PG

winen o g

FIELD-PROGRAMMABLE ver the past decade, field-programmable gate arrays
’ (FPGAs) have gained a foothold as some of the most

GATE ARRAYS NOW used building blocks in digital systems. The flexibility
INCORPORATE HIGH- of an FPGA allows designers to decrease hardware
"SPEED SERIAL design cyeles while adding inherent feature

. upgradeability in the final product. In addition, the

INTERFACES- BUT data rates of modern FPGAs are competing with application-specific

WHICH ARE THE RIGHT integrated circuits, thus allowing the needed system performance tobe
TYPES OF | NTERFACE achieved using what was once only a prototyping vehicle.

. The data rates of modern FPGAs are giving designers the freedom

) AND C-LOCKI NG to create their own application-specific buses. However, designers are

SCHEME TO USE? quickly learning the pitfalls of running I/O at high speeds. Factors such

: as channel-to-channel skew, jitter, and aperture window size are limiting

the theoretical data rates of the FPGA's specifications. To address these

issues, FPGA system designers are following suit to their ASIC

predecessors and adopting I/0 architectures that inherently reduce the

effect of the above-mentioned factors.

A number of clocking schemes are available to designers and are
shown in Fig 1. Synchronous clocking is the most widely used clocking
scheme in digital systems. In this type of clocking, there is one clock that
is distributed to all synchronous logic in the system. All transactions
oceur at a particular edge of this one clock. This type of clocking has the
advantage that it is relatively simple to implemnent. However, in order to
ensure tirrﬁng accuracy, the clock distribution network must be matched
in electrical length to all of the synchronous logic in the system. This
becomes increasingly difficult when clock paths enter FPGAs with

_compiex logic and connect multiple FPGAs that are created with various

“processes and different packaging. The variation in integrated circuit

processes and construction leads to timing error that degrades the

performance of this type of clocking. Another limitation is that after a

clocking event, the next clock must wait until the data has successfully

~ travelled from one FPGA to the other Examples of this type of
‘ architecture are the PCI bus and interfaces to synchronous memory.

Source-synchronous clocking was developed to address the

== _difficulty that synchronous clocking has with matching the =

14 {EE Electronics Systems and Software | June/July 2004

=
(2 i)
EU‘.J

wwvmiee.org/electmnicsmagaziné

b of—P—e———o"—]p o—

> |— >

? {a) Synchronous architecture

| .
5 a—p———=—D—[toa P
:— o data ||
; | ik

i (b} Source-synchronous archltecture"

v
1

Eﬁbedt':l'é'd Glb'ek

clockinglarchitectures]

oblelileenchannelldataliateslobservedlinlindustryforvarious

Ul =« Syvmbol
DaraRate = ++1-
Ul
Throughput = (# ofChannel) - (DataRate)

' Fig 2: Achievable unit interval calculetion

File Mindow EyeFinder Resulte '~ © -

Folp

800 lhl. / MStm

Fmﬂr T _vlf'ﬂm Beaguresent. Complated

llrg Po-alt.ims g i
=
‘ “Sanplirg Fovitich -3pe -

DataBur (il chaviaier "!} 0.a0 ret-2ig- |
r___‘_‘" —"m], 0.5 e 5 7
aftl? " “0.50.1 m B
Fﬁm“m}id{"ﬂ?&" M -
[pamestar [v H. B ;
@Zﬁﬁmﬁ?‘[0,40 7o | o
[il] o.m i |p
lsa_Em ™ (71 iﬁ] 042 e
e P maral
{Beatn (1] 0.3 m B
(I35 Es wt”ﬁ‘}f@ 030 m (P -
n;:mmiw

038 e
{EszBs T gg o B

il o <
mtﬁﬂ“’ﬂ o3 ol
@:‘ﬁ':m]‘ﬂ o | P}] §

e A e
Stabl Sawplirg Position - S\.wasudl’ 121
:"\'ngio: l 'g:,:lyz:-'nn A Srom Eye n:gurm

H

For_paxt’

Fig 3: Channel-to-channel skew picked up by an ‘eye-finding’ tool

clock distribution paths to each element in the system. In
this type of clocking, the cireuit producing the data
pattern will create its own clock, which is transferred
along with the data. Generating the clock in the same
geographical location as the data, in addition to having
the clock traverse the same media as the data bus, creates
a much tighter timing correlation. The tighter timing
means that the data-valid windows of the data being
latched are better aligned with the clock used to latch
them. This reduced channel-to-channel skew allows data
transfer rates to exceed that of a synchronous
architecture. Examples of this type of architecture are
the front-side bus for Intel’s PC processors and double
data-rate memory interfaces.

Source-synchronous clocking is prone to the same
channel-to-channel skew as synchronocus timing, albeit at
a much higher data rate. The difference in process variation
and interconnect structure between channels within an
FPGA will contribute to channel-to-channel skew no matter
how tightly the clock is coupled to the multiple signals. To
address this problem, embedded clocking was invented. In
embedded clocking, the data is encoded in a manner that
will guarantee a certain number of transitions per time. An
example is 8B/10B encoding. By ensuring the data will
transition a certain percentage of unit time, a phased-locked
loop (PLL) can lock to the data stream. With embedded
clocking, a PLL is used at the receiver that will lock onto the
incoming data stream and create a clock based on the
transition freguency. This clock is then centred within the
data valid window. The drawback of this is that the clock
centring is only valid for the data channel to which the PLL
has locked. However, the data rate for an individual channel]
is onty limited by its jitter margin and aperture window.
This type of clocking can achieve extremely high data rates,
of more than 2.5Gbit/s, compared with synchronous and
source synchronous designs. This type of design requires
more complex circuitry at both the driver and receiver but
the data rates achieved are so much higher than previous
architectures that the channel counts can be reduced while
still delivering an overall throughput increase.

16 IEE Electronics Systerns and Software | june/July 2004

FPGA I/O

The total throughput, or digital bandwidth, is defined
as the number of symbols that can be transmitted per
second. This depends on the unit interval that can be
achieved per channel and the number of channels used in
the 1/0 architecture, as shown in Fig 2. Channel-to-channel
skew refers to the time difference of the data valid
windows between various signal paths. This issue is due to
electrical length differences in the physical signal paths.
These paths vary for each channel due to the
implementation of the circuit.

The skew between channels will litnit the data rate of the
I/0Q architecture. This is because the synchronising clock
for the data signals must be placed such that it can
successfully latch in all of the data channels in the bus. To
achieve this placement, the net data-valid window of all of
the overlaid channels must be large enough for the clock to
be placed within. The more channels used, the more the
chance of channel-to-channel skew. As more channels are
used, the net data-valid window will decrease, thus reducing
the maximum transfer rate.

There are two main sources of skew. The first is the
electrical length mismatch on the IC. The majority of this
mismatch comes from the packaging interconnect. When
using an FPGA, the complex logic can also be a major
factor. As CMOS dice approach sizes of 20x20mm and
packages have signal counts reaching into the thousands,
the difference in channel path length becomes
considerable. The on-chip skew is also exacerbated by the
fact that signals are being driven from one large FPGA
package to another. ‘This can effectively double the skew
due to on-chip path length.

The second source of skew is due to channel mismatch
on the PCB. This skew is due to either a physical
mismatch of PCB traces on the same layer or a
propagation delay mismatch of PCB traces on different
layers. Fig 3 shows an example of channelto-channel skew
picked up using an ‘eve-finding’ tool on a logic analyser
made by Agilent Technologies.

Jitter is a term that describes-the timing uncertainty
within a unit interval. Put another way, jitter is the

amount of time within a unit interval in which it cannot
be guaranteed that the data is at a stable logic level. This

uncertainty region will limit how small a unit interval can

be used while stili transmitting reliabie data. The two
major subsets of jitter are deterministic and non-
deterministic jitter.

Deterministic jitter refers to sources of jitter that can
be calculated. For example, if a product is specified to
operate with 5% power supply variation, then the
timing uncertainty due to supply drop needs to be
considered in the data-rate specification. While how
much timing uncertainly will vary from application to
application, the entire range of timing uncertainty must
be accounted for. Some possible sources of deterministic
jitter can be process variation, inter-symbol
interference, reflections, simultaneous switching noise,
power supply droop, and resistance-capacitance load
variation. These sources can all be quantified in the
design and summed to produce a timing-uncertainly

total. The worst-case impact of each of these sources . '

must be accounted for in a stable design.
Non-deterministic jitter refers to the statistical -
sources of timing uncertainty These are sources
in which the noise contribution is modelled L -
by their probability distribution rather }M
than their worst-case values.
Traditionally these sources are
modelled using a Gaussian
distribution. The figures-of-tnerit _
for these sources are theirroot- - =
mean-square value or standard ‘
deviation. For these types of
sources, the worst-case
impact does not need to be
accounted for as, statistically,
it will happen infrequently.
Instead, a bit error rate is
used to predict system
stahility. A few examples of
these types of noise sources
are thermal noise and the shot
noise caused by charge carriers
moving through a semiconductor.
Multiple sources of statistical noise
are accounted for using a root-mean-

square summation to find the net
contribution of statistical noise.

Jitter can be very difficult to predict. Typically its
contribution is foumd using jitter measuname s
in an oscilloscope. By aliowing a

ey

~

wwiviee.org/electronicsmagazine

fe

l,!("ﬂ,i:

W
'11('"2

accumulate for a relatively large amount of time, the
distribution of jitter can be found. A note on this technique
is that all of the sources of jitter are measured
simultaneously. Although this has the drawback of not
isolating individual sources, it is usually the only method
available to FPGA designers. An example is shown in Fig4.

The final contribution to the speed of an I/0 design is
the aperture window of the receiving element. This is
traditionally called setup-and-hold but refers to the
minimum time that the data must be stable before and after
the timing event in order for the receiver to capture the
symbol. The aperture window must be able to fit within the
net data-valid window of all of the overlaid data channels
to ensure successful data collection. FPGA manufacturers
will specify this value. However, complex logic and data path
variation will degrade the ideal specification. In most cases
a measurement is needed.

The combination of channel-to-channel skew, jitter; and
receiver aperture dictates how fast the I/0 design can
operate. We define the channel-to-channel skew as the time
difference between the transition regions of two channels
when operating in the same phase, that is, when those
channels are designed to transmit a symbols at the same
timne. The equations in Fig 5 relate the total bit transfer rate
per channel to the sources of error described ahove.

The first step in selecting an 170 architecture is
determining the design’s data-throughput requirement.
Once this is defined, 170 architectures can be evaluated for
selection. This is an interactive process requiring
measurement data. All of the factors, such as channel-to-

" channel skew, jitter and aperture window, will increase as

signals are added to the I/0 design, The best way to find
these contributions is through empirical data from
oscilloscopes and logic analysers.

Starting with the simple synchronous architecture,
sighals can be added to increase the overall throughput. As
signals are added, the degradation factors must be observed.

yilliiii il ol

Cale Bource

el 1

[2 Fosition
27.3125 ns

Qefaglt
window

Fig 4: Jitter measurement with histogrom showing jitter distribution

U[2 tchan-.ra-c‘hun +! Jitrer + 'r,lppumlm'e

#ofChannels)

Throughput =
8o (ui

Fig 5: Relationship between bit transfer rate and error

At some point, the addition of signals is nc longer practicat
because of the adverse signal integrity contributions, the
main contribution being channel-to-channel skew. At this
point, the source synchronous architecture can be explored.
The major advantage of this architecture is that it
dramaticaliy reduces the channel-to-channel skew within
a data group. At some point the channel-to-channel skew
will again become an issue, but at a much higher data rate.
The skew in this architecture will be on the same order of
magnitude as the jitter contribution.

Finally, the embedded clock architecture can be
examined, This architecture has the advantage in that there
is no channel-to-channel skew due to the clock/data
recovery design. In addition, the jitter is reduced because
there is no longer a data channel and a clock channel that
possess jitter. This architecture will be limited only by the
jitter and aperture window contribution. If industry I/O
standards are cbserved, they typically fall into the
categories shown in Table 1.

As FPGA speeds have increased over the past decade,
designers are using FPGAs as an alternative to ASICs.
However, designers are quickly discovering that the
increased FPGA speeds are leading to the same signal
integrity problems that ASIC designers have been facing for
years. As signals are added to an I/0 architecture to
increase the total throughput, the channel-to-channel skew,
jitter, and aperture window contributions are increased. To
address these problems, FPGA designers must turn to
different clocking architectures. In order to maintain the
trend of increased system data rates, a designer using
FPGAs must first understand all of the contributions to the
unit interval reduction in order to be successful.

Brock LaMeres is a hardware design engineer for Agilent
Technologies.

13

IEE Electronics Systems and Software | June/July 2004

	footer1:

