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MSU Project Update (4/26/13) 

Research Statement 

Support the Computing Needs of Space Exploration & Science 

• Computation (2,000 MIPs) 

• Power Efficiency (200 MIPs/Watt) 

• Mass ($100/lb by 2025) 

• Reliability (99.99999% availability, instant recovery during critical operation)  
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Space Launch System (SLS) 
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MSU’s Approach 

Use COTS FPGAs as the Computing Fabric 

• Take advantage of process trends for computation  

and power efficiency 
 

Support Reconfigurable Computing 

• RC can increase computation through hardware optimization 

• RC can decrease power through hardware efficiency 

• RC can reduce mass through hardware reuse 

• RC enables novel fault mitigation architectures 
 

Radiation Tolerance Through Underlying Architecture 

• Extend Triple Modular Redundancy (TMR) to include spares 

• Spatial Avoidance of faults to increase foreground availability 

• Continually scrub configuration memory in background 
 

Radiation “Awareness” through an External Sensor 

• Provides potential fault awareness in unused regions (e.g., no TMR) 

• Direct scrubber location to decrease correction latency 
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Radiation Effects on Electronics 

On Earth Our Computers are Protected 

• Our magnetic field deflects the majority of the radiation 

• Our atmosphere attenuates the radiation that gets through our magnetic field 

 

Our Satellites Operate In Trapped Radiation in the Van Allen Belts 

• High flux of trapped electrons and protons 

 

In Deep Space, Nothing is Protected 

• Radiation from our sun 

• Radiation from other stars 

• Particles & electromagnetic 

 

We Care About Ionizing Radiation 

• Unwanted charge injection effects 

semiconductors 

• High energy protons, Heavy Ions 
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You Are Here 
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Radiation Effects on Electronics 

There are two broad categories of radiation effects: 
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2) Single Event Effects (SEE) 
 

   - By itself, does not cause permanent 

      damage. 

 

   - Electron/hole  pair creation leads  

     to current transients that can change 

     the state of a logic circuit. 

 

   - Permanent damage can result  from 

      secondary interactions 

      (e.g., latch-up) 

1) Total Ionizing Dose (TID) 
 

   - Long term, cumulative damage due  

     to lower energy proton and electrons 

 

   - Charge trapping results in permanent  

     damage to devices. 
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Radiation Effects on Electronics 

TID Failure Mechanisms 
 

1. Oxide Breakdown 

o Threshold shifts, 

o Gate leakage, 

o Timing changes 

o Actually gets better in modern processes 
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2. Leakage Currents 

o Hole trapping slowly “dopes” field  

oxides to become conductive 

o Dominant failure mechanism  

for commercial processes 
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Radiation Effects on Electronics 

TID Mitigation Techniques 
 

1. Radiation Hardened by Design (RHBD) 

o Special layout techniques in commercial process 

o Enclosed Transistors 

o Guard Rings 

 

2. Radiation Hardened by Process (RHBP) 

o Special materials used  (e.g., SOI) 

 

3. Shielding 

o Effective for lower energy particles 

o Diminishing returns above 0.25” (Al) 

 

MSU Approach Does Not Target TID 
• Although modern COTS parts are less susceptible to 

TID than older parts. 

• Spatial avoidance technique “could” avoid 

permanently damaged regions of IC 
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Shield Thickness 

 vs.  

Dose Rate (LEO) 
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Radiation Effects on Electronics 

SEE Fault Mechanisms 

Radiation 
FPGA Fabric 

1. Single Event Transients (SET) 
 

o  A pulse that can flip a gate 

o  Glitches in combinational logic 

 

 

 

2.  Single Event Upset (SEU) 
 

o  The glitch is captured by a 

storage device resulting in a 

state change 

 

 

3.  Single Event Functional IRQ (SEFI) 
 

o The system is put into a state that causes 

function failure that cannot be resolved 

through normal operation. 

o Requires reset, power cycling or 

reprogramming. 
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Radiation Effects on Electronics 

SEE Mitigation Techniques 
 

1. Architecture: Triple Module Redundancy 

o Triplicate each circuit 

o Use a majority voter to produces output 

 

 

2. Background Checking: Scrubbing 

o Compare contents of a memory device to a 

“Golden Copy” 

o Golden Copy is contained in a radiation immune 

technology  

(fuse-based memory, MROM, etc…) 

 

 

Note:  TMR+Scrubbing is the recommended 

mitigation approach for FPGA-based 

aerospace computers 
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MSU Approach 
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Our Approach 

Use COTS FPGAs  
 

1. Increased Computation by Tracking Commercial Processes 

2. Increased Power Efficiency by Tracking Commercial Processes 

3. SRAM-based FPGAs support Reconfigurable Computing 
 

However, FPGA’s are Uniquely Susceptible 
 

1. Single Event Effects 

o SETs/SEUs in the logic blocks 

o SETs in the routing 

 

o SEUs in the configuration memory for the logic blocks (SEFI) 

o SEUs in the configuration memory for the routing (SEFI) 
 

 

A Comprehensive, Radiation Tolerant Architecture 

Is Needed… 
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Radiation Strikes  

in the  

Circuit Fabric 

(Logic + Routing) 

Radiation Strikes  

in the  

Configuration Memory 

(Logic + Routing) 
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Our Approach 

Fault Tolerance Through Abundant Spares 
 

1. TMR + Spares 

• 3 Tiles run in TMR with the rest reserved as spares 

 

2. Spatial Avoidance and Background Repair 

• If TMR detects a fault, the damaged tile is replaced 

with a spare and foreground operation continues 

• The tile is “repaired” in the background via PR 

 

3. Scrubbing 

• Blind scrubbing continually runs through tiles (fast) 

• Readback scrubbing periodically runs through rest 

of fabric (slower) 

 

4. External Radiation Sensor 

• An external spatial radiation sensor provides 

awareness of potential strike 

12 

16 MicroBlaze Processors on Virtex-6 

Precedent: Shuttle Flight Computer 

(TMR + Spare) 
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Our Approach 

Why do it this way? 
 

With Spares, it basically becomes a flow-problem: 

o If the repair rate is faster than the incoming fault rate, you’re safe. 

o If the repair rate is slightly slower than the incoming fault rate,  

spares give you additional time. 

o The additional time can accommodate varying flux rates. 

o Abundant resources on an FPGA enable dynamic scaling of the  

number of spares.  (e.g., build a bigger tub in real time) 
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Our Approach 

Practical Reason’s for Doing It this Way 

 

• Bringing up a spare tile is faster than PR (us vs. ms).  This means foreground availability 

can be increased if repair (e.g., PR of damaged tile) is conducted in the background.. 
 

• Performing PR of the entire tile is much simpler than trying to track at a finer granularity 

(e.g., a specific CLB).  Partial bit streams generated by the tool contain all the necessary 

information about a tile configuration. 
 

• PR of a tile also takes care of both SEUs in the circuit fabric & configuration SRAM so the 

system doesn’t care which one occurred. 

 

• The “spares” are held in reset to reduce power.   

This is as opposed to running in N-MR  

with every tile voting.  

 

• The sensor is faster at detecting faults that aren’t  

detected by active circuitry (e.g., a spare not in TMR)  

and the scrubber can be intelligently directed. 
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Our Approach 

Modeling: Is this an improvement to TMR+Srubbing? 
 

• We use a Markov Model to predict Mean-Time-Before-Failure 

o 16 tile MicroBlaze system on Virtex-6 (3+13) 

o  is fault rate 

o μ is repair rate 
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Our Approach 

Modeling: Fault & Repair Rates 
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Fault Rate () 
 

- Derived from CREME96 tool for 4 different orbits 

- Used LET fault data from V4 

Repair Rate (μ) 
 

- Measured empirically in lab on V6 system 
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Our Approach 

Modeling Our Approach: Results 
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Baseline System (TMR+scrubbing) Our System (TMR+scrubbing+spares) 

Improvement 

Ok, it looks 

promising… 
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Our Approach (2007-2010) 

Let’s Build and Test… 

• Initial computer architecture tested on 

Xilinx Virtex-5 evaluation board 

(2007-2010). 

 

• Initial sensor was fabricated as a 1-

sided fabrication sequence, 

implemented on a breadboard. 

 

• Funded through a variety of senior 

design projects from NASA and 

research start-up funds from Montana 

Space Grant. 

 

• Bench top testing 
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Clint Gauer (MSEE, 20010) giving demo at MSFC in 2010 

“3+13 pBlaze Many Core w PR” 

 
“3+61 pBlaze Many Core” “Spatial Radiation Sensor” 
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Our Approach (2007-2010) 

Let’s Build and Test… 
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Clint Gauer (MSU) giving Andrew Keys 

(NASA) Dynamic Recovery IO System 

Demonstration 

Brock LaMeres (MSU) giving Mike Watson 

(NASA) the Spatial Radiation Sensor Demo 
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Our Approach (2011) 

Build and Test Cont… 

• Funding from NASA EPSCoR allows 

increasing TRL. 

 

EPSCoR Project Objectives 

o Increase many-tile system to TRL-5 

o Fabricate spatial radiation sensor 

o Integrated Sensor with many-tile system 

o Test full system in cyclotron 

 

• Functional testing still on bench top. 
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Todd Buerkle (MSEE, 2011) and Jenny Hane (MSEE, 2011) 

giving demonstrations at MSFC (2011) 

“Many-Tile Integrated with Custom Sensor” 
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Our Approach (2011) 

Build and Test Cont… 

• Funding from NASA Education Office allows 

local balloon flights of system. 

 

• Tests allow more sophisticated payload 

form-factor to be pursued. 
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Balloon Flight in Montana, summer of 2011. 
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Our Approach (2012) 

Build and Test Cont… 

• Cyclotron testing of sensor commences. 

 

• Accepted into & completed NASA/LSU 

HASP Balloon program (130,000 ft for 10 

hours) 

 

• Grad students sent to “Rock-On” program to 

learn how to develop sounding rocket 

payloads.  

 

• Final Payload Form Factor Pursued (e.g., 

cube-sat. 

 

 

 

 

 

22 

HASP Flight,  

Sept 2012 

Rock-On Workshop, 

June 2012 

Payload Form Factor 

Ray Justin 

MSU 

Payload 
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Our Approach (2012) 

Build and Test Cont… 

• Funded by OCT-Game Changing Technology Program for sub-orbital flight 

demonstration (2013-2014…) 
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2012 News Article, 

Bozeman 

Chronicle 
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Our Approach (2013) 

Build and Test Cont… 

• Full Cube Fabrication Complete 

o Virtex-6, 9 processor many-tile system. 

o Relocation & Repair 

o Background scrubbing (blind & readback) 

o Support for 2 stacked sensors 

o Powered by single voltage (battery or provided) 

Many-Tile 

• Full System Test at Cyclotron 
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Full Custom Computer 

System Completed 

Texas A&M Cyclotron Testing 

Justin Hogan Assembling 

Translation Stage 

Ray Weber 

Assembling Stack 
MSU Stack in Beam Stack Ready  

For Beam 
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Our Approach (2013) 

Upcoming Testing…. 
 

• Local Balloon Flights summer of 2013 

 

• Will Fly on HASP again in September 2013 

 

• Sounding Rocket Flight Late 2013 or early 2014 
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Our Approach (2014+) 

What Research Has Been Uncovered? 
 

• Faults in Routing – On-chip network could help 

 

• Multiple Bit Upsets – Solutions for Single-Point of Failure 

 

• New Applications of the Sensor  

• Thin, pixilated sensors to identify location AND species 

• Flexible sensing fabric for more accurate detection of ionizing radiation. 

• Dual sensor + solar cell technology 

 

Where we want to go…. 
 

• More test data, more flights, cube-sat… 
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Demo 
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