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LECTURE 6
Power and Energy in
the Frequency Domain

Energy and Power in a Waveform

Parseval’s Theorem and Energy Spectral Density
Parseval’s Theorem.
J‘ w (Dwi(t) dr = f Wi(HW3(f)df (2-40)
- o
If w,(r) = wy(t) = w(?). then the theorem reduces to

Rayleigh’s energy theorem, which is

&= [ wtpa=[“wip @41

DEFINITION.  The energy spectral density (ESD) is defined for energy waveforms by
) =IWNP (2-42)
where w(r) & W(f). €(f) has units of joules per hertz.
Using Eq. (2-41), we see that the total normalized energy is given by the area under the ESD
function:

E= f E(f) df (2-43)
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Energy and Power in a Waveform
« Energy Spectral Density, ESD
E(f)==W(f)[
« Power Spectral Density, PSD for a truncated waveform
of duration T
_jw@)., —T2<r<T2| is .
wirln) = {0. t elsewhere }7 winlt (T) o)
Using Eq. (2-13), we obtain the average normalized power:
1 T2 1 o
= lim — 2 = Ii — 2
P T]TL _mw (2) dr Tll_r’r; 7 Jm wr(r) dr
By the use of Parseval's theorem. Eq. (2-41), the average normalized power becomes
[ U N o SN | 22 (P16
p=lim - L\Wr(/)} dF L ( lim. —T—) o e
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Energy and Power in a Waveform

DEFINITION.  The power spectral density (PSD) for a deterministic power wave-
form is”

1w ()12

Po(f) 2 lim ( i) (2-66)
Tox T

where wr(t) <> Wr(f) and 2,.(f) has units of watts per hertz.

Note that the PSD is always a real nonnegative function of frequency. In addition. the PSD
is not sensitive to the phase spectrum of 10(1), because that is lost due to the absolute value
operation used in Eq. (2~66). From Eg. (2-65). the normalized average power is*

P=(w(1))= ] Po(f) df (2-67)

That is, the area under the PSD function is the normalized average power.
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Time Average Autocorrelation
Function

DEFINITION.  The autocorrelation of a real (physical) waveform is¥
[N
Ry(7) 2 (w(n)w(r+1))= lim — f w(tjw(t+7) dt (2-68)
Too T Jpp
Furthermore, it can be shown that the PSD and the autocorrelation function are Fourier trans-
form pairs; that is,
‘ Ru(r) & Pulf) (2-69)

where 2,.(f) = F[Ry(r)]. This is called the |Wiener-Khinrchine theorem| The theorem,
along with properties for R(7) and P(f), are developed in Chapter 6.
In summary, the PSD can be evaluated by either of the following two methods:

-

. Direct method. by using the definition, Eq. (2-66).°
2. Indirect method. by first evaluating the autocorrelation function and then taking the
Fourier transform: 2 ,(f) = F{Rp(T)].

P(wip-w: = J Pulf) df=R,(0) (2-70)

Autocorrelation of a Sinusoid

Example 2-10 PSD OF A SINUsOID
Let
w(r) =A sin wot
The PSD will be evaluated using the indirect method. The autocorrelation is
Ry(7) = w(w(t+ 1))

1

= lim — j A? sin wot sin wo(t+71) dt
Tooo T J g

Using a trigonomesric identity, from Appendix A we obtain

2 A2

e 1 772
Ry(7) =5~ cos wor lim —f dt - — lim —J- c0s(2wo! + wor) df
2 Tooo T -2

-T2 Twoo T

which reduces to
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Autocorrelation of a Sinusoid
The PSD is then
91 =5 [4 cos wnr] =47 (1) o074 ) e

as shown in Fig. 2-9. The PSD may be compared to the “voltage” spectrum for a sinusoid found
in Example 2-4 and shown in Fig. 2-4.
The average normalized power may be obtained by using Eq. (2-67): :

x 42 2 .
p= | L tov-m s 4= @

This value, A%/2, checks with the known result for the normalized power of a sinusoid:
P=(w1))=Wh = (AN2)?=A%/2 a5 (2-74)

Tt is also realized that A sin wyr and A cos wot have exactly the same PSD (and autocor-
relation function) because the phase has no effect on the PSD. This can be verified by evaluat-
ing the PSD for A cos wet, using the same procedure that was used earlier to evaluate the PSD
for A sin wy.
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Ry(7)= A?Z <08 wyT 2-71)
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Autocorrelation of a Sinusoid
Figure 2-9 Power spectrum of a sinusoid.
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Time Average Autocorrelation
Function

DEFINITION.  The autocorrelation of a real (physical) waveform is¥
(2-68)

1 ™
Ru(7) 2 (w(t)w(r+1))= r]im i f w(tyw(t+7) dr
=% 112

Furthermore, it can be shown that the PSD and the autocorrelation function are Fourier trans-

Ru(r) & Pulf) (2-69)

where 2,.(f) = F[Ry(r)]. This is called the |Wiener—Khintchine theorem| The theorem,

along with properties for R(7) and P(f), are developed in Chapter 6.
In summary, the PSD can be evaluated by either of the following two methods:

form pairs; that is,

L. Direct method. by using the definition, Eq. (2-66).°
2. Indirect method, by first evaluating the autocorrelation function and then taking the

Fourier transform: 2 ,(f) = F[Ry(r)].

-

P= () =Wh = [ 9ur) ar=ro(0) 270
~ 9
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Figure 2-12 Periodic rectangular wave used in Example 2-12.

{a) Warvedoms

b Misgnitude Spectrum

Power and Power Spectra of a Waveform in a
given Bandwidth

P(f)is the double-sided power spectral density(textbook c,)
S(f)is the single - sided power spectral density,

as seenon a spectrum analyzer.

S(f)=P(f) +P()=2P(f) 5=
The total power in a frequency rangeis :

f2
R = [ S(f)df watts
f
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Figure 2-13 PSD for a square wave used in Example 2-13.
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Orthogonal Functions

DEFINITION.  Functions ¢,(¢) and ¢,,(?) are said to be orthogonal with respect to each
other over the interval a < r < b if they satisfy the condition

b . )
j e, (t)eh(t) dt=0,  wheren#m 2-77)

Furthermore. if the functions in the set {¢,(r)} are orthogonal, then they also satisty
the relation

U 0, n=m
f @u(O)@n(t) de = {K _ ] = KBun (2-78)
1 ne n=m
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Normalized Orthogonal Series
w(t) = > a,p, (1)
1 b
where a, = K_n ! w(t)e, (t)dt
b
K, = j @, (e, (t)dt is the normalization constant
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Waveform synthesis using orthogonal functions.
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Figure 2-11 Fourier series coefficients
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1
1
| Note: each physical frequency
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Fourier series coefficients
Polar Form:

w(t) =D, + Z D, cos(nayt +¢,) eq2-103
n=1

Complex form:
=" ce" eq2-88

Quadrature form:

=Ya,cosna,t+ Y b sinnat eq2-95
n=0

n=1
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Normalized Power of a Spectral component
in Fourier Series

2
poz%:cg:ag = DC power
2 2 2
L
2 2 2

D, + Z D, cos(nayt +¢,) eq2-103(single sided)
n=1
=37 ce™  eq2-88 (double sided)

=Y a,cosnapt+ Y b sinnat eq2-95(single sided)
n=0

n=1
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LECTURE 7
Some examples in class...
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