phasor and the sinusoid transforms.  
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Energy and Power in a Waveform

34

• Energy Spectral Density, ESD
Energy and Power in a Waveform
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•Power Spectral Density, PSD, for a truncated waveform of duration T
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Energy and Power in a Waveform
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Energy and Power in a Waveform
Figure 2–9 Power spectrum of a sinusoid.Figure 2–4 Spectrum of a sine wave.



EELE445 Montana State University

10

EELE445-13

LECTURE 5 
Examples,

Fourier Series from the Fourier 
Transform

38

Example- Power and Energy in Time.

A  1 KHz sinewave source is applied to a 50 ohm resistor.
fine the power delivered to the load.
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Example- Power and Energy in Time.
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Fourier Series from Fourier Transforms
1. Find the truncated signal period  VTo(t)

2. Determine the Fourier Transform of the waveform 
VTo(t)

3. Find the value of the Fourier Series coefficients by:
1. Replacing f in the Transform with f=n/To
2. Scaling the magnitude of the Transform by 1/To
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Fourier Series from Fourier Transforms
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Fourier Series from Fourier Transforms
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now make a repetitive pulse with period To
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Properties  of a Repetitive Rectangular Pulse

• The null bandwidth, Bn of the spectrum is equal to 
the inverse of the pulse width, τ.

• The harmonic frequencies are n/To

• The number of harmonics, n, from DC to the 
spectral null is:

• Approximately 90 percent of the power of the 
signal is in the spectrum from DC to the null 
bandwidth frequency, only 10% of the signal power 
is in the spectrum frequency range from the null 
bandwidth frequency to infinity!
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Repetitive Rectangular Pulse
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Repetitive Rectangular Pulse
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Single Rectangular Pulse

47

Repetitive Rectangular Pulse
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Repetitive Rectangular Pulse
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Repetitive Rectangular Pulse
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Rectangular Pulse Power to the first null 
bandwidth

2
0

1
xsinc x( )2⌠

⎮
⌡

d 100⋅ 90.282=

P x( ) 2
0

x
xsinc x( )2⌠

⎮
⌡

d
⎛⎜
⎜⎝

⎞⎟
⎟⎠

100⋅:=

51

Repetitive Rectangular Pulse Power vs
Bandwidth
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