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1
MALWARE-RESISTANT OBFUSCATED
COMPUTER HARDWARE FOR
RECONFIGURABLE HARDWARE DEVICES
AND METHODS THEREOF

GOVERNMENT SUPPORT

This invention was made with Government support under
Contract No. H9240522P0011 awarded by the United States
Special Operations Command (USSOCOM). The Govern-
ment has certain rights in the invention.

FIELD

The present disclosure relates generally to computer sys-
tems having enhanced cybersecurity.

BACKGROUND

Advances in integrated circuit fabrication techniques have
allowed computer systems to be deployed in a wide variety
of situations, including during active military combat opera-
tions. For example, the modern special operations forces
(SOF) warfighter increasingly relies on wirelessly connected
computer systems to maintain an advantage over their
adversaries. Interconnected networks of computer systems
may be used in every aspect of a mission including in
command centers, in space, in ground and flight vehicles,
and on the warfighter’s person.

While these systems have greatly increased mission capa-
bility, they simultaneously present an opening for adversar-
ies to exploit SOF assets through cyberattacks. Of specific
concern are attacks that occur in computers that operate at
the “edge”, or the point of execution. Edge computers are
different from those deployed in command centers that
typically run sophisticated operating systems and virus scan
programs. Edge computers are characterized by the traits
that they must perform specific tasks quickly and without
disruption. Edge computers typically do not run traditional
operating systems, nor do they have the time to run lengthy
virus scan procedures. As a result, if an attacker is able to
insert malicious software (i.e., malware) into an edge com-
puter, it is rarely detected until the system fails. With edge
computers becoming increasingly connected via wireless
networking, adversaries have an opening to inject malware
without a physical connection. There is a continuing need to
improve the cybersecurity capabilities of computer systems,
including “edge” computer systems deployed in military or
other highly-sensitive environments.

SUMMARY

According to an embodiment of the present disclosure, a
computer device includes a computing engine having a
plurality of processor cores configured to simultaneously
execute identical sets of processor-executable instructions,
where each of the processor cores includes different instruc-
tion code assignments, a malware monitoring and remedia-
tion component that detects presence of malware when
instruction register values from a predetermined number of
processor cores are identical during an instruction cycle, and
a trusted execution environment (TEE) processor configured
to receive program code, generate multiple copies of the
program code for execution by the plurality of processor
cores, obfuscate the instruction codes in each copy of the
program code, load the obfuscated instruction codes into
instruction memories of the plurality of processing cores,
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2

and update instruction decoder tables within each of the
plurality of processing cores to enable the processing cores
to interpret the obfuscated instruction codes.

According to another embodiment of the present disclo-
sure, a method of operating a computer system includes
receiving a first version of machine-readable code, replicat-
ing and modifying the first version of the machine-readable
code to provide multiple functionally-equivalent instances
of the machine-readable code having different instruction
code assignments, loading the multiple functionally-equiva-
lent instances of machine-readable code into a plurality of
redundant processing cores, where portions of the code are
obfuscated such that instruction code assignments for each
of the redundant processing cores are different, executing the
code using the redundant processing cores, monitoring
instruction registers of each of the redundant processing
cores while the processing cores execute the code, and
detecting the presence of malware when the instruction
registers for multiple processing cores have the same value.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a system block diagram schematically illustrat-
ing a computer device according to various embodiments of
the present disclosure.

FIG. 2 is block diagram schematically illustrating a sys-
tem for providing enhanced cybersecurity according to
various embodiments of the present disclosure.

FIG. 3 is a system block diagram illustrating a processing
component including redundant processor cores in a com-
puter device according to various embodiments of the pres-
ent disclosure.

FIG. 4 is a flow diagram that illustrates a method of
detecting malware on a computer device according to vari-
ous embodiments of the present disclosure

FIG. 5 is a block diagram schematically illustrating a tool
chain for a proof-of-concept computer system according to
various embodiments of the present disclosure.

FIG. 6 is an illustration showing examples of the assem-
bly language output of the RISC-V compilation for a C
source code input according to various embodiments of the
present disclosure.

FIG. 7 is a screenshot showing results of a logic simula-
tion that was performed which illustrates how the obfuscated
instruction codes appear during normal operation according
to various embodiments of the present disclosure.

FIG. 8 is an illustration showing image processing rou-
tines and workstation test results according to various
embodiments of the present disclosure.

FIG. 9 is a photograph illustrating a testbed for real-time
camera image processing using a proof-of-concept computer
system along with the output results for both raw image and
edge detection modes according to various embodiments of
the present disclosure.

FIG. 10 is a plot that illustrates the incidences of common
vulnerabilities and exposures (CVE) over time.

FIG. 11 is a screenshot of a logic analyzer measurement
showing test data of a proof-of-concept computer system
operating under an attack according to various embodiments
of the present disclosure.

DETAILED DESCRIPTION

The various embodiments will be described in detail with
reference to the accompanying drawings. Wherever pos-
sible, the same reference numbers will be used throughout
the drawings to refer to the same or like parts. References
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made to particular examples and implementations are for
illustrative purposes, and are not intended to limit the scope
of the invention or the claims.

The present invention can “comprise” (open ended) or
“consist essentially of” the components of the present inven-
tion as well as other ingredients or elements described
herein. As used herein, “comprising” means the elements
recited, or their equivalent in structure or function, plus any
other element or elements which are not recited. The terms
“having” and “including” are also to be construed as open
ended unless the context suggests otherwise. As used herein,
“consisting essentially of” means that the invention may
include ingredients in addition to those recited in the
description and/or claim, but only if the additional ingredi-
ents do not materially alter the basic and novel characteris-
tics of the claimed invention.

Any and all ranges recited herein include the endpoints,
including those that recite a range “between” two values.
Terms such as “about,” “generally,” “substantially,”
“approximately” and the like are to be construed as modi-
fying a term or value such that it is not an absolute, but does
not read on the prior art. Such terms will be defined by the
circumstances and the terms that they modify as those terms
are understood by those of skill in the art. This includes, at
very least, the degree of expected experimental error, tech-
nique error and instrument error for a given technique used
to measure a value. Unless otherwise indicated, as used
herein, “a” and “an” include the plural, such that, e.g., “a
medium” can mean at least one medium, as well as a
plurality of mediums, i.e., more than one medium.

Where used herein, the term “and/or” when used in a list
of two or more items means that any one of the listed
characteristics can be present, or any combination of two or
more of the listed characteristics can be present. For
example, if a composition of the instant invention is
described as containing characteristics A, B, and/or C, the
composition can contain A feature alone; B alone; C alone;
A and B in combination; A and C in combination; B and C
in combination; or A, B, and C in combination.

As discussed above, various improvements are needed in
the cybersecurity capabilities of computer systems, includ-
ing in so-called “edge” computer systems that are deployed
and used at the point-of-execution in military and other
critical operations. Such edge computer systems present a
unique challenge in that the computer systems should ideally
be able to detect and defeat malware attacks instantaneously
while being deployed but are often without the benefit of
existing malware countermeasures that are used in command
centers and other fixed locations. However, if an attack
mitigation strategy can be successfully deployed in edge
computer systems, this may present a unique opportunity for
these devices to simultaneously serve as attack monitors at
the front line. Since attacks on deployed edge computers will
most likely come in the form of electromagnetic energy
(EM) (e.g., WiFi, Bluetooth, LTE, 5G), then the wireless
peripherals of the edge computer can be used to monitor the
amount of EM energy in an area along with whether it has
malicious intent (vs. normal network traffic). As a result,
advancing technologies that can enable edge computers to
detect and mitigate malware will have a twofold benefit in
that the computers can be trusted not to fail during critical
operation in addition to providing a characterization of the
EM energy at the front line.

Various embodiments include computer systems, includ-
ing edge computer systems and methods thereof, that pro-
vide enhanced cybersecurity. Various embodiments may
utilize hardware obfuscation to detect and defeat malware
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attacks. By obscuring the computing hardware, attackers
may be prevented from writing effective malware because
the target instruction codes being used by the computer
system may remain unknown. Only trusted software com-
piled through a valid and trusted obfuscation tool chain will
be able to be executed by the computer system. In various
embodiments, the hardware of the computer system may
include a plurality of functionally equivalent, redundant
processing cores. The processing cores may be implemented
on a programmable processing device, such as a Field
Programmable Gate Array (FPGA). By using a modern
programmable logic device such as an FPGA, the obfusca-
tion can be implemented in the program executable binaries
and the instruction decoder hardware in the CPUs simulta-
neously.

Various embodiments may also include a set of program-
ming tools (i.e., a “tool chain™) that may be configured to
take standard software programs and compile them for a
known computer architecture. The executable binaries may
be encrypted and downloaded to one or more end-user
computer systems, which may include one or more above-
described edge computer systems. A trusted executable
environment (TEE) processor within each computer system
may decrypt the binaries and verify that they came from a
secure source. Once verified, the TEE processor obfuscates
the instructions, transfers the new binaries into the instruc-
tion memories of the redundant processors on the program-
mable processing device (e.g., FPGA), and updates the
instruction decoders in each redundant CPU accordingly.
The result is a set of functionally identical, obscured pro-
cessing cores running obscured software binaries. If an
attacker is able to insert a malicious program into the
computing device through its standard peripherals, a voting
component on the computing device may be configured to
flag the binaries of the malicious program as “unrecogniz-
able,” which may initiate a mitigation procedure. Since the
malware detection is performed in hardware, detection of the
malicious program may occur instantaneously or near-in-
stantaneously (e.g., within 2 clock cycles). Since the original
binaries still reside within the isolated TEE processor, the
redundant processors of the computer system can either be
fully or partially reinitialized to remove the malware and
continue normal operation of the computing device.

In various embodiments, the ability of the computer
system to rapidly detect and operate through a malware
attack provides a unique secondary opportunity to charac-
terize the EM environment of the front-line. An embodiment
computer system may be outfitted with wireless peripherals
such as WiFi, Bluetooth, LTE, etc. in addition to other
custom EM sensors. These wireless ports may enable the
computer system to monitor the level of EM radiation in the
field while simultaneously checking if the network traffic
contains malicious intent such as malware. By monitoring
the levels of EM activity and the presence of malware, the
computer system according to various embodiments may
provide a characterization of the EM profile in the field as an
early indication of a rise in malicious malware attacks,
which may be, for example, a sign of a potential military
escalation.

FIG. 1 is a system block diagram schematically illustrat-
ing a computer device 100 according to various embodi-
ments of the present disclosure. The computer device 100
may include a computing engine 101 including at least one
processing device and associated memory. In various
embodiments described in further detail below, the at least
one processing device may include a trusted executable
environment (TEE) processor and a processing component
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including plurality of redundant processor cores (e.g., 2 or
more redundant processor cores, such as 3 redundant pro-
cessor cores, four redundant processor cores, or more than
four redundant processor cores). In various embodiments,
the TEE processor and/or the processing component includ-
ing redundant processor cores may be implemented using
one or more programmable processor devices, such as one
or more field programmable gate arrays (FPGAs). However,
it will be understood that other suitable processing devices
may be used to implement the TEE processor and/or the
processing component including redundant processor cores.

In some embodiments, the computing engine 101 may
have a processing speed of at least 48 million instructions
per second (MIPS). The computing engine 101 may also
include at least 8 kilobytes of instruction memory and at
least 4 kilobytes of data memory. The computing engine 101
may include at least 64 parallel input/output (/O) ports. The
computing engine 101 may also support serial communica-
tion, such as at least two Universal Asynchronous Receiver-
Transmitter (UART) connections, at least two Serial Periph-
eral Interface (SPI) connections, and/or at least two Inter-
Integrated Circuit (12C) connections. The computing engine
101 may also provide support for at least one wired con-
nection to the computer device 100. However, it will be
understood that various embodiments may be implemented
using a wide variety of computer architectures having dif-
ferent processing speeds, memory capacities, and I/O capa-
bilities. For example, computing engines 101 having rela-
tively low processing speeds may be advantageous for
low-power applications.

The computer device 100 may also include at least one
user input component 101 operatively coupled to the com-
puting engine 101. The user input component 103 may
include, for example, a keypad device, a touchscreen device,
a mouse, a trackball, a touch pad, a microphone, or the like.

The computer device 100 may also include an EM shield
component 105 operatively coupled to the computing engine
101. The EM shield component 105 may include one or
more electromagnetic (EM) radiation sensors configured to
detect EM signals in the vicinity of the computer device 100.
In some embodiments, the EM shield component 105 may
support wireless connectivity of the computer device 100
using one or more wireless communication interfaces. Pro-
viding wireless connectivity capabilities in the computer
device 100 may provide a number of advantages. A first
advantage is that this may enable a deployed edge computer
device 100 to be linked with other similar devices as well as
to command center(s). A second advantage of having wire-
less connectivity capabilities is that it may provide a
straightforward way for the computer device 100 to monitor
the existing EM environment. This may be useful, for
example, for packet sniffing of traditional internet traffic to
watch for malicious intent or general increased activity.

In various embodiments, the EM shield component 105
may include wireless transceiver circuitry that may support
one or more wireless communication protocols. For
example, the EM shield component 105 may support wire-
less communication using an IEEE 802.11 standard interface
(e.g., WiFi™) and/or a Bluethooth® interface. Other wire-
less communications interfaces may also be utilized by the
EM shield component 105, such as UHF/VHF, LTE, and 5G,
as well as other specialized wireless communications pro-
tocols, including classified EM radio technologies.

In some embodiments, the various wireless communica-
tion interfaces may be implemented as daughter cards that
may be controlled via the serial/parallel /O ports of the
computing engine 101 (i.e., they do not need to be embedded
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6

with the hardware description language (HDL) of the com-
puting engine 101). In some embodiments, the EM shield
component 105 may be a unitary component that may be
plugged into a computer board of the computer device 100.
Thus, the underlying architecture of the computing engine
101 may not be modified, and communication with the EM
shield component 105 may be through the existing periph-
eral ports (e.g., parallel I/O, UART, SPIL, 12C, etc.). This
approach may enable the EM shield component to contain a
variety of standard and/or non-standard radio technologies,
potentially including future-developed technologies. Using
a variety of radio bands and EM transceivers enables the
computing device 100 to serve as an EM probe with the
added feature that it is malware resistant. This application
may give the computing device 101 a dual-purpose for an
SOCOM warfighter.

In some embodiments, the computer device 100 may also
include a camera 107 and a display 109 operatively coupled
to the computing engine 101. Thus, in various embodiments
the computer device 100 may include a camera-to-display
system in which images captured by the camera 107 may be
processed by the computing engine 101 and displayed in
real-time on the display 109. In one non-limiting embodi-
ment, both the camera 107 and the display 109 may have a
resolution of at least 640x480. The camera 107 may have an
image offload rate of at least 15 MHz and the display 109
may have a refresh rate of at least 15 MHz. In some
embodiments, the computer device 100 may support at least
two modes of image acquisition, processing, and display,
including a raw image mode with pattern overlay, and an
edge detection mode. In raw image mode, the computing
engine 101 may be configured to overlay basic patterns (e.g.,
circles, arcs, squares, etc.) on the image to highlight areas of
interest, such as regions of EM traffic or other regions of
interest identified using a pattern recognition algorithm. The
edge detection mode of the computer device 101 may
include 1D and/or 2D edge detection. In 2D edge detection
mode, the computing engine 101 may be configured to
perform a Gaussian blur pre-processing algorithm on the
image data before performing a 3x3 pixel edge detection
process. In some embodiments, both the camera 107 and the
display 109 may be commercial off-the-shelf (COTS) com-
ponents.

The various components of the computer device 100
shown in FIG. 1, such as the computing engine 101, the
input device 103, the EM shield component 105, the camera
107, and the display 109, may be located on and/or within
a suitable enclosure 110. The computer device 100 may have
a suitable form factor for use, for example, as a handheld
device, as a body-worn system, in an arial platform, and/or
for use in satellites or other spacecrafts.

FIG. 2 is block diagram schematically illustrating a sys-
tem 200 for providing enhanced cybersecurity according to
various embodiments of the present disclosure. The system
200 of FIG. 2 includes one or more external entities/
components 202 that may be configured to perform a set of
programming operations to provide secure executable soft-
ware code for execution on one or more computer devices
100, such as a computer device 100 described above with
reference to FIG. 1. The various programming operations
performed externally to the computer device(s) 100 may be
collectively referred to as a “software development tool
chain” 201. The software development tool chain 201 may
include an initial software development process as schemati-
cally indicated by block 203 in FIG. 2. Software program(s)
may be developed specifically for use by the computer
device(s) 100, and/or may be existing commercial and/or
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open-source programs developed by independent third par-
ties. The output of the software development process may be
one or more source files 205, which may be written in
suitable programming language(s) (e.g., C, assembly lan-
guage, etc.).

Referring again to FIG. 2, the source file(s) 205 may be
subjected to a compilation and linking process, as schemati-
cally indicated by block 207. The compilation process may
include converting the source code in the source file(s) 205
into a machine-readable object file(s). The linking process
may include combining multiple object files to provide a
single executable file. The output from the compilation and
linking processes may include one or more binary files 209
that may include executable code. An encryption process
may then be performed as indicated in block 211 of FIG. 2.
The encryption process may use a suitable encryption algo-
rithm to encrypt the one or more binary files to provide
encrypted binary file(s) that may not be readable or execut-
able without first decrypting the file(s) using the appropriate
cryptographic key.

The encrypted binary file(s) may then be provided to the
computer device 100 as schematically indicated by arrow
213 in FIG. 2. In some embodiments, the encrypted binary
file(s) may be transmitted from a central server or other
repository to the computer device 100 via a wired or wireless
link. In some embodiments, the encrypted binary file(s) may
be downloaded to a particular computer device 100 in
response to a request from the computer device 100. Alter-
natively, the encrypted binary file(s) may be “pushed” from
a central server to one or more computer devices 100.

Referring again to FIG. 2, the encrypted binary file(s)
received by the computer device 100 may be processed by
a trusted executable environment (TEE) processor 111 of the
computer device 100. As discussed above, the TEE proces-
sor 111 may form a part of the computing engine 101 of the
computer device 100. However, the TEE processor 111 may
operate separately from the processing component 120 of
the computing engine 101 that includes multiple redundant
processing cores 121a-121d. In some embodiments, the TEE
processor 111 and the processing component 120 including
redundant processing cores 121a-121d may be implemented
using the same processing hardware (e.g., on a single
FPGA). Alternatively, the TEE processor 111 and the pro-
cessing component 120 may implemented using different
processing hardware components (e.g., on separate FPGAs
or other chips).

The TEE processor 111 may be configured to perform a
number of processes, including performing a decryption and
verification of the received executable binaries (block 113),
storing the original binaries in memory (block 115), per-
forming an obfuscation of the instruction codes of the
executable binaries (block 117), and loading the obfuscated
instruction codes into the instruction memories of the redun-
dant processing cores 121a-121d of the processing compo-
nent 120 (block 119).

In block 113, the TEE processor 111 may utilize a
decryption algorithm and the appropriate cryptographic key
to decrypt the encrypted binaries and recover the original
executable code. The TEE processor 111 may also perform
a verification process, such as using a keying system, to
confirm that the received file(s) are from a trusted source.

In block 115, the TEE processor 111 may then store the
original program executable file(s) in an internal non-vola-
tile memory. In various embodiments, a single copy (i.e., a
“golden copy”) of the original program may be maintained
in memory. This may enable the computer device 100 to
quickly recover from a successful malware infiltration by
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fully restoring the instruction memories of the redundant
processing cores 121a-121d of the processing component
120 without requiring another download of the full program
from a central server.

In block 117, the TEE processor 111 may be configured to
replicate and obfuscate the instruction codes of the original
program. In one non-limiting embodiment, the TEE proces-
sor 111 may use a random number generator algorithm to
create a set of obfuscated instruction codes known only to
the TEE processor. The random number generator algorithm
implemented by the TEE processor may also allow the
obfuscated cores to be changed each time a malware attack
is detected to further increase the intrusion tolerance of the
computing device 100.

In block 119, the TEE processor 111 may load the
obfuscated instruction codes into the instruction memories
of the redundant processing cores 121a-121d of the process-
ing component 120. The TEE processor 111 may also update
the instruction decoder tables within each of the processing
cores 121a-121d so that they can interpret the new instruc-
tion codes. The redundant processing cores 121a-121d may
then execute the program with the obfuscated instruction
codes. The processing component 120 may further include a
malware monitoring and remediation component 170 as
described in further detail below.

The use of a TEE processor 111 as shown in FIG. 2 within
the computer device 100 may provide increased efficiency
since only a single copy of the original program may be
stored on the computer device 100, which may enable fast
recovery of the CPU with relatively minimal memory
requirements. Providing the TEE processor 111 with the
capability to verify the source program may also help to
eliminate an attack vector through a download port. How-
ever, it will be understood that in other embodiments, a TEE
processor 111 as shown in FIG. 2 may not be utilized. For
example, in some embodiments the step of obfuscating the
instruction codes (i.e., block 117 in FIG. 2) may be per-
formed upstream of the computer device 100, such as within
the software development tool chain 201. The obfuscated
instruction codes may be downloaded to the computer
device 100 and loaded into the respective processing cores
121a-121d. However, in such embodiments, redundant cop-
ies of each of the obfuscated instruction codes may need to
be stored in memory on the computer device 100 in order to
enable recovery in case of malware intrusion or other
failures, which may require additional memory capabilities
for the device 100.

FIG. 2 also schematically illustrates the above-described
EM shield component 105 of the computer device 100. As
discussed above, the EM shield component 105 may include
a plurality of wireless communication interfaces, such as a
WiFi™ interface 151, a Bluethooth® interface 153, a UHF/
VHEF interface 155, a 4G/5G interface 157, and/or a future
EM radio technology interface 159.

FIG. 3 is a system block diagram that further illustrates
the processing component 120 including the redundant
processor cores 121a, 1215, 121¢ and 121d in a computer
device 100 according to various embodiments of the present
disclosure. In various embodiments, the processing compo-
nent 120 implements redundant processing cores 121a,
1215, 121¢ and 121d, each with different instruction code
assignments. The processing cores 121a, 1215, 121¢ and
121d may otherwise include identical architectures, may run
in lockstep with one another, and may operate as a single
computing node for the user. At any given time, each
processing core 121a, 1215, 121¢ may execute the same
instruction but with different instruction code assignments.
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In various embodiments, processing component 120 may be
designed such that the respective instruction codes that are
executed by the different processing cores 121qa, 1215, 121c¢
and 1214 any given time are never the same. Thus, if the
same instruction codes are observed across multiple, such as
all of the, redundant processing cores 121a, 1215, 121¢ and
121d, this may be an indication that malware has been
successfully injected into the computer device 100, and
appropriate remedial action may be taken. The particular
remedial actions taken in response to a malware attack may
be application-specific, but may include, for example,
removing the malware and restoring the original obfuscated
instruction binaries, halting the system for manual interven-
tion, and/or quarantining the malware for cyber-forensics.

In various embodiments, the processing component 120
including the redundant processor cores 121a, 1215, 121c¢
and 1214 may be implemented using an FPGA. FPGAs are
digital logic devices that can be configured into any desired
computational architecture. They are a well-established
technology with commercial off-the-shelf (COTS) availabil-
ity, competitive pricing, and extensively-supported design
and development environments. An FPGA can implement a
computing system with extra features not available with
commercial microcontrollers, including error-checking
mechanisms for computational performance. FPGAs can
also offer performance increases through parallelism.

It can also be relatively straightforward to implement
logic redundancy on an FPGA by reusing pre-defined mod-
ules of logic circuitry. Thus, FPGAs may be used as a means
of establishing redundancy. Most importantly, FPGAs can
be reconfigured as needed when any portion of its logic is
faulted or affected. This feature, known as Full Reconfigu-
ration (FR) when all of the logic is fully reset to a known
state, and Partial Reconfiguration (PR) when only a portion
of the logic is reset, can be used as a means of self-repair in
response to a malware intrusion or other failure mode.

A logic circuit may be designed in an FPGA using a
hardware description language (HDL) and a dedicated syn-
thesis tool to convert the described circuitry into real-time
logic (RTL) that the FPGA can run. Popular HDLs include
VHDL and Verilog. The synthesis tool also allows a devel-
oper to configure timing, logic placement and routing, and
generate output files (such as bitstreams) to be deployed
onto an FPGA during regular operations. Some synthesis
tools even allow for live debugging of an FPGA’s internal
logic.

Referring again to FIG. 3, each of the redundant process-
ing cores 121a, 1216, 121¢ and 121d of the processor
component 120 may include a CPU 161, an associated
instruction memory 163, an associated data memory 165,
and an input/output component 167. In various embodi-
ments, each of the CPUs 161 may be a softcore processor
utilizing an open source instruction set architecture (ISA). In
some embodiments, the softcore processors 161 may include
custom-built RISC-V softcore processors.

The RISC-V processor architecture has gained popularity
over the last few years, having developed an accessible
ecosystem for implementation and use in digital systems.
The open-source Instruction Set Architecture (ISA) supports
several different types of processor cores, allowing 32-bit,
64-bit, and even 128-bit configurations. Multiple versions of
complete instruction sets are offered, ranging from basic
integer operations to floating-point calculations and more.
The most basic functional RISC-V variant is the RV32I, with
40 instructions necessary to run any basic C program. The
RISC-V ISA has been adopted into a wide variety research
and technologies, with several examples of RISC-V softcore
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processors being integrated into FPGA designs. However, it
will be understood that various embodiments may utilize
other processor architectures, such as ARM processors,
SPARC processors, RISC-x processors, and the like.

Referring again to FIG. 3, initial configurations of the
CPU 161, the instruction memory 163, and the data memory
165 for each of the redundant processing cores 121a, 1215,
121¢ and 121d may be provided by the core loader 119 of the
TEE processor 111. As discussed above, the TEE processor
111 may obfuscate the instruction codes loaded into the
instruction memories 163 of each processing core 121a,
1215, 121¢, and 1214, and may also update the instruction
decoder tables within each of the processing cores 121a,
1215, 121c¢, and 1214 so that each core 121a, 1215, 121c,
and 121d can interpret the obfuscated instruction codes.
Thus, during runtime, each redundant processing core 121a,
1215, 121¢, and 1214 may simultaneously execute the same
instruction but with different instruction code assignments
that are known only to the respective processing core 121a,
1215, 121¢, and 1214d. Ideally, the instruction codes during
execution of the same instruction should never match
between two or more of the processing cores 121a, 1215,
121c, and 1214.

Referring again to FIG. 3, the processor component 120
may also include a malware monitoring and remediation
component 170. The malware monitoring and remediation
component 170 may be configured to monitor the redundant
processing core 121a, 1215, 121¢, and 121d during program
execution to determine whether or not a malware penetration
has occurred, and to perform one or more remedial actions
in response to determining that a malware penetration has
occurred. In one non-limiting embodiment, the malware
monitoring and remediation component 170 may include a
voting component 169 coupled to an instruction register
malware monitor 171. The voting component 169 may be
configured to route a majority value from four inputs (i.e.,
one from each redundant processing core 121a, 1215, 121c¢
and 1214) while also reporting any disagreements between
the inputs. In some embodiments, the voting component 169
may be a combinational logic circuit to limit the time it takes
to evaluate component outputs.

In various embodiments, the input signals to the voting
component 169 may include instruction register values from
each of the redundant processing cores 121a, 1215, 121c,
and 121d. As discussed above, during normal operation,
each of the redundant processing cores 121a, 1215, 121c,
and 1214 has different instruction code assignments. Thus,
during each instruction cycle, the instruction register values
from the redundant processing cores 121a, 1215, 121¢, and
121d should not match. However, when malicious code is
executed by the redundant processing cores 121a, 121¢, and
121d, multiple processing cores 121a, 1215, 121¢ and 121d
may have identical instruction register values. The instruc-
tion register malware monitor 171 may monitor the output
from the voting component 169 and may flag for the
presence of malware when the instruction register values of
a predetermined number (e.g., =2, such as 3, or all 4) of the
redundant processing cores 121a, 1215, 121¢ and 1214 are
identical during a given instruction cycle. This may trigger
the malware monitoring and remediation component 170 to
initiate one or more remedial actions, such as removing the
malware and restoring the original obfuscated instruction
binaries, halting the system for manual intervention, and/or
quarantining the malware for cyber-forensics. In some
embodiments, a malware removal component 173 may be
configured to remove the malware-infected code from the
processing cores 121a, 1215, 121¢, and 121d. A program,
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data, and configuration memory monitor/repair component
175 may be configured to restore the processing cores 121a,
12156, 121¢, and 1214 to a known good state. In some
embodiments, this may include causing the TEE processor
111 to access the original instruction binaries (i.e., the
“golden” copy) from memory, replicate the instruction bina-
ries and obfuscate each copy of the instruction codes, load
the instruction binaries into each of the redundant processor
cores 121a, 1215, 121¢ and 121d, and update the instruction
decoder tables within each of the processing cores 121a,
121b, 121¢, and 1214 with the new instruction code assign-
ments. The processing cores 121a, 1215, 121¢ and 121d may
then resume program execution. In some embodiments, the
malware removal and remediation process may occur within
3 clock cycles, such as within 2 clock cycles, of the initial
detection of a malware intrusion.

Referring again to FIG. 3, the malware monitoring and
remediation component 170 may optionally include other
system monitoring and remediation components, such as
described in U.S. patent application Ser. No. 18/484,106,
filed on Oct. 10, 2023, the entire contents of which are
incorporated by reference herein for all purposes. For
example, one or more memory scrubber(s) may be utilized
to correct for memory corruption due to a malware attack or
other fault condition(s). For example, a memory scrubber
may continually and iteratively monitor the local memory,
including the instruction memory 163 and/or the data
memory 165, of each processing core 121a, 1215, 121¢ and
121d as a background process via backdoor access ports, and
may include a voting component to detect errors and rewrite
corrected memory values. In some embodiments, soft error
mitigation (SEM) circuit may serve as a scrubber specifi-
cally designed for configuration memory.

FIG. 4 is a flow diagram that illustrates a method 400 of
detecting malware on a computer device 100 according to
various embodiments of the present disclosure. Referring to
FIG. 4, in block 401 of method 400, multiple functionally-
equivalent instances of machine-readable code may be
loaded into a plurality of redundant processing cores 121a,
1215, 1216 and 121d, where portions of the code are
obfuscated such that instruction code assignments for each
of the redundant processing cores 121a, 1215, 1215 and
121d are different. In some embodiments, the portions of the
code may be obfuscated using an on-board trusted execution
environment (TEE) processor 111. In other embodiments,
the portions of the code may be obfuscated at an earlier
portion of the software toolchain, such as during the com-
pilation process.

In block 403 of method 400, the code may be executed by
the redundant processing cores 121qa, 1215, 1215 and 1214.
In various embodiments, each of the processing cores 121a,
1214, 121¢, and 1214 may simultaneously execute the same
set of instructions but with different instruction code assign-
ments. In block 405 of method 400, the instruction registers
of each of the redundant processing cores 121a, 1215, 1215
and 1214 may be monitored while the processing cores
121a, 1215, 1215 and 121d execute the code. In some
embodiments, this may include utilizing a voting mecha-
nism to determine whether or not the instruction register
values in the instruction registers of the redundant process-
ing cores 121a, 1215, 1215 and 121d agree. Because each of
the processing cores 121a, 1215, 121¢ and 1214 is provided
with different instruction code assignments, during normal
operation (i.e., operation that is unaffected by malware) the
instruction register values should be different between the
respective processing cores 121a, 1215, 121¢ and 121d. In
block 407 of method 400, the presence of malware may be
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detected when the instruction registers for multiple process-
ing cores 121a, 1215, 121¢ and 1214 have the same value.
This may indicate that malicious code has penetrated the
computer device and is being executed by processing cores
121a, 1215, 121c¢ and 1214d.

Example

A proof-of-concept computer system was built including
redundant processor cores on a single FPGA. The redundant
processor cores included identical architectures and were
designed to operate as a single computing node. At any
given time, each of the processor cores is configured to
execute the same instruction but with different instruction
code assignments. By design, the instruction codes for the
instructions being executed by the CPUs at any given time
are not the same.

The use of an FPGA as the hardware platform for the
computer system enabled compile-time obfuscation. Since
the FPGA design was created using a hardware description
language (HDL), which is simple text, the design can be
easily manipulated using scripting tools during compilation.
The prootf-of-concept computer system differed from the
computer device 100 shown in FIG. 2 in that the device
lacked an on-board trusted execution environment (TEE)
processor 111. Rather, the software tool chain for the proof-
of-concept computer system included compiling the source
code for the target CPU architecture, replicating and obfus-
cating the instruction codes, and then generating the HDL
for the instruction memories and CPU instruction decoders
for the redundant processor cores. The result of this tool
chain was a set of VHDL files describing a fully redundant,
obfuscated computer system that could be synthesized using
a standard FPGA tool.

Proof-of-concept testing included taking in a simple
assembly code program and producing the obfuscated HDL
for a basic 4-instruction computer. The computer was
adapted to use the emerging RISC-V integrated instruction
set (ISA) architecture. This allowed the use of existing
open-source compilation tools that supported both assembly
and C programming languages and abstracted the underlying
computer hardware from the software developer. A full HDL
implementation of a 32-bit RISC-V computer was devel-
oped that could accept compiled binaries from the RISC-V
ISA written in either assembly or C. The obfuscation algo-
rithms were embedded into the RISC-V ISA tool chain,
which allowed the HDL for the instruction memories and
CPU instruction decoders to be automatically generated at
compile-time. Once the obfuscated portions of code were
created, they were combined with the rest of the computer
system HDL to form a complete description of the computer
system. The full HDL design was then able to be synthesized
using a standard FPGA design tool. FIG. 5 schematically
illustrates the resulting tool chain that was created for
proof-of-concept testing.

To help visualize how the instruction codes were obfus-
cated, FIG. 6 illustrates examples of the assembly language
output of the RISC-V compilation for a C source code input.
This assembly output contains both the instruction mnemon-
ics along with the instruction binaries for each instruction.
The obfuscation algorithm then produced four HDL models
of the instruction memories for the four redundant process-
ing cores of the computer system. In each HDL model, the
instruction codes are obfuscated from the original instruc-
tion assignments. For the proof-of-concept testing, the
instruction codes were simply incremented by 1 (i.e.,
x2197—-x%x2198—%2199—-%x219A) to accomplish the obfus-
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cation. However, it will be understood that other methods for
achieving obfuscation, such as the use of a random number
generator-based algorithm, may be used for obfuscation in
various embodiments.

FIG. 7 shows results of a logic simulation that was
performed which illustrates how the obfuscated instruction
codes appear during normal operation. As shown in FIG. 7,
during each instruction cycle (i.e., Instruction #1 through
Instruction #5), the instruction codes for the four redundant
processing cores (Core_0, Core_1, Core_2, and Core_3) are
always different.

Malware-injection testing was performed while the com-
puter system was performing normal processing operations.
It was determined that during the penetration testing, the
computer system should a program relevant to a special
operations forces (SOF) environment that would also stress
the computational load on the computer. It was decided that
image processing would be of particular interest due to its
use in satellite imaging, arial monitoring, and soldier-worn
body cameras. Accordingly, a camera-to-display image pro-
cessing system was developed using the proof-of-concept
computer system as the computational engine.

Software was written for the proof-of-concept computer
system in C that implemented two image processing modes.
The first was Raw Image Mode in which data was received
from the camera, reformatted for the target display’s RGB
resolution, and then streamed directly to a display. The
second processing mode was Hdge Detection in which a
grayscale pre-processing conversion was first performed on
the incoming data followed by a 1D difference algorithm.
The output of edge detection algorithm is a black and white
image with asserted pixels representing edges in the camera
data. The image processing algorithms were first tested on a
workstation prior to implementation using the proof-of-
concept computer system. The image processing routines
and workstation test results are shown in FIG. 8.

A prototype system was then developed to enable the
proof-of-concept computer system to process camera data in
real-time. An Adafruit TTL 640x480 CMOS imager with an
NTSC protocol was selected for the camera. This camera
required SPI and 12C serial peripherals to be added to
proof-of-concept system. A Sparkfun 2.8" TFT 320x240
RGB LCD was selected as the display. The parallel I/O ports
of the proof-of-concept system were used to stream data to
the display. The proof-of-concept computer system was
implemented on a Basys 3 development board containing a
Xilinx Artix-7 100T FPGA. A user could switch between
raw image and edge detection mode from a computer, which
required a UART peripheral to be added to the computer
system. The UART link also introduced an attack vector for
the computer system that could be used to inject malware.
FIG. 9 is a photograph illustrating the testbed along with the
output results for both raw image and edge detection modes.

The proof-of-concept computer system was then sub-
jected to malware penetration testing. The capabilities (and
vulnerabilities) of the proof-of-concept computer system
were evaluated against the MITRE (mitre.org) cyberattack
database so that an appropriate attack could be designed.
MITRE maintains a list of Common Vulnerabilities and
Exposures (CVEs), which provide a common reference for
specific security issues. The incidence of certain classes of
vulnerabilities in recent CVEs were analyzed, which a focus
on those that are applicable to edge computers. FIG. 10 is a
plot that illustrates the incidences of these CVEs over time
for the past 22 years. It was found that the three most
common CVE classes over time were malicious code execu-
tion, overflows, and memory corruption. The proof-of-con-
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cept computer system’s architecture was inherently
designed to detect and defeat malicious code execution (i.e.,
malware), so the most obvious attack was to inject malware
into the system. Since the 2"¢ most common CVEs were
overflows, it was decided that injecting malware into the
proof-of-concept computer system using a traditional buffer
overflow attack would be the most meaningful penetration
test. The UART that was implemented to switch between
image processing modes was selected as the buffer overtlow
attack vector. While it is unlikely that a SOCOM edge
computer would have a physical UART connection, many
wireless peripherals attach to edge computer serial periph-
erals such as UARTs as their point-of-contact to the com-
puter. This means that a wired buffer overflow attack would
be representative of what a SOCOM edge computer would
experience in the field from the CPU hardware’s perspec-
tive. It was decided that memory corruption could be
handled using a memory comparison algorithm running in
the background.

A malware injection attack was designed that would inject
a large amount of binary data over the UART. The binary
data held numerous copies of a vector return address so that
when the UART interrupt service routine (ISR) ended, it
would retrieve an incorrect return address. The incorrect
return caused the CPU to begin executing malicious code
that resided in the lower portion of data memory (i.e., the
stack location) as opposed to returning to the normal pro-
gram in instruction memory. In order to observe the attack,
an internal logic analyzer was inserted into the FPGA and
the instruction codes of each of the CPUs within proof-of-
concept computer system were monitored. The logic ana-
lyzer measurement is shown in FIG. 11. This waveform
shows actual test data of the proof-of-concept computer
system operating under an attack. It can be seen that the
system is executing obfuscated instruction codes during
normal operation. It then shows that an attack is underway
when the instruction codes all match. The recovery algo-
rithm implemented in the proof-of-concept computer system
was to halt the CPUs, restore their program memories using
golden copies, and begin program execution from the begin-
ning.

A malware-resistant edge computer device 100 in accor-
dance with various embodiments may be used, for example,
in military, acrospace, and critical infrastructure application.
In some embodiments, the computer device 100 may include
a single-board computer (SBC) that abstracts the hardware
obfuscation from the developer. The small form factor of the
SBV may enable use in body-worn and arial systems. In
some embodiments, a redundant processor having hardware
obfuscation to detect and defeat malware attacks may be
provided as an Intellectual Property (IP) core that can be
instantiated in a user’s own FPGA design. This may enable
the embodiment technology to be sold as software for users
developing large systems that have custom FPGA designs in
it. This may be suitable for larger communication systems
and mobile command centers, for example

Various embodiments of a computer device 100 as
described above may also be utilized for aerospace appli-
cations. Exemplary fault-tolerant computer systems for
space and other extreme radiation environments are
described in the above-mentioned U.S. patent application
Ser. No. 18/484,106, filed on Oct. 10, 2023. Such systems
may also include the various techniques for detecting and
defeating malware attacks described herein in order to
provide enhanced cybersecurity protection in addition to
radiation-tolerance. Such a solution may have applications
in both commercial and military space industries.



US 12,050,688 B1

15

Various embodiments of a computer device 100 as
described above may also be utilized for critical infrastruc-
ture applications (e.g., power plants, water treatment plants,
communication networks, etc.), which frequently utilize
edge computers for industrial control applications. The edge
computers currently used are typically only protected by
network security measures implemented on the network
control computer. A computer device 100 according to
various embodiments may add a last line of defense for these

5

edge computers by deploying malware detection and denial 10

at the point-of-execution.
Although the foregoing refers to particular embodiments,
it will be understood that the disclosure is not so limited. It
will occur to those of ordinary skill in the art that various
modifications may be made to the disclosed embodiments
and that such modifications are intended to be within the
scope of the disclosure. Compatibility is presumed among
all embodiments that are not alternatives of one another. The
word “comprise” or “include” contemplates all embodi-
ments in which the word “consist essentially of” or the word
“consists of” replaces the word “comprise” or “include,”
unless explicitly stated otherwise. Where an embodiment
using a particular structure and/or configuration is illustrated
in the present disclosure, it is understood that the present
disclosure may be practiced with any other compatible
structures and/or configurations that are functionally equiva-
lent provided that such substitutions are not explicitly for-
bidden or otherwise known to be impossible to one of
ordinary skill in the art. All publications, patents and patent
applications referred to herein are incorporated by reference
in their entirety to the same extent as if each individual
publication, patent or patent application was specifically and
individually indicated to be incorporated by reference in its
entirety.
The invention claimed is:
1. A computer device, comprising:
a computing engine comprising:
a plurality of processor cores configured to simultane-
ously execute identical sets of processor-executable
instructions, wherein the each of the processor cores
includes different instruction code assignments;
a malware monitoring and remediation component that
detects presence of malware when instruction regis-
ter values from a predetermined number of processor
cores are identical during an instruction cycle; and
a trusted execution environment (TEE) processor con-
figured to:
receive program code;
generate multiple copies of the program code for
execution by the plurality of processor cores;

obfuscate the instruction codes in each copy of the
program code;

load the obfuscated instruction codes into instruction
memories of the plurality of processing cores; and

update instruction decoder tables within each of the
plurality of processing cores to enable the pro-
cessing cores to interpret the obfuscated instruc-
tion codes.

2. The computer device of claim 1, wherein the computing
engine is implemented using one or more field program-
mable gate arrays (FPGAs).

3. The computer device of claim 2, wherein each of the
processor cores comprises a softcore processor core utilizing
an open-source instruction set architecture.

4. The computer device of claim 3, wherein each of the
processor cores comprises a RISC-V softcore processor
core.
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5. The computer device of claim 1, wherein the predeter-
mined number of processor cores comprises all of the
redundant processor cores of the computing engine.

6. The computer device of claim 1, wherein the malware
monitoring and remediation component is configured to
initiate one or more remedial actions in response to detecting
the presence of malware.

7. The computer device of claim 6, wherein the one or
more remedial actions comprises at least one of removing
the malware and restoring new sets of obfuscated instruction
binaries, halting the system for manual intervention, and
quarantining the malware for cyber-forensics.

8. The computer device of claim 1, wherein the TEE
processor is further configured to store an original copy of
the program code in a memory to enable restoration of the
instruction memories of the plurality of processing cores in
the event of a malware penetration or other fault condition.

9. The computer device of claim 1, wherein the program
code received by the TEE processor is encrypted, and the
TEE processor is further configured to:

decrypt the encrypted program code; and

verify that the program code is from a trusted source.

10. The computer device of claim 1, further comprising:

an electromagnetic (EM) shield component operatively
coupled to the computing engine and comprising at
least one EM radiation sensor configured to detect EM
signals in the vicinity of the computer device.

11. The computer device of claim 10, wherein the EM
shield component supports wireless connectivity of the
computer device using one or more wireless communication
interfaces.

12. The computer device of claim 11, wherein the one or
more wireless communication interfaces comprises at least
one of a WiFi™ interface, a Bluethooth® interface, a
UHF/VHF interface, and a 4G/5G interface.

13. The computer device of claim 1, further comprising:

a camera operatively coupled to the computing engine;
and

a display operatively coupled to the processing engine,
wherein the computing engine is configured to process
images captured by the camera and display the pro-
cessed images in on the display.

14. The computer device of claim 13, wherein the com-

puter device is configured to operate in at least one of:

a raw image mode in which the computing engine over-
lays one or more patterns on the displayed images to
highlight areas of interest; and

an edge detection mode.

15. A method of operating a computer system, compris-
ing:

receiving a first version of machine-readable code;

replicating and modifying the first version of the machine-
readable code to provide multiple functionally-equiva-
lent instances of the machine-readable code having
different instruction code assignments;

storing the first version of the machine-readable code in a
memory;

loading the multiple functionally-equivalent instances of
machine-readable code into a plurality of redundant
processing cores, wherein portions of the code are
obfuscated such that instruction code assignments for
each of the redundant processing cores are different;

executing the code using the redundant processing cores;

monitoring instruction registers of each of the redundant
processing cores while the processing cores execute the
code; and
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detecting the presence of malware when the instruction
registers for multiple processing cores have the same
value.

16. The method of claim 15, further comprising:

accessing the stored first version of the machine-readable
code in response to detecting the presence of malware;

replicating and modifying the first version of the machine-
readable code to provide additional functionally-
equivalent instances of the machine-readable code hav-
ing different instruction code assignments for each of
the redundant processing cores; and

loading the additional functionally-equivalent instances
of the machine-readable code into the plurality of
redundant processing cores.

17. The method of claim 16, wherein the instruction code

10

assignments for each of the additional functionally-equiva- 15

lent instances of the machine-readable code loaded into the
plurality of redundant processing cores are different from the
instruction code assignments for the functionally-equivalent
instances of the machine-readable code that were previously
executed by the respective processing cores.

18

18. The method of claim 15, wherein the portions of the
code are obfuscated using a random number generator-based
algorithm to generate instruction codes for each instance of
the machine-readable code, and the method further com-
prises:

updating instruction decoder tables within each of the

redundant processing cores with the instruction code
assignments for the respective processing cores.

19. The method of claim 15, wherein the first version of
machine-readable code is received from a central server in
an encrypted format, and the method further comprises
performing a decryption process on the machine-readable
code prior to replicating and modifying the first version of
the machine-readable code.

20. The method of claim 15, further comprising:

performing a verification process using a keying system to
confirm that the first version of machine-readable code
is received from a trusted source.

#* #* #* #* #*
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