ASP-DAC 2006

Session 8C-5: Inductive Issues in Power Grids and Packages

Controlling Inductive Cross-talk and Power in Off-chip Buses using CODECs

Authors: Brock J. LaMeres Agilent Technologies

Kanupriya Gulati, Texas A&M University

Sunil P. Khatri Texas A&M University

Motivation

- Power delivery is the biggest challenge facing designers entering DSM
 - The IC core current continues to increases (P4 = 80Amps).
 - The package interconnect inductance limits instantaneous current delivery.
 - The inductance leads to ground and power supply bounce.
- SSN on signal pins is the leading cause of inter-chip bus failure
 - Ground/power supply bounce causes unwanted switching.
 - Mutual Inductive cross-talk causes edge degradation which limits speed.
 - Mutual Inductive cross-talk causes glitches which results in unwanted switching.
- Further, power in off-chip buses can be significant.
 - Large percentage of power may be consumed in the output stages
- Aggressive package design helps, but is too expensive:
 - Flip-Chip technology can reduce the interconnect inductance.
 - Flip-Chip requires a unique package design for each ASIC.
 - This leads to longer process time which equals cost.
 - 90% of ASIC design starts use wire-bonding due to its low cost.
 - Wire-bonding has large parasitic inductance that must be addressed.

Our Solution

"Encode Off-Chip Data to Avoid Inductive Cross-talk & Power Consumption"

Avoid the following cases:

1) Excessive switching in the same direction = reduce ground/power bounce

2) Excessive X-talk on a signal when switching = reduce edge degradation

3) Excessive X-talk on signal when static = reduce glitching

4) At the same time, limit the number of transitions = reduce power

Our Solution

- This results in:
- 1) A subset of vectors is transmitted that avoids inductive X-talk & power.
- 2) The off-chip bus can now be ran at a higher data rate.
- 3) The subset of vectors running faster can achieve a higher throughput over the original set of vectors running slower.

Agenda

- 1) Inductive X-talk & Power
- 2) Terminology
- 3) Methodology
- 4) Experimental Results
- 5) Conclusion

1) Inductive X-Talk

Supply Bounce

•The instantaneous current that flows when signals switch induces a voltage across the inductance of the power supply interconnect following:

$$V_{bnc} = L \cdot \left(\frac{di}{dt}\right)$$

•When more than one signal returns current through one supply pin, the expression becomes:

$$V_{bnc} = L \cdot \sum_{j} \left(\frac{di}{dt} \right)$$

NOTE: Reducing the number of signals switching in the same direction at the same time will reduce the supply bounce.

1) Inductive X-Talk

Glitching

• Mutual inductive coupling from neighboring signals that are switching cause a voltage to induce on the victim that is static:

$$V_{glitch}^{i} = \pm M_{ik} \cdot \left(\frac{di_{k}}{dt}\right)$$

•The net coupling is the summation from all neighboring signals that are switching:

$$V_{glitch}^{i} = \sum_{k=1}^{m} \pm M_{ik} \cdot \left(\frac{di_{k}}{dt}\right) \qquad M_{ik} = K_{ik} \cdot \sqrt{L_{i} \cdot L_{k}}$$

NOTE: The mutual inductive coupling can be canceled out when two neighbors of equal K_{ik} switch in opposite directions. Also, K_{ik} is the mutual inductive coupling coefficient

1) Inductive X-Talk

Edge Degradation

• Mutual inductive coupling from neighboring signals that are switching cause a voltage to be induced on the victim that is also switching. This follows the same expression as glitch coupling:

$$V_{glitch} = \sum_{1}^{k} \pm M_{1k} \cdot \left(\frac{di_{k}}{dt}\right)$$

- The mutual inductive coupling can be manipulated to cause a positive (negative) glitch for a rising (falling) signal.
- Mutual coupling can thus be exploited so as to *help* the transition resulting in a faster rise-time or fall-time (alternately, to *not hinder* the risetime of the transition)

8

1) Power

Power Consumption

• The power consumed in the output stage is proportional to the capacitance being driven, the output voltage swing, and the switching frequency.

$$p_{pin} = C \cdot V_{DD}^2 \cdot f$$

NOTE: Power is proportional to the number of switching pins.

Define the following:

- m = width of the bus segmentwhere each bus segment consists of n-2 signalsand 1 Vpp and 1 Vss.
- j = the segment consisting of an n-bit bus. j is the segment under consideration. j-1 is the segment to the immediate left. j+1 is the segment to the immediate right. each segment has the same VDD/Vss placement.

Define the following:

 v_i^j = the transition (vector sequence) that the i^{th} signal in the j^{th} segment is undergoing, where

$$v_i^j = 1 = \text{rising edge}$$

 $v_i^j = -1 = \text{falling edge}$
 $v_i^j = 0 = \text{signal is static}$

This 3-valued algebra enables us to model mutual inductive coupling of any sign

2) Terminology

Define the following coding constraints:

Supply Bounce

if v_i^j is a supply pin, the total bounce on this pin is bounded by P_{bnc} . P_{bnc} is a user defined constant.

Glitching

if v_i^j is a signal pin and is static ($v_i^j = 0$), the total magnitude of the glitch from switching neighbors should be less than P_0 . P_0 is a user defined constant.

Edge Degradation

if v_i^j is a signal pin and is switching $(v_i^j = 1/-1)$, the total magnitude of the coupling from switching neighbors should be greater than P_1/P_{-1} . This coupling should not hurt (should aid) the transition. P_1/P_{-1} is a user defined constant.

2) Terminology - Power

Define the following coding constraints:

Power

for a given segment j, the total power consumption on that segment is bounded by P_{power} .

Ppower is a user defined constant.

 $\mathbf{V}_{3}^{j,i}$ $\mathbf{V}_{4}^{j,i}$ \mathbf{V}_{0}^{j} \mathbf{V}_{1}^{j} \mathbf{V}_{2}^{j} \mathbf{V}_{3}^{j} \mathbf{V}_{4}^{j}

Also define the following:

- p = how far away to consider coupling (ex., p = 3, consider K_{11} , K_{12} , and K_{13} on each side of the victim)
- k_q = Magnitude of coupled voltage on pin i when its q^{th} neighbor p switches:

$$k_q = \left| M_{ip} \cdot \left(\frac{di_p}{dt} \right) \right|$$

3) Methodology

- •For each pin v_i^j within segment j, we will write a series of constraints that will bound the inductive cross-talk magnitude.
- •The constraints will differ depending on whether v_i^j is a signal or power pin.
- •The coupling constraints will consider signals in adjacent segments (j+1, j-1) depending on p.

3) Methodology – Signal Pin Constraints

Example:

 $v_2^j = 0$, and p = 3. This means the three adjacent neighbors on either side of v_2^j need to be considered $(v_4^{j-1}, v_0^j, v_1^j, v_3^j, v_4^j, v_0^{j+1})$.

Note we use *modulo n* arithmetic (and consider adjacent segments as required).

$$v_{2}^{j} = 0 \text{ (static)} \quad 0 \quad P_{0} \leq k_{3} \cdot (v_{4}^{-1}) + k_{2} \cdot (v_{0}^{j}) + k_{1} \cdot (v_{1}^{j}) + k_{1} \cdot (v_{3}^{j}) + k_{2} \cdot (v_{4}^{j}) + k_{3} \cdot (v_{0}^{j+1}) \leq P_{0}$$

The constraint equation is tested against each possible transition and the transitions that violate the constraint are eliminated.

3) Methodology – Signal Pin Constraints

Edge Degradation: coupling is bounded by P_1 and P_{-1}

Example:

 $v_2^j = 1$ or -1, and p = 3. This means the three adjacent neighbors on either side of v_2^j need to be considered $(v_4^{j-1}, v_6^j, v_1^j, v_3^j, v_4^j, v_6^{j+1})$.

$$v_{2}^{j} = -1 \text{ (falling)} 0 \qquad k_{3} \cdot (v_{2}^{j}) + k_{2} \cdot (v_{3}^{j}) + k_{1} \cdot (v_{1}^{j}) + k_{1} \cdot (v_{3}^{j}) + k_{2} \cdot (v_{4}^{j}) + k_{3} \cdot (v_{3}^{j+1}) \leq P_{-1}$$

Again, the constraint equations are tested against each possible transition and the transitions that violate the constraints are eliminated.

3) Methodology – Power Pin Constraints

Supply Bounce: coupling is bounded by P_{bnc}

Example:

 v_0^j =VDD or VSS. The total number of switching signals that use v_0^j to return current must be considered. Due to symmetry of the bus arrangement, signal pins will always return current through two supply pins. i.e., $(v_0^{j-1}$ and $v_0^j)$ or $(v_1^j$ and $v_2^{j+1})$. This results in the self inductance of the return path being divided by 2. Let $z = |L| \frac{di}{dt}$ for any pin. Then,

$$v_0^j = \mathbf{V}_{\mathbf{D}\mathbf{D}}$$

$$(z/2)\cdot (\# \text{ of } v_i^j \text{ pins that are } 1) \leq P_{bnc}$$

$$v_{\downarrow}^{j} = \mathbf{V}_{\mathrm{SS}}$$
 (z/2)·(# of v_{i}^{j} pins that are -1) $\leq P_{\scriptscriptstyle bnc}$

3) Methodology – Power Constraints

Power Consumption: consumption is bounded by *Ppower*

Example:

For segment j. The total number of switching signals can be constrained to reduce power.

Segment j

(# of v_i^j pins that are 1 or -1) $\leq P_{power}$

3) Methodology – Constructing Legal Vectors Sequences

• For each bit in the jth segment bus, constraints are written.

- If the pin is a signal, 3 constraint equations are written;
 - $v_0^j = 0$, the bit is static and a glitching constraint is written
 - $-v_0^j = 1$, the bit is rising and an edge degradation constraint is written.
 - v_0^{j} = -1, the bit is falling and an edge degradation constraint is written.
- If the pin is VDD, 1 constraint equation is written to avoid supply bounce.
- If the pin is Vss, 1 constraint equation is written to avoid ground bounce.
- For the segment, 1 constraint equation is written to constrain *power*.

3) Methodology – Constructing Legal Vectors Sequences

• This results in the total number of constraint equations written is:

$$(3 \cdot n - 3)$$

• Each equation must be evaluated for each possible transition to verify if the transition meets the constraints. The total number of transitions that are evaluated depends on n and p:

$$3^{(n+2p-6)}$$

- This follows since there are n-2 signal pins in the segment j, and 2p-4 signal pins in neighboring segments.
- The values of *n* and *p* are small in practice, hence this is tractable.

3) Methodology – Constructing the CODEC

- The remaining legal transitions are used to create the CODEC.
- The total number of remaining legal transitions will depend on how aggressive the user-defined constants are chosen $(P_0, P_1, P_{-1}, P_{bnc}, P_{power})$
- From the remaining legal transitions, find the effective bus width m that can be encoded using a physical bus of width n, using a memory-based CODEC.
 - Utilize a fixpoint computation

3) Methodology – Constructing the CODEC

- Represent remaining legal transitions in a digraph
- Algorithm to find CODEC:
- Let n =size of physical bus
- Let m =size of effective bus
- Then the digraph of legal transitions of the n bit bus can encode an m bit bus (m < n) iff
 - -We can find a closed set S of nodes such that
 - $|S| \geq 2^m$
 - Each vertex s in S has at least 2^m out-edges (including self-edges) to vertices s' in S
- Now we can synthesize the encoder and decoder (memory based).

4) Experimental Results – 5 Signal Pins

Example Bus: n=7, p=2

Aggressive Encoding
Non-Aggressive Encoding
Power Encoding

Po, P1, P-1, Pbnc
5% of VDD
12.5% of VDD
20% of Max

4) Experimental Results – Constraint Equations

of Constraints =
$$(3n - 3) = 12$$

1)
$$v_0^j = V_{DD} \rightarrow (L/2) \cdot (\# \text{ of } v_i^j \text{ pins that are } 1) \leq P_{bnc}$$

2)
$$v_1^{j} = 1 \rightarrow k_1 \cdot (v_2^{j}) + k_2 \cdot (v_3^{j}) \geq P_1$$

3)
$$v_1^j = -1$$
 $\rightarrow k_1 \cdot (v_2^j) + k_2 \cdot (v_3^j) \leq P_{-1}$

4)
$$v_1^{j} = 0$$
 $\rightarrow P_0 \leq k_1 \cdot (v_2^{j}) + k_2 \cdot (v_3^{j}) \leq P_0$

5)
$$v_2^j = 1 \rightarrow k_1 \cdot (v_1^j) + k_1 \cdot (v_3^j) \ge P_1$$

6)
$$v_2^j = -1$$
 $\rightarrow k_1 \cdot (v_1^j) + k_1 \cdot (v_3^j) \leq P_{-1}$

7)
$$v_2^{j} = 0$$
 \rightarrow $-P_0 \le k_1 \cdot (v_1^{j}) + k_1 \cdot (v_3^{j}) \le P_0$

8)
$$v_3^j = 1$$
 $\rightarrow k_2 \cdot (v_1^j) + k_1 \cdot (v_2^j) \ge P_1$

9)
$$v_3^j = -1$$
 \rightarrow $k_2 \cdot (v_1^j) + k_1 \cdot (v_2^j) \leq P_{-1}$

10)
$$v_3^j = 0$$
 $\rightarrow P_0 \leq k_2 \cdot (v_1^j) + k_1 \cdot (v_2^j) \leq P_0$

11)
$$v_4^j = Vss$$
 \rightarrow (L/2)· (# of v_i^j pins that are -1) $\leq P_{bnc}$
12) (# of v_i^j pins that are -1 or 1) $\leq P_{power}$

Transitions Eliminated due to Rule Violations

Rule(s) Violated				
Transition	<u>Aggressive</u>	Non Aggressive		
011	violates 1,4	-		
0-1-1	violates 4,11	-		
101	violates 1,7	-		
110	violates 1,10	-		
111	violates 1,2,5,8	violates 11		
11-1	violates 1	-		
1-11	violates 1	-		
1-1-1	violates 11	-		
-10-1	violates 7,11	-		
-111	violates 1	-		
-11-1	violates 11	-		
-1-10	violates 10,11	-		
-1-11	violates 11	-		
-1-1-1	violates 3,6,9,11	violates 1		

• Encoded data avoids Inductive X-talk pattern

Overhead =
$$1 - \frac{\text{Effective}}{\text{Physical}} = \frac{\text{n} - \text{m}}{\text{m}}$$

• Bus can be ran faster

Ground Bounce Simulation

Glitch Simulation

Edge Degradation Simulation

4) Experimental Results – CASE 2: Variable di/dt

- di/dt was swept for both the non-encoded and encoded configuration.
- the maximum di/dt was recorded that resulted in a failure.
- Failure: 5% of VDD (Aggressive) and 12.5% of VDD (Non-Aggressive)
- the maximum di/dt was converted to data rate and throughput.

	<u>Original</u>	Aggressive	Non-Aggr
Maximum di/dt:	8 MA/s	19.9 MA/s	37 MA/s
Maximum data-rate per pin:	133 Mb/s	333 Mb/s	667 Mb/s
Effective bus width:	5	4	2
Total Throughput:	667 Mb/s	1332 Mb/s	1332 Mb/s
Improvement	-	100%	100%
Power Constraint (% of Max)	100%	20%	20%

4) Experimental Results – ASIC Synthesis

- A 0.13um, TSMC ASIC process was used.
- Delay and Area Extracted

	Bus Size (m)	Style	
	·=-	aggressive	non-aggressive
	2	0.170	N/A
Delay (ns)	4	0.670	0.503
	6	1.150	0.955
	8	1.310	0.983
100 Mol	2	22	N/A
Area (um ²)	4	152	114
	6	614	509
	8	1,181	886

4) Experimental Results – FPGA Implementation

- A Xilinx, Virtex-II, 0.35um, FPGA was used.
- Delay and Area Extracted

	Bus Size (m)	Style
	-	aggressive & non-aggressive
	2	0.351
Delay (ns)	4	1.020
SCHOOL SHEET SHEET	6	1.450
5	8	1.610
	2	< 1%
FPGA Usage	4	< 1%
44700	6	< 1%
5.	8	< 1%
	2	3x, 2-Input FG's
FPGA	4	6x, 4-Input FG's
Implementation	6	9x, 6-Input FG's
NOT THE	8	12x, 8-Input FG's

5) Conclusion

- Using a single mathematical framework, inductive X-talk & power constraints can be written that consider supply bounce, glitching, and edge degradation.
- This technique can be used to encode off-chip data transmission to reduce inductive X-talk & power to acceptable levels.
- It was demonstrated that even after reducing the effective bus size, the improvement in per pin data-rate resulted in an *increase* in throughput compared to a non-encoded bus.

Thank you!