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 Many disciplines have an agreed-upon knowledge base for study. For cellular 

neuroscientists, it is the neuron, for geneticists, it is the genome, for some areas of chemistry, 

molecular interactions are the primary target. The success in these fields is in part due to the 

accumulation of a well established set of principles. For example, in each of these domains there 

is a target knowledge base (i.e., the genome, the periodic table, etc.), which then allows 

researchers to investigate changes across different contexts and how the system interacts with 

other systems. 

Within Cognitive Science, one might argue that words are a fundamental building block 

in psychology. Words have been central to developments in computational modeling 

(McClelland & Rumelhart, 1981), cognitive neuroscience (e.g., Petersen, Fox, Posner, Mintun, & 

Raichle, 1988, 1989), memory (Craik & Lockhart, 1972), psycholinguistics (Pinker, 1999), 

among many other areas. Words are wonderful stimuli because they have a relatively limited set 

of constituents (e.g., letters/phonemes) that can be productively rearranged to capture virtually 

all the meaning that humans convey to each other. In this light, one might argue that words, like 

cells for biologists, are a major building block of cognitive science.  

 If words are so fundamental to our discipline, then surely we must have accumulated an 

enormous wealth of information about how humans process words. Indeed, this is largely true. 

For example, psychologists and psycholinguists have identified many variables that appear to 

influence speeded lexical processing, including word frequency, familiarity, age of acquisition, 

imageability, number of meanings, letter length, phoneme length, syllable length, number of 

morphemes, syntactic class, orthographic neighborhood, phonological neighborhood, frequency 

of orthographic and phonological neighborhoods, spelling-to-sound consistency, among many 

others. Given the enormous effort that has been devoted to studying words, one would naturally 
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assume that there is a well-specified set of constraints that one could use to accurately predict 

processing performance for any set of words. Specifically, there ought to be a standard set of 

assumptions about lexical processing that researchers have agreed upon.  

In the present chapter, we will review a relatively recent approach to studying lexical 

processing, which involves developing large databases that are made available for researchers to 

study across three distinct domains, isolated visual word recognition, semantic priming, and 

recognition memory. One of the goals of this research endeavor is to help define the common set 

of principles that researchers can rely upon in better understanding how lexical processing 

influences critical aspects of cognition. This megastudy approach contrasts with the more 

traditional approach of factorial experiments targeting specific variables within small-scale 

studies. We will ultimately argue that progress in this field is going to depend on a judicious 

combination of targeted factorial studies and large scale databases. 

Factorial Studies of Lexical Processing 

The vast majority of studies of words have involved standard factorial studies in which 

investigators cross targeted variables. For example, one might be interested in the interaction 

between word frequency and length (i.e., number of letters). Hence, the researcher will select a 

set of items (typically 10 to 20) that fit the four (or more) cells of the experimental design by 

crossing word frequency and length.  

As noted, the standard factorial approach has yielded a wealth of knowledge. However, 

there are also some limitations. First, a critical assumption of this approach is that one can equate 

stimuli on all other relevant variables to fit the critical cells within such designs. Given the 

plethora of variables available, this is clearly a daunting task (see Cutler, 1981, for a discussion 

of this point). Second, one needs to worry about list context effects. Specifically, it is possible 
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that by loading up on a given variable, one may actually be modulating the effect of this variable. 

For example, if one is interested in spelling to sound regularity effects, it is possible that other 

similarly spelled words could influence the obtained effects (consider a list which contains both 

HINT and PINT; see Seidenberg, Waters, Sanders, and Langer, 1984). Indeed, there is clear 

evidence of overall list context effects across a number of variables in the literature (see Lupker, 

Brown, & Colombo, 1997; Monsell, Patterson, Graham, Hughes, & Milroy, 1992; Zevin & 

Balota, 2000). Third, most variables are not categorical, but are continuous in nature.  Moreover, 

it is unlikely that variables are linearly related to the behavior of interest. By arbitrarily setting a 

categorical boundary for a variable that is nonlinearly scaled (e.g., word frequency), one may 

either magnify or diminish the influence of the variable. Along these same lines, one loses 

statistical power by turning a continuous variable into a categorical variable (see Cohen, 1983; 

Humphreys, 1978; Maxwell & Delaney, 1993). Finally, one needs to worry about experimenter 

biases in selection of items. Forster (2000) has demonstrated that experimenters have implicit 

knowledge about how lexical variables drive performance in a given task. Hence, it is possible 

that such knowledge may inadvertently influence item selection.  

The Megastudy Approach 

 A complementary approach to factorial designs is to let the language define the stimuli, 

as opposed to selecting stimuli based on a limited set of criteria. This indeed is the megastudy 

approach reviewed here. If there is an agreed upon useful database, then researchers may use this 

dataset to explore the influence and interrelationships amongst targeted variables and also test 

the extent theoretical models in a more continuous manner instead of the categorical manner 

which has dominated model development..  
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 Of course, there are also potential limitations to the megastudy approach. One concern is 

that researchers may exploit the dataset. For example, one could resample multiple times from 

the large dataset and capitalize on chance to find “significant” effects of theoretical interest. We 

believe that the normal peer review process is indeed sufficiently sensitive to such sampling 

possibilities, and have not seen megastudy databases misused in this manner. A more important 

problem is that the large databases may not be stable enough to detect more subtle effects. That 

is, there may be sufficient error variance in the databases to decrease sensitivity to variables that 

appear to be well-established in the factorial literature. Interestingly, this possibility has been 

raised recently by Sibley, Kello, and Seidenberg (2009). Because of the potential importance of 

this concern, we will briefly address this issue. 

Sibley et al. (2009) argued that one should be cautious in relying on megastudy databases 

because these databases may not be sensitive to more subtle manipulations in the literature that 

have important theoretical implications. To pursue this issue, they tested the adequacy of 

megastudies for finding an important interaction between spelling-to-sound 

consistency/regularity and word frequency. Specifically, high-frequency words are typically 

influenced less by spelling-to-sound consistency/regularity than are low-frequency words. They 

correctly argued that these variables have been critical in the development of models of word 

naming. Therefore, Sibley et al. selected the items from published studies investigating these 

variables, and attempted to determine if the same pattern would be observed when the item 

means were obtained from the megastudies. Sibley et al. examined the stability of consistency 

effects across four different datasets, and indeed there was variability across the datasets with 

respect to producing the pattern. Here, we simply investigate the stability of the effects using the 

English Lexicon Project (ELP), because this has been the most well explored database to date 
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and includes a wide range of both monosyllabic and multisyllabic words .  At its completion, the 

ELP was by far the largest megastudy (approximately 20 times larger than other English 

datasets), although as described below, there are recent databases approaching its size. Finally, 

this dataset is readily available for researchers to access via the website 

(http://elexicon.wustl.edu), along with a search engine that affords access to a rich set of lexical 

characteristics.. 

In their paper, Sibley et al. (2009) focused on mean raw item naming response time (RT) 

data. However, in the ELP, different participants contribute to the mean RT of any item, and it is 

therefore more appropriate to look at z-scored RTs instead of raw RTs, as suggested by Balota et 

al. (2007). In this way, no subject disproportionately influences the item means. Of course, it is 

also useful to look at the accuracy data. To explore this, we recently used the ELP to conduct 

analyses similar to Sibley et al.’s, and the collective results are remarkably consistent with 

published studies. For example, Seidenberg (1985) observed an interaction between spelling-to-

sound consistency and word frequency. In our analysis of the Seidenberg items taken from the 

ELP dataset, the mean z-scores clearly were indeed in the same direction, albeit non-significant, 

while the accuracy data was significant and clearly replicated the Seidenberg (1985) pattern. 

Turning to Seidenberg et al. (1984), the ELP dataset again produced the same reliable interaction 

in all three dependent measures (i.e., raw RTs, z-scored RTs, accuracy). Turning to Papp and 

Noel (1991), who did not report the results from statistical tests, the ELP produced an interaction 

in the same direction for z-scores (p = .07), and the interaction was again reliable in accuracy in 

the predicted direction. Jared (2002) observed main effects of consistency and word frequency 

with her stimuli, with no interaction. This pattern was reliably replicated in the accuracy data of 

the ELP dataset with her items, and also in the pattern of mean z-scores and raw RTs. Finally, 

http://elexicon.wustl.edu/
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Taraban and McClelland (1987) did not report a reliable frequency by regularity interaction (see 

p. 613) for their stimuli, but in separate tests did report a reliable effect of regularity for low-

frequency words, but not for high-frequency words. Indeed, in the ELP, there is a regularity 

effect for Taraban and McClelland low-frequency words in both accuracy and z-scores, but not 

for high-frequency words. In sum, we view the data from the ELP as being remarkably 

consistent with the critical studies that have manipulated both spelling-to-sound regularity and 

word frequency. Indeed instead of only questioning the ELP database, it would be useful for the 

field to test the reliability of standard effects in the lexical processing literature across different 

institutions for a baseline.  In fact, given the likelihood of idiosyncratic effects of list context and 

voice-key measurement issues, we were surprised (and pleased) by the level of stability. Clearly, 

based on the above analyses, it appears that the ELP does quite well in producing the standard 

effects regarding spelling-to-sound regularity/consistency and word frequency.  

One might also ask if other standard interactions are observed in the ELP database. As 

indicated in Balota, Cortese, Sergent-Marshall, Spieler, and Yap (2004) and Yap and Balota 

(2009), many standard interactions reported in the literature (i.e., length by frequency, 

orthographic N by frequency, orthographic N by length) are well-replicated in the ELP. Most 

importantly, if the ELP had an extraordinary amount of error variance, one might expect little 

variance in the total dataset to be accounted for by standard lexical variables. However, this is 

clearly not a problem in the ELP. For example, Balota et al. accounted for 49% and 42% of the 

variance in speeded pronunciation and lexical decision latencies respectively for monosyllabic 

words. Moreover, Yap and Balota (2009) accounted for over 60% of the variance for all 

monomorphemic multisyllabic words with standard predictors. Because it is likely that there are 

still unknown variables and possible better ways of conceptualizing current variables (i.e., 
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nonlinear functions), the current estimates may underestimate the amount of variance accounted 

for (see Rey, Courrieu, Schmidt-Weigand & Jacobs, 2009, for further discussion).   

Of course, the stability of these datasets is an important issue for testing current 

computational models.  If indeed the datasets are not stable/reliable, then the utility of these 

datasets would be minimized. Indeed, Spieler and Balota (1997) were initially surprised by the 

relatively small amount of variance captured by standard computational models. For example, 

for the monosyllabic dataset, 10.1% was captured by the Seidenberg and McClelland model, and 

3.3% was captured by the Plaut, McClelland, Seidenberg, and Patterson (1996) model. In 

contrast, word frequency, orthographic neighborhood size and length accounted for 21.7% of the 

variance. Hence, it is not the case that one can simply dismiss the poor fits due to error prone 

datasets.  

Thus, in developing models of word recognition, researchers have become more 

interested in using accounted for variance as one useful (but not only) metric of evaluating model 

performance. In addition, Perry, Zorzi, and Ziegler (2010) have labeled an additional metric 

called the Yap and Balota criteria, which basically involves the specific proportion of variance in 

model performance accounted for by different variables (also see Sibley & Kello, this volume). 

Of course, there are multiple ways of evaluating model adequacy. The point we are emphasizing 

here is simply that a possible lack of stability of the megastudy datasets is not a reason to dismiss 

this useful constraint on model development (see Adelman, Marquis, & Sabatos-DeVito, 2011, 

for further discussion of explained and unexplained variance in word recognition performance). 

 We shall now turn to a selective review of what we have learned from the megastudy 

approach at a more empirical level. We will first discuss studies of isolated word recognition, 
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which are by far the most well investigated. We will then turn to more recent developments in 

the domains of semantic priming and episodic recognition memory performance.  

Isolated Word Recognition Performance 

 In addition to providing a testbed for evaluating computational models of visual word 

recognition, there are three additional contributions from megastudies to better understand 

lexical processing. First, these datasets allow researchers to rigorously evaluate the strength of 

relatively novel variables that theoretically should modulate word recognition. Second, the 

databases allow for one to compare the relative predictive power of competing metrics. Third, 

the datasets allow for a finer-grained assessment of the functional relationships (e.g., linear vs. 

nonlinear) between lexical variables and word recognition performance.  

Evaluating the Influence of Novel Variables 

  Megastudies are very useful for benchmarking new variables by evaluating whether they 

account for additional variance above and beyond traditional variables. In an early example of 

such work, Treiman, Mullennix, Bijeljac-Babic, and Richmond-Welty (1995) explored readers’ 

sensitivity to the consistency of spelling-sound mappings at different grain sizes (Ziegler & 

Goswami, 2005). A word is considered consistent if its pronunciation matches that of most 

similarly spelled words. For example, PINT is inconsistent because the pronunciation of its rime 

(vowel and following consonants, i.e., INT) conflicts with that of similarly spelled words (e.g., 

HINT, MINT, TINT). At the time the Treiman et al. paper was published, the dominant view 

was that spelling-sound relations were most appropriately described at the level of graphemes 

and phonemes, and Treiman et al. were interested in whether consistency defined for higher-

order units (e.g., rimes) was also able to predict speeded pronunciation performance. On the 

basis of regression analyses of two independent megastudies (consisting of 1327 and 1153 words 
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respectively), they demonstrated that the consistency of higher-order rime units indeed reliably 

accounted for pronunciation variance, after the consistency of individual graphemes and other 

variables were controlled for. To strengthen the general conclusions from the megastudies, 

Treiman et al. also conducted additional factorial studies where rime consistency was 

manipulated. Importantly, the results from these studies converged nicely with the findings from 

the megastudies, suggesting that large-scale and factorial studies provided complementary 

perspectives on phenomena of interest.  

 The Treiman et al. (1995) study focused on monosyllabic consonant-vowel-consonant 

(CVC) words. Chateau and Jared (2003) carried out a megastudy (including 1000 words) where 

they compared the consistency of various orthographic segments in six-letter disyllabic words. 

Specifically, they obtained measures of spelling-sound consistency for simple (i.e., C1, V1, C2) 

and higher-order (i.e., C1V1, V1C2) orthographic segments in the first and second syllables. In 

addition, they computed consistency for the BOB (body-of-the-BOSS; Taft, 1992) which 

includes the first vowel and as many following consonants to form a legal word ending (e.g., the 

BOB for VERTEX is ERT). They found that the consistency of the BOB and the second-syllable 

vowel predicted pronunciation performance, confirming that readers were sensitive to the 

consistency of multiple grain sizes when pronouncing words aloud. 

 Other theoretically motivated variables whose validity have been evaluated using 

megastudy data include imageability (Cortese & Fugett, 2004), age of acquisition (Cortese & 

Khanna, 2008), semantic richness (Yap, Tan, Pexman, & Hargreaves, 2011), a new measure of 

orthographic similarity called Levenshtein Orthographic Distance (Yarkoni, Balota, & Yap, 

2008), a new measure of phonological similarity called the Levenshtein Phonological Distance 

measure (see elexicon.wustl.edu), contextual diversity (i.e., the number of contexts a word 
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appears in; Adelman, Brown, & Quesada, 2006), phonographic neighborhood size (i.e., the 

number of neighbors that are both orthographic and phonological; Adelman & Brown, 2007), 

and Sensory Experience Rating (Juhasz, Yap, Dicke, Taylor, & Gullick, in press), a new variable 

motivated by the grounded cognition framework that indexes the degree to which a word evokes 

sensory/perceptual experiences.. The general strategy is to assess the extent to which a novel 

predictor accounts for unique variance in megastudies, after other correlated variables have been 

controlled for. While a full description of these studies is outside the scope of this chapter, the 

studies listed above have shed light on the role of semantic variables on word recognition 

(Cortese & Fugett, 2004; Cortese & Khanna, 2008; Juhasz et al., in press; Yap et al., 2011), the 

influence of a new orthographic distinctiveness metric that can be used for long words and 

outperforms the traditional measure of orthographic neighborhood size (Yarkoni et al., 2008), 

and the superiority of contextual diversity (Adelman et al., 2006) and phonographic 

neighborhood size (Adelman & Brown, 2007) over raw word frequency and orthographic 

neighborhood size respectively. Finally, it is noteworthy that megastudy approach has also been 

used to provide evidence against the reliability of a new variable (see Kang, Yap, Tse, & Kurby, 

2011, for an example).  

Comparing Competing Metrics 

 Megastudies are also ideal for adjudicating between competing measures of the same 

construct. For example, word frequency is one of the most well-studied variables in cognitive 

science. Although many frequency counts are available, most researchers unfortunately continue 

to rely on the Kučera and Francis’ (1967; KF67) norms, which are dated and based on a 

relatively small corpus of written texts. Brysbaert and New (2009), using lexical decision data 

from recently published large-scale data, compared a number of frequency counts, including 
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KF67, HAL (Hyperspace Analog to Language; Burgess & Livesay, 1998), CELEX (Center for 

Lexical Information; Baayen, Piepenbrock, & van Rijn, 1993), TASA (Touchstone Applied 

Science Associates; Zeno, Ivens, Millard, & Duvvuri, 1995), and BNC (British National Corpus; 

Leech, Rayson, & Wilson, 2001). KF67, CELEX, TASA, and BNC are based on written texts, 

while HAL is based on Internet newsgroup postings. The proportion of variance each frequency 

measure accounted for in lexical decision performance from the ELP was used as a criterion of 

its quality. These were all evaluated against an intriguing new frequency measure (SUBTL) 

based on a 50-million word corpus comprising film and television subtitles. A subtitle-based 

corpus possesses the advantages of being more reflective of day-to-day spontaneous language 

exposure and is also relatively easy to accumulate. Indeed, the analyses conclusively 

demonstrated that KF67 frequency was clearly the worst measure (replicating studies by Balota 

et al., 2004; Zevin & Seidenberg, 2004), whereas subtitle-based frequency accounted for more 

variance than the other leading frequency measures. Interestingly, Yap, Balota, Brysbaert, and 

Shaoul (2011) have also shown that a measure of rank frequency (simply the rank order of word 

frequency values instead of their actual frequency, see Forster, this volume) predicts very similar 

amounts of variance. In the examples in this section, word frequency was the construct of 

interest but in principle, a similar strategy can be used to compare different instantiations of other 

constructs. Indeed, this is precisely what Yarkoni et al. (2008) reported in their comparison of the 

new Levenshtein Distance measure and the standard orthographic N measure (see Davis, this 

volume, for a discussion of orthographic neighborhood structure). 

Exploring Functional Relationships amongst Variables in Word Recognition 

Large-scale data have been productively used to explore the functional relationships 

between lexical variables and word recognition performance. For example, word recognition 
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researchers have tended to focus on linear relationships between variables and response times, 

but it is clear that non-linear contributions also need to be taken into account (see Baayen, 

Feldman, & Schreuder, 2006).  

Consider the relationship between word length in letters and response times. It is 

commonly assumed that the relationship between length and word recognition performance (as 

reflected by tasks such as lexical decision, speeded pronunciation, perceptual identification, and 

eye tracking) is linear, and that word recognition latencies increase monotonically as a function 

of length. However, this view is complicated by inconsistent results across tasks and studies. 

Specifically, some studies find inhibitory effects (length and response times positively 

correlated), others find facilitatory effects (negative correlation), while yet others yield null 

effects (see New, Ferrand, Pallier, & Brysbaert, 2006, for a review). New et al. explored this 

inconsistency by conducting regression analyses on a dataset of lexical decision latencies for 

over 33,000 words (ranging from 3 to 13 letters) from the English Lexicon Project (Balota et al., 

2007). They observed an intriguing U-shaped relationship between length and lexical decision 

latencies, whereby length was facilitatory for 3-5 letter words, null for 5-8 letter words, and 

inhibitory for 8-13 letter words. Hence, to the extent that different investigators are using stimuli 

of different lengths, this U-shaped relationship provides a partial explanation for the varied 

results across different experiments. More recently, Yarkoni et al. (2008) have suggested that this 

nonlinear function may be accommodated by differences in the orthographic neighborhood 

characteristics as reflected by the novel Levenstein Distance metric, discussed in the previous 

section. 

The functional form of the relationship between word frequency and word recognition 

latencies has also been receiving considerable attention in the literature (see Forster, this 
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volume). Traditionally, researchers have assumed that a linear relationship exists between the 

logarithm of frequency and recognition times. However, recent models have begun to make 

explicit predictions about the form of the frequency effect (see Adelman & Brown, 2008, for a 

review). For example, Norris’ (2006) Bayesian Reader model predicts a logarithmic relationship 

between word frequency and lexical decision latencies; this model conceptualizes readers as 

optimal Bayesian decision-makers who use Bayesian inference to combine perceptual 

information with knowledge of prior probability during word recognition. In contrast, Murray 

and Forster’s (2004) serial search model of lexical access predicts that RTs will be “directly 

related to the rank position of a word in a frequency-ordered list, not to its actual frequency or to 

any transform of it” (p. 723). Finally, instance-based models, which are predicated on the 

assumption that each encounter with a word leaves a memory trace (e.g., Goldinger, 1998; 

Logan, 1988 ), predict that frequency and latencies are represented as a power function. Using 

large-scale datasets, Adelman and Brown (2008) evaluated the rank frequency function against 

other functional forms (e.g., logarithmic and power functions) and concluded that the empirical 

data appeared to be most consistent with some versions of the instance-based models (but see 

Murray and Forster, 2008). Clearly, without these large-scale databases one would not be able to 

test the functional form of this theoretically important relationship. 

Identifying the Unique Predictive Power of Targeted Variables 

 The ultimate goal of factorial studies is to afford a better understanding of the influence 

of theoretically motivated variables. This goal has been somewhat elusive, for the various 

reasons discussed in the Introduction. As noted, it is difficult to control for the many variables 

that have been shown to influence word recognition (Cutler, 1981), since many of these variables 

are correlated. Megastudies minimize these problems by having the language, rather than the 
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experimenter, select the stimulus set, and using regression analyses to control for correlated 

variables.  

The studies by Treiman et al. (1995) and Chateau and Jared (2003) described earlier 

exploit this approach for exploring spelling-to-sound consistency, but Balota et al. (2004) were 

the first to explore the effects of a comprehensive array of variables on word recognition. 

Specifically, they examined the unique predictive power of surface variables (phonological 

features in the onsets), lexical variables (e.g., measures of consistency, frequency, familiarity, 

neighborhood size, and length), and semantic variables (e.g., imageability and semantic 

connectivity) on word recognition performance for virtually all monomorphemic monosyllabic 

words. They also compared lexical decision to pronunciation data to study task-dependent 

effects, and young adult to older adult performance to study the effects of aging. Space limits 

preclude a full description of the study, but Balota et al. were able to demonstrate that the 

influence of many variables were modulated by the nature of the task, hence shedding light on a 

number of empirical controversies. For example, surface variables, length, neighborhood size, 

and consistency accounted for more variance in pronunciation, compared to lexical decision, 

because of the pronunciation task’s emphasis on generating phonology. In contrast, word 

frequency and semantics better predicted lexical decision, because of lexical decision’s reliance 

on familiarity-based information for discriminating between familiar words and unfamiliar 

nonwords (e.g., Balota & Chumbley, 1984). There was also an interesting age-related 

dissociation where older adults were more influenced by objective frequency while younger 

adults were more influenced by subjective frequency (i.e., subjective ratings of a word’s 

frequency; Balota, Pilotti, & Cortese, 2001), suggesting that standard frequency estimates based 

on written texts may be better tuned to the older adult lexicon.  
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To a large extent, the visual word recognition literature has been overwhelmingly 

dominated by the study of monosyllabic words, because these are relatively simple stimuli to 

work with. However, monosyllabic words only constitute a small minority of a person’s lexicon, 

and it is unclear if behavioral effects reported for monosyllabic words generalize to longer 

multisyllabic words. The Chateau and Jared (2003) study discussed earlier is noteworthy for 

being the first large-scale exploration of multisyllabic words. However, they were predominantly 

interested in how consistency influences the pronunciation of six-letter disyllabic words.  

Using data from the ELP, Yap and Balota (2009) extended the work by Balota et al. 

(2004) and Chateau and Jared (2003) by using hierarchical regression analyses to identify the 

effects of surface, lexical, and semantic variables for 6,115 monomorphemic multisyllabic 

words. In addition to considering the role of traditional variables (e.g., frequency, length, 

orthographic neighborhood size), they also explored variables specific to multisyllabic words 

(e.g., stress pattern, number of syllables). Importantly, processing of multisyllabic words does 

not appear to radically differ from the processing of monosyllabic words. However, there were 

also a number of surprising differences. First, onset characteristics, which account for 

considerable variance in monosyllabic pronunciation, are far less influential in multisyllabic 

pronunciation. This may suggest differences in the emphasis on onsets during production in the 

monosyllabic words compared to the more complex multisyllabic words.  Second, number of 

syllables was positively correlated with both lexical decision and pronunciation latencies, even 

after controlling for a host of variables. This suggests that multiple codes mediate lexical access 

and output processes, and the syllable is one of those codes. Third, the analyses included novel 

measures of orthographic and phonological distinctiveness (Levenshtein measures; Yarkoni et 

al., 2008) to complement traditional measures (e.g., orthographic neighborhood size) that are not 
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optimized for long words. The interesting finding here is that words which have relatively close 

visually and phonologically confusable neighbors produced faster response latencies in both 

naming and lexical decision performance, which is inconsistent with a simple competitive lexical 

identification process.  

Stable Individual Differences Revealed in the ELP 

Interestingly, there has been relatively little work in the visual word recognition literature 

on the reliability of measures of lexical processing within individuals (see Andrews, this 

volume).  This issue is important for a number of reasons.  First, if one is ultimately interested in 

extending visual word recognition models based on lexical processing studies to individuals who 

have breakdowns in reading performance, e.g., individuals with developmental dyslexia, then 

one needs to be concerned about the stability of the lexical processing tasks within individuals.  

Second, in evaluating the adequacy of computational models, it is possible that the mean 

performance across individuals at the item level should not simply be fit to one static model, 

because a single model will miss the important diversity across individuals.  Third, there may 

indeed be important tradeoffs in the effects of variables (such as spelling-to-sound 

correspondence vs. lexical-semantic processing), which provide important information on how 

mechanisms associated with specific variables may tradeoff across individuals. 

Of course, in order to investigate the stability of lexical processing one needs to have 

sufficient number of observations of a large number of participants to obtain stable estimates at 

different points in time.  The ELP affords an excellent database to examine stability since it 

contains naming or lexical decision performance for a large number of participants responding to 

a large set of different words (and nonwords in LDT) across two sessions, separated by a 24 hour 

to a one week interval. Yap, Balota, Sibley, and Ratcliff (2011) recently undertook this endeavor, 
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and found that the participants in the ELP database provided considerable consistency in 

performance across these sessions in mean performance, reaction time distributional parameters 

(such as estimates from the ex-Gaussian function, see Balota & Yap, 2011), and even estimates 

from the diffusion model (see Ratcliff, Gomez, & McKoon, 2004), and sensitivity to individual 

lexical variables such as word frequency.  Moreover, this database indicated that subjects who 

had higher vocabulary in general produced faster response latencies, more accurate word 

recognition performance, and attenuated sensitivity to lexical variables.  Finally, there was no 

evidence of tradeoffs in lexical and non-lexical processing across individuals.  Clearly, 

megastudies such as the ELP provide useful information regarding basic aspects of individual 

differences in lexical processing and are only just beginning to be explored.   

To summarize, the work described in this section has provided interesting new 

constraints on current models and future theory development. While megastudies clearly cannot 

(and indeed should not) replace well-designed factorial studies for establishing what the 

benchmark effects should be, they provide a powerful complementary, convergent approach for 

investigating visual word recognition. 

Extending the Megastudy Approach Beyond English 

 The megastudy approach to isolated word recognition has recently been developing to 

understand lexical processing in other languages. To our knowledge, there are now two 

published recent megastudies in non-English languages (note that Keuleers, Lacey, Rastle, & 

Brysbaert, in press, have a paper on the British lexicon):  The French Lexicon Project (FLP; 

Ferrand et al., 2010) and a study of 14000 Dutch mono- and disyllabic words and nonwords 

(Keuleers, Diependaele & Brysbaert, 2010). As an adjunct to the English Lexicon Project, these 

databases offer a number of benefits.  For example, consider the FLP.  In addition to stimulating 
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psycholinguistic research in French, researchers can also develop a better understanding of the 

similarities and differences between English and French, which might yield insights into research 

aimed at teasing apart language-specific from language-general processes. For example, although 

English and French are both alphabetic languages, French is far more morphologically 

productive, has more transparent mappings from spelling to sound, and has unambiguous 

syllable boundaries (Ferrand et al.). In the FLP, lexical decision latencies for 38,840 French 

words and nonwords were collected; due to financial and logistical constraints, speeded 

pronunciation data have not yet been collected. Although the FLP has only been recently 

completed, it has already yielded a number of noteworthy findings. Similar to English, a 

frequency measure based on subtitles predicted lexical decision variance better than book-based 

frequency estimates. Interestingly, the intriguing quadratic length effect seen in the ELP data 

(see earlier discussion; New et al., 2006) was also replicated in the FLP, indicating that the non-

linear effects of length generalize across languages and are also not specific to the 

methodological idiosyncrasies of the ELP. 

 Yap, Rickard Liow, Jalil, and Faizal (2010) have also recently developed a megastudy for 

Malay. Malay, a language spoken by about 250 million people in Indonesia, Malaysia, Brunei 

and Singapore, contrasts well with English, due to its very shallow alphabetic orthography (i.e., 

spelling-sound mappings are predictable and transparent), simple syllabic structures, and 

transparent affixation. Speeded pronunciation and lexical decision latencies were collected for 

9,592 Malay words, and regression analyses revealed some interesting processing differences 

between Malay, a shallow orthography, and English, a deeper orthography. For example, word 

length predicted Malay word recognition performance far better than word frequency. In 

contrast, frequency is the best predictor in English word recognition. This is consistent with the 
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idea that transparent orthographies heavily implicate a frequency-insensitive sublexical 

mechanism that assembles pronunciations using a limited set of spelling-sound rules (see Frost, 

Katz, & Bentin, 1987). Although frequency effects were greatly attenuated in Malay, they were 

nonetheless reliable, demonstrating that lexical processing plays a role even in very shallow 

orthographies.  

 Megastudies have also been used to make other types of cross-linguistic comparisons. 

Using a progressive demasking task, Lemhöfer et al. (2008) compared the word recognition 

performance of French, German, and Dutch bilinguals for the same set of 1,025 monosyllabic 

English words. English was the second language for these bilinguals. Regression analyses were 

used to examine the data, and a large number of within-language (e.g., length, word frequency, 

morphological characteristics, semantic characteristics) and between-language (e.g., cognate 

status, number of orthographic neighbors in the first language) variables were included as 

predictors. Lemhöfer et al. noted that there was substantial overlap in response time distributions 

between the three bilingual groups, suggesting that word recognition performance in English 

generalizes to different bilingual groups with distinct mother tongues. More interestingly, word 

recognition performance of all three groups was primarily driven by within-language 

characteristics, i.e., the characteristics of the target language, English. The characteristics of the 

first language played a relatively limited role in influencing English word recognition. Finally, 

comparisons of the bilingual groups against a control native English-speaking group yielded 

subtle but interesting differences. For example, both written and spoken frequency independently 

influenced word recognition performance in nonnative speakers, while only spoken frequency 

had an effect for native speakers. Effects of word frequency were also stronger for nonnative, 

compared to native, speakers. 
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 In sum, the development of megastudies across different languages already has shed 

some interesting observations on language specific vs language general principles. Although the 

first steps have already been initiated (indeed there are interesting ongoing megastudies of other 

languages such as Slovenia, Repovs, personal communication), a future goal of this work would 

be to establish links across languages in these large databases to provide insights into the 

mapping of orthography onto meaning, and eventually the mapping of phonology onto meaning, 

in speech perception. Such a cross-language repository of lexical processing would greatly 

facilitate our understanding of fundamental characteristics of language. At one level, it would be 

useful to have an international consortium established to test individuals on identical 

experimental platforms to insure comparability across the languages, and participants.  On the 

other hand, it would also be useful to have more participants from a wide variety of backgrounds.  

Indeed, a promising study by Dufau, Dunabeitia, Moret-Tatay et al. (submitted) has recently 

initiated a large international lexical decision study that relies on a common smart-phone 

platform that participants can freely access all over the world.  Data collection has been 

remarkably fast using this approach, accumulating as many observations in months that the ELP 

took years to accomplish.  Possibly, this approach will lay the foundation of a multilingual 

psycholinguistic resource, containing performance and lexical characteristics for multiple 

languages. 

Megastudies of Semantic Priming 

 Although much has been gleaned about the processes underlying isolated word 

recognition from both factorial and megastudy approaches, words are typically not recognized in 

isolation, and there is an extensive literature concerning the influence of semantic/associative 

context on word recognition (see Neely, 1991). In the semantic priming paradigm, participants 
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are presented with a target word (e.g., table) for a speeded response (typically pronunciation or 

lexical decision) that was immediately preceded by either a related (e.g., chair) or an unrelated 

(e.g., watch) prime word. The semantic priming effect refers to the consistent finding that people 

respond faster to target words preceded by related, relative to unrelated, primes. If one merely 

wished to demonstrate the existence of semantic priming, then the factorial limitations described 

earlier would not impede progress because semantic priming researchers typically 

counterbalance primes and targets across subjects by repairing the same prime-target pairs to 

create unrelated pairs. Thus, any facilitation in responding to targets could not be due to item 

selection differences between related and unrelated conditions.  

 Simple demonstrations of priming, however, are no longer the primary issue of interest. 

Today, researchers use the semantic priming paradigm as a tool to better understand the 

organization and retrieval of semantic knowledge. In doing so, researchers select sets of items 

that differ on a dimension deemed relevant for semantic priming. For example, researchers may 

test how priming differs as a function of target characteristics such as word frequency (Becker, 

1979), regularity (Cortese, Simpson, & Woolsey, 1997), or imageability (Cortese, et al., 1997). 

Alternatively, researchers may examine priming as a function of prime-target relatedness using 

measures such as forward associative strength (FAS), backward association strength (BAS; 

Hutchison, 2002; Shelton & Martin, 1992; Thomson-Schill et al., 1998), semantic feature 

overlap (McRae & Boisvert, 1998; Moss, Ostrin, Tyler, & Marslen-Wilson, 1995), type of 

semantic relation (Hodgson, 1991), global co-occurrence (Jones, Kintsch, & Mewhort, 2006; 

Lund, Burgess, & Atchley, 1995), or relational similarity (Estes & Jones, 2006).  

Such factorial designs, while important, can distort the relative importance of the variable 

of interest in accounting for semantic priming. Primes and targets from different item sets often 
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are not matched on potentially important variables. For instance, studies examining priming for 

categorically related (e.g., horse-donkey) vs. associatively related (e.g., thirsty-water) pairs often 

confound type of relation with target frequency such that associatively related targets are often 

higher in frequency (Bueno & Frenk-Mastre, 2008; Ferrand & New, 2003; Williams, 1996). 

Since low frequency words typically show larger priming effects (Becker, 1979), this can 

artificially inflate the importance of categorical, relative to associative, relations (see Hutchison, 

2003).  

In addition to matching problems, list context effects also plague factorial semantic 

priming studies. McKoon and Ratcliff (1995) showed that priming of a particular type of 

semantic relation (e.g., synonyms or antonyms) is modulated by the proportion of similar types 

of relations within a list, even when the overall proportion of related items in the list (i.e., the 

relatedness proportion) is held constant (also see Becker, 1980). Therefore, including many such 

items within a list likely inflates priming for that particular type of relation (e.g., category 

members, script-relations, antonyms, etc…). Supporting this argument, Hutchison (2003) 

observed that priming from perceptually-similar items (e.g., coin-pizza) only occurs when such 

items constitute a majority of the list. In addition to relation types, the salience of specific item 

characteristics (e.g., word frequency, regularity, imageability, etc.) is also increased when 

participants are presented with extreme values on variables in factorial studies.  

Finally, as noted earlier, the methodological problems inherent in categorizing continuous 

variables also apply to semantic priming. Selecting items high or low on a particular dimension 

can reduce the power to detect true relationships between variables and can even produce 

spurious effects that do not truly exist when the entire sample is considered (Cohen, Cohen, 

West, & Aiken, 2003). Most importantly, the use of extreme scores fails to capture the 
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importance of the variable across its full range. If a variable is really an important factor in 

priming, it should capture the magnitude of priming, not just its presence or absence (McRae, De 

Sa, & Seidenberg, 1997). 

In addition to comparing priming effects across different types of relations and items, 

researchers have also compared priming effects across different groups of participants including 

young vs. older adults (Balota & Duchek, 1988; Laver & Burke, 1993), high vs. low perceptual 

ability (Plaut & Booth, 2000), reading ability (Betjemann & Keenan, 2008), vocabulary (Devitto 

& Burgess, 2004; Yap, Tse, & Balota, 2009) and working memory capacity (Hutchison, 2007; 

Kiefer, Ahlegian, & Spitzer, 2007).
1 

As with items, subjects from different populations likely 

differ in many ways other than the variable of interest and it is impossible to match on 

everything. One particularly critical difference is often baseline RT. If RTs are not first 

standardized within participants, priming effects from the slower group will be artificially 

inflated, often creating a significant group × priming interaction (Faust, Balota, Spieler, & 

Ferraro, 1999). This methodological flaw can then leave theorists attempting to explain such 

hyper-priming among their clinical population. In addition, selecting extreme groups on a 

dimension (e.g., high vs. low reading ability) can over- or underestimate the importance of that 

dimension in priming among the general population. 

Hutchison, Balota, Cortese, and Watson (2008)   

In an early attempt to highlight. and partially circumvent, such item selection problems, 

Hutchison et al., (2008) examined priming for 300 strong forward associate pairs (e.g., cat-dog) 

among 108 younger and 95 older adults. Priming effects were measured across both lexical 

decision and pronunciation tasks using both short (200 ms) and long (1200 ms) stimulus onset 

asynchrony (SOA) conditions. Because the items were initially selected based upon FAS, this 
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variable was somewhat restricted in range (99% between .50-.94). However, there was 

considerable variability in the other prime-target relation variables examined (global co-

occurrence, backward associative strength) and in both prime and target lexical characteristics 

(frequency, length, orthographic neighborhood). In addition to these variables, baseline RTs for 

target words were obtained through the use of a neutral prime condition (i.e., the prime BLANK) 

and RTs for the prime words that were available from the ELP website (another example of the 

use of such megastudy databases).  

RTs were first standardized across participants to control for individual differences in 

baseline RT and variability. Then z-scores for items (averaged across the z-scores calculated 

within each participant) were obtained in related and unrelated conditions. Multiple regression 

analyses were then used to predict standardized priming for each item based upon characteristics 

of the primes and targets (length, log printed word frequency, orthographic neighborhood, 

baseline RT) as well as the prime-target relatedness variables FAS, BAS, and Latent Semantic 

Analysis (LSA; Landauer, & Dumais, 1997). Across tasks, priming effects were well predicted 

by the prime characteristics, target characteristics, and prime-target relatedness measures.    

There were a number of findings relevant to the present discussion. First, collapsing 

across tasks, priming at the 200 ms SOA was greater following related primes that were short, 

high in frequency, and had few orthographic neighbors. Thus, under such time constraints, 

priming likely depends upon one’s ability to quickly identify the prime word. Second, priming 

effects were greater for targets that had long baseline RTs, especially within the LDT. These two 

findings are problematic for any previous or future priming study that uses different prime and/or 

target words across item sets. In some cases, both primes and targets differ across item sets (e.g., 

categorical vs. associatively related items) whereas in other cases a researcher will contrast 
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priming for the same target (e.g., anger) preceded by one of two different related primes (e.g., a 

synonym rage vs. an antonym happy). In either case, differential priming effects may be 

determined entirely by the lexical characteristics of the different items themselves, rather than to 

any type of prime-target relation per se.  

In addition, when collapsed across SOA, FAS predicted RT and error priming in both 

tasks whereas BAS predicted priming only in the LDT. This pattern is consistent with Neely’s 

(1991) 3-process model of semantic priming in which a backwards semantic-matching 

mechanism contributes to priming in the LDT, but not in pronunciation. This model 

appropriately predicts that backward relations (from the target to the prime) should increase 

priming for LDT only. 

Finally, LSA similarity did not predict priming in any of the four task x SOA conditions. 

This finding is problematic for global co-occurrence as a major factor in producing semantic 

priming. Even though LSA was able to predict that priming would occur in this study (i.e., 

related items had higher LSA values than unrelated items), it could not predict differences in the 

degree of semantic priming among related items. In summary, this preliminary regression study 

of semantic priming has important methodological and theoretical implications for the study of 

semantic priming and semantic memory.  

The Semantic Priming Project (SPP) 

The SPP (Hutchison et al., 2011) is an attempt to greatly extend the methodology of 

Hutchison et al. (2008) to a broader range of items and subjects. Like its predecessor, the ELP, 

the SPP is a National Science Foundation funded collaborative effort among four universities 

(Montana State University; University of Albany, SUNY; University of Nebraska, Omaha; and 

Washington University in St. Louis) to investigate a wide range of both item and individual 
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differences in semantic priming. The resulting database (see http://spp.montana.edu) will 

hopefully aid researchers throughout the world to advance theories and computational models of 

the processes that allow humans to use context during word recognition.  

SPP priming task. A total of 768 native English speaking healthy young adults with 

normal or corrected-to-normal vision were recruited for the semantic priming task: 256 in 

speeded pronunciation and 512 in lexical decision. Each participant responded to 1,661 target 

words preceded by either a related or unrelated prime. Related pairs were selected from the 

Nelson et al. (1999) association norms with the constraint that no item occurred more than twice 

in the study (once as a prime and once as a target, presented on different days). For each target, a 

first associate prime (for which the target is the first associate given) and a randomly selected 

other associate prime (i.e., the target is not the first associate given) were chosen. Unrelated trials 

were created by randomly re-pairing items within the first and other sets of related pairs. 

Experimental trials were separated into two sessions with two blocks of trials within each session 

(a 200 ms SOA block and a 1200 ms SOA block, counterbalanced).  

SPP item measures. For item-specific characteristics, the SPP includes the measures 

(length, frequency, orthographic neighborhood, ELP RT and error rate) used by Hutchison et al. 

(2008). In addition to these measures, the SPP includes measures of concreteness, imageability, 

bigram frequency, phonological onset, part-of-speech, and polysemy. For prime-target relational 

characteristics, the SPP will also include associative measures such as FAS, BAS, associative 

rank order, semantic measures such semantic feature overlap, connectivity, and type of semantic 

relation (e.g., synonym, antonym, category coordinate, etc…), and global co-occurence measures 

such as BEAGLE (Jones, et al., 2006) and HAL (Burgess, 1998). The inclusion of such a broad 

range of variables across the large sample of items in the priming task should greatly increase 

http://spp.montana.edu/
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our understanding of the extent to which item characteristics and types of relatedness contribute 

to semantic priming. 

SPP individual difference measures. As was done for the ELP, we have obtained 

information about each participant’s gender, age, education level, ethnic background, knowledge 

of non-English languages (e.g., fluency in a second or third language), amount of reading per 

week on a seven point scale, circadian rhythm, and self-rated health information. In addition to 

these measures, the SPP includes measures of reading comprehension, vocabulary, and 

attentional control (operation span task, Stroop task, and antisaccade task, taken from Hutchison 

2007). As noted previously, performance on each of these measures has been linked to semantic 

priming performance for various items or under various conditions.  

Targeted Audience for the Website. We anticipate this database will be an invaluable tool 

for researchers developing theories of semantic priming and models of semantic memory. Of 

primary importance is identifying variables crucial for predicting priming across the database. 

For instance, is semantic priming more accurately predicted by primary word association, 

number of overlapping features, or similarity in global co-occurrence? The answer to this 

question is central to understanding the basic structure of semantic memory. Overall 

predictability can be tested as well as possible interactions between predictor variables. For 

instance, perhaps normative association strength (or associative rank order) will produce larger 

influences on priming when feature overlap and/or global co-occurrence is low, or vice-versa. 

Perhaps these effects are further modulated by SOA, attentional control, vocabulary, or some 

combination of these.  

 This project should also serve as a tool for researchers interested in generating 

hypotheses for future factorial experiments of semantic priming and actually conducting virtual 
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experiments by accessing the database. In addition, researchers from other areas (memory, 

perception, neuroimaging, neuropsychology) will be able to use this database to select items that 

produce large, medium, or small priming effects and are equated along a number of relevant 

dimensions. Finally, researchers interested in examining populations such as children, aphasics, 

schizophrenics, Alzheimer’s patients, or healthy older adults could use patterns of priming in this 

database as a control to test predicted deviations for their population under certain conditions or 

with certain types of stimuli. 

A Megastudy of Recognition Memory 

The megastudy approach is obviously not limited to investigations of psycholinguistic 

variables in lexical decision and pronunciation performance.  This approach can be extended 

across many domains of cognition. For example, item characteristics (e.g., word frequency, 

concreteness/imageability, orthographic neighborhood size, spelling to sound regularity) have 

also been examined in factorial studies of recognition memory. However, item analyses have 

been surprisingly rare in the memory literature. Therefore, it is difficult to know if an effect is 

consistent across items and generalizes to the population of items (Clark, 1973, see special issue 

of Journal of Memory & Language for detailed discussion of these issues). This is problematic 

because models of recognition memory do indeed make predictions about particular classes of 

items, and clearly could be tested at the item level.  

Cortese, Khanna, Gregory, and Sedlacek (2009) have recently reported the first 

megastudy of episodic word recognition.
2  

The Cortese et al. study provides recognition memory 

estimates (e.g., hits, false alarms, etc.) for 3,000 monosyllabic words. This set of words was 

selected because estimates for key predictor variables such as imageability and age of acquisition 

(AoA) were readily available for the majority of these words. In two studies, participants 
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completed 30 study and test lists consisting of 50 and 100 monosyllabic words, respectively, 

across two 2-hour sessions. The main difference between studies was that in Study 1, participants 

determined the study duration for each word whereas in Study 2, each word was presented for 

2,000 ms during study. Across participants, each word was responded to as an old or new item 

about equally often. The dependent measures were hit rate, false alarm rate, hit minus false alarm 

rate, d’, and C (Snodgrass & Corwin, 1988). Each of these dependent variables was initially 

analyzed via multiple regression in which eight predictor variables (see below) were entered 

simultaneously. Of the 3,000 words used in the studies, there were 2,578 for which predictor 

variable values were available. The results across the two studies were very similar (supporting 

the stability of the data) so the data reported here have been collapsed across studies.  

The results of the Cortese et al. (2009) study are useful for the following reasons:  First, 

these data can be used to assess theories of recognition memory. For example, most theories 

(e.g., Glanzer, Adams, Imerson, & Kim, 1993) predict that items which produce a high hit rate 

should also produce a low false alarm rate and vice versa (i.e., the mirror effect which yields a 

negative correlation between hits and false alarms across items). In addition, item noise models 

(e.g., McClelland & Chappell, 1998) predict that memory will be hampered for items that are 

similar to many other items. Hypothetically, this similarity could occur at any level (e.g., 

orthography, phonology, semantics). For highly similar items, there will be more feature matches 

between the test items and memory representations, increasing the false alarm rates for these 

items. In addition, one might also hypothesize that individual features will be weakly stored in 

highly similar words, and this would produce a lower hit rate as well. We can test these 

possibilities by investigating the influence of orthographic and phonological measures as 

reflected by the recently developed Levenshtein distance metrics. Semantic similarity may be 
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captured by Age of Acquisition effects. Finally, by regressing the dependent recognition memory 

measures onto a set of targeted predictor variables, one has the advantage of capturing unique 

variance of each of the predictor variables, with other variables controlled. Previous research has 

identified a number of item characteristics that influence recognition memory, but the relative 

influence of each factor remains largely unknown. 
 

 The results from this study yielded a number of intriguing observations. Across items, the 

mean hit rate was .72 (sd = .10) and the mean false alarm rate was .20 (sd = .09). The set of 

predictor variables accounted for 45.9% of the variance in hit rates, 14.9% of the variance in 

false alarm rates, and 29.2% of the variance in hits minus false alarms. Interestingly, contrary to 

the prediction that item hit rates should be negatively related to their false alarm rates, hit rates 

were positively correlated with false alarm rates (r = .145, p < .0001). Hence, when one looks at 

the item level, as opposed to the factor level, there is not much support for the mirror effect. This 

is particularly compelling because the same items served as old and new items on the recognition 

test, and so any idiosyncratic item information that drives hits should also increase false alarms. 

 The results also indicated that traditional measures of recognition memory including hits 

minus false alarms and d’ were positively correlated with imageability, AoA, and negatively 

related with word frequency, phonological and orthographic similarity, and word length. 

Interestingly, imageability and length were the two strongest predictors. Consistent with item 

noise models, item similarity effects were observed for both phonological density and 

orthographic density measures. These findings suggest that items sharing similarities with many 

other items are less distinct (i.e., associated with more noise) and more difficult to recognize. In 

addition, there were effects of age of acquisition that may tap into semantic similarity. It is again 
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important to note that the effects of AoA were above and beyond the correlated influence of the 

related variables.  

 In sum, the results from the mega recognition memory study have yielded a number of 

intriguing findings that further our understanding of episodic recognition. Based on these results, 

it appears that the mirror effect in episodic recognition does not naturally extend to the item 

level. Moreover, there is some support for item noise models suggesting that there are strong 

similarity effects along orthographic, phonological, and semantic measures. Finally, imageability 

and word length provide unique predictive power in recognition performance above and beyond 

correlated variables of word frequency and familiarity. Clearly the megastudy approach to 

episodic recognition nicely exemplifies the utility of this approach to models of episodic 

recognition. 

Conclusions 

 The present chapter reviews evidence of the utility of the megastudy approach in 

providing further leverage in understanding cognitive performance across a number of distinct 

domains. As we have emphasized throughout this chapter, we are not suggesting that this is the 

only way to study such domains, but believe that it is indeed important to use converging 

evidence across both factorial and megastudy approaches. Hopefully, the megastudies will 

nurture the development of cumulative datasets that serve to lay the foundation of accepted 

findings and principles that appear to be common place in other scientific disciplines.  

 

 

Summary Box 
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Footnotes 

1
 Both Hutchison (2007) and Kiefer et al. (2005) actually included subjects within the full range 

of working memory capacity in their studies for their correlational analyses, but included the 

extreme-groups analyses mainly for illustrative purposes. 

2
 It should be noted however, that in an analyses of items drawn from 13 experiments, Rubin & 

Friendly, 1986, conducted regression analyses to predict free recall performance for 925 nouns. 

They found that imageability, emotionality, and the likelihood of being generated as an associate 

via free association (i.e., availability) were the best predictors of free recall. 


