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Abstract—This paper presents the design of a many-core 
computer architecture with fault detection and recovery 
using partial reconfiguration of an FPGA.  The FPGA fabric 
is partitioned into tiles which contain homogenous soft 
processors.  At any given time, three processors are 
configured in triple modulo redundancy to detect faults.  
Spare processors are brought online to replace faulted tiles 
in real time.  A recovery procedure involving partial 
reconfiguration is used to repair faulted tiles.  This type of 
approach has the advantage of recovering from faults in 
both the circuit fabric and the configuration RAM of an 
FPGA in addition to spatially avoiding permanently 
damaged regions of the chip. 1 2 
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1. INTRODUCTION 
When cosmic particles (typically heavy ions and protons) 

strike integrated circuits (IC), fault conditions called Single 
Event Effects (SEE) can occur [1].  The particles ionize the 
semiconductor material used in the circuit causing a variety 
of fault conditions.  Single Event Transients (SETs) occur 
when the electron/hole recombination in the ionized 
material causes a voltage spike on the output of the device.  
When the magnitude of the SET is large enough to cause a 
logic transition on a receiving gate, logic failures in the 
circuit can exist [2-3].  A Single Event Upset (SEU) refers 
to when an inadvertent logic transition is captured in a 
digital storage device such as a flip-flop or SRAM cell [4].  
When an SEU occurs in the logic fabric of an FPGA, it is 
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referred to as a soft fault because no permanent damage is 
caused in the circuit and the fault can typically be recovered 
using a reset [5].  When an SEU occurs in the configuration 
RAM of an active region of an FPGA, it is referred to as a 
Single Event Functional Interrupt (SEFI) because a simple 
reset will not restore the initial state of the circuit [6].  This 
type of failure does not cause permanent damage to the 
FPGA; however, traditional reset and recovery sequences 
cannot be used since the physical circuitry in the FPGA 
fabric has been altered.   

There has been a significant amount of work on 
mitigating SEUs in digital circuits.  Triple modulo 
redundancy (TMR) has been widely adopted as a way to 
detect and correct logical errors by using three redundant 
circuits and a voter [7].  The voter circuit produces an 
output dependant on the majority of outputs from the three 
circuits.  For more complex systems, TMR can be used in 
conjunction with a recovery sequence which can reset and 
reinitialize the system when a fault is detected [8].  Similar 
techniques of using redundancy have been applied at the 
application layer.  These techniques (known as radiation 
hardened by software) are based on implementing TMR by 
running redundant processes and performing the voting in 
the software [9].  Watchdog timers have also been deployed 
broadly as a fault mitigation technique.  Watchdog timers 
independently observe the operation of a system and initiate 
a reset when the system becomes idle for too long [8].  
These types of logical solutions are easily adopted in 
reprogrammable fabrics.  The downside of these approaches 
comes in the form of increased area, reduced performance, 
and additional power consumption.  Furthermore, finding 
the optimal fault observation nodes is a challenge due to the 
impact the observation circuitry has on the operation of the 
circuit being monitored [5-6].  Another challenge is 
detecting faults that occur in the checking circuitry.  Despite 
these challenges, logical fault detection and recovery 
techniques have been deployed broadly in military and 
aerospace systems, particularly when the systems contain 
FPGAs. 

One of the biggest challenges in using FPGAs in 
aerospace applications is the susceptibility of the 
configuration RAM to SEUs [10-11].  Typically, FPGAs 
that are used in high radiation environments have a fuse-
based configuration RAM.  This avoids SEFIs, but limits 
the flexibility of the design.  Fuse-based FPGAs do not have 
the ability to reconfigure in the field, which precludes some 



 

 2

of the attractive options that non fuse-based FPGAs have 
such as reconfigurable computing.  In FPGAs that have 
SRAM-based reconfiguration memory, a scrubber circuit is 
typically used to detect and correct SEUs in the 
configuration RAM (i.e., SEFIs).  A scrubber is a circuit 
which continually compares the data in the configuration 
SRAM to the original configuration data that resides in an 
off-chip non-volatile device [12].  When a scrubber detects 
an error, it overwrites the reconfiguration SRAM with the 
original values.  The advantage of adopting a scrubbing 
technique is that it runs independently of the main system 
hardware so it does not require integration into the main 
circuit.  The drawback of traditional scrubbers is that they 
don’t have insight into where in the configuration SRAM an 
SEU might have occurred.  They simply traverse through 
the memory addresses checking the contents.  This can lead 
to a significant latency between the detection and repair of a 
configuration SRAM SEU. 

There are also a number of radiation effects that can cause 
permanent damage to FPGAs.  Total Ionizing Dose (TID) 
refers to the long term damage to a device mainly due to 
low energy electrons and protons [13].  TID effects result 
from charge carriers getting trapped in the insulating or 
more lightly doped regions of the device.  When an 
electron/hole pair is created by the radiation strike, the 
carriers attempt to move back together to find an 
electrostatic equilibrium.  The electron and hole charge 
carriers experience different mobility rates due to the 
properties of the materials they pass through.  Electron 
mobility (µn) of semiconductor materials tends to be higher 
than hole mobility (µn>µp).  As a result, the hole charge 
carriers have a higher likelihood of getting trapped within 
the insulating or more lightly doped regions of the device 
due to the increased time it takes for them to recombine.  
This phenomenon permanently degrades the transistor and 
can result in threshold shifts, increased device leakage, 
timing changes, and ultimately functional failure of the 
device [1]. 

A number of solutions have been developed to increase a 
part’s resilience to long term TID exposure.  Techniques 
such as isolation trenches, substrate doping, and using non-
standard layout techniques are just a few examples of 
approaches that have been used to make integrated circuits 
radiation hardened [14].  Parts that have been radiation 
hardened are specified to withstand a particular dosage 
(typically >300krad).  The primary drawback of these 
techniques is that they require a dedicated radiation 
hardened process to perform the fabrication.  This leads to 
increased cost of the devices.  Furthermore, the fabrication 
techniques used decreases the performance of the devices 
compared to commercially fabricated parts.  This gap in 
performance leads to a number of issues including hardware 
and software compatibility with emerging technology [15].  
TID hardened parts do not prevent SEUs caused by high 

energy particles so logical mitigation techniques are still 
required. 

The inherent flexibility and increased performance of 
SRAM-based FPGAs has spurred great interest from the 
aerospace community to evaluate their usage in flight 
systems [16-17].  As these parts are considered, novel fault 
detection and recovery techniques must be developed that 
can mitigate radiation induced errors.  Recent advances in 
the development tools for FPGAs have enabled direct access 
to the configuration SRAM.  This has allowed techniques 
such as partial reconfiguration to be used as a fault 
mitigation approach [18].   

In this paper, we present a tile-based, soft processor 
computing system.  In this approach, an FPGA is divided 
into equally sized tiles which represent a quantum of 
resources that can implement a Xilinx picoBlaze [19] soft 
processor and can also be individually reprogrammed using 
partial reconfiguration (PR).  At any given time, three of the 
processors are configured in TMR with the rest reserved as 
spare processor tiles.  In the event that the TMR voter 
detects a fault, a recovery process is initiated that will 
attempt to reset, reinitialize, and resynchronize the faulted 
tile.  This recovery process mitigates SEUs that may have 
occurred in the FPGA circuit fabric.  If the tile reset is not 
successful, a spare processor is brought online from one of 
the unused tiles to replace the faulted circuit.  Once the new 
TMR triplet is operational, an attempt is made to recover the 
previously faulted tile using partial reconfiguration.  After 
PR, the recovered tile is reintroduced into the system as an 
available spare.  This recovery process mitigates SEUs that 
may have occurred in the configuration SRAM of the FPGA 
(i.e., SEFIs).   If the system tries to use the recovered tile for 
a second time and immediately experiences a fault, the tile 
is marked as permanently TID damaged and is no longer 
available for use.  This allows the system to continue 
operation in the presence of TID failures in localized 
regions of the FPGA.   

The mitigation strategy we present in this paper has the 
advantage of addressing the two main logical fault types 
experienced in SRAM-based FPGAs (fabric SEUs and 
SEFIs).  Furthermore, the ability to continue operation 
despite TID damage can extend the useful life of flight 
hardware. Our system was prototyped on a Xilinx Virtex-5 
LX110 FPGA.  This paper presents the design, 
implementation, and parametric results for our system.  The 
paper begins with a description of the overall system 
architecture.  Then the operation of the individual recovery 
modes are discussed (soft fault recovery, spatial avoidance 
of TID damage, and SEFI recovery using PR).  Then the 
recovery time is discussed for each of the mitigation 
techniques to evaluate the overhead associated with this 
type of fault detection and recovery scheme.
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2. SYSTEM DESIGN 
Our many-core system contains 16 homogenous tiles, 

each containing a Xilinx picoBlaze soft processor.  Each of 
the active soft processors run identical software to control a 
set of basic peripherals.  For this prototype, the peripherals 
consist of a PS2 keyboard, PS2 mouse, and liquid crystal 
display (LCD).  The computing system continually monitors 
the input keyboard and mouse and writes the input values to 
the LCD screen.  The computer system was implemented on 
a Xilinx XUPV5 evaluation board with a Virtex-5 LX110 
FPGA. 

The system routes the TMR observation nodes 
(instruction address, instruction data, and I/O) for all 16 
processors to a TMR data switchboard circuit.  This circuit 
handles routing the TMR observation nodes for only the 
three active processors into the voter circuit.  After the TMR 
voter determines the majority output value, it sends the 
correct information back to the three active processors 
through a data signal router.  The TMR voter and recovery 
circuit contains the necessary logic to handle switching 
which three processors are active in addition to resetting and 
reinitializing any of the processors.  Any processor that is 
not active is held in reset to eliminate power consumption.   

A graphical user interface (GUI) was developed to 
monitor which of the 16 soft processors were active at any 
given time.  Soft faults in the FPGA fabric were injected 
into the system using push buttons on the evaluation board.  
SEFI faults were induced in the configuration SRAM using 
the GUI.  The GUI also allowed the user to switch between 
an automatic partial reconfiguration of a faulted tile or a 
manual procedure.   

Partial reconfiguration was managed using a separate 
microBlaze soft processor.  This processor handled 
retrieving the reconfiguration data for each of the 16 tiles 
from an off-chip storage device through a Xilinx System 
ACE component and programming the tile using the ICAP 
port on the Virtex-5.  A core was created from the Xilinx 
Core Generator called HWICAP which handles the timing 
interface between the microBlaze soft processor and the 
physical ICAP port. 

Figure 1 shows a photo of the laboratory setup.  Figure 2 
shows the floor plan of the many-core system.  The 
highlighted blocks represent a tile, which is the smallest 
amount of logic that can contain a picoBlaze processor and 
also be partially reconfigured (see section 6).  Figure 3 
shows the block diagram for our many-core system.   

 
 

Fig. 1.  Prototype system implemented on a Xilinx XUPV5 
evaluation board. 
 
 

 
 
Fig. 2.  Floor plan for the V5-LX110 FPGA highlighting the 
16 reconfigurable tiles each containing a picoBlaze 
processor. 
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Fig. 3.  Block diagram for the many-core system. 
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3. TRIPLE MODULO REDUNDANCY 
A TMR voter and recovery circuit was implemented in 

VHDL to detect and correct faults in the soft processors.  
The TMR voter monitors the address and data lines between 
each microprocessor and its instruction memory.  All of the 
observation nodes from the 16 soft processors are routed 
into the TMR voter.  At any given time, three of the soft 
processors are active and are being voted on.  The following 
figure shows the TMR block diagram for three active 
processors. 

 

 
 
Fig. 4.  TMR block diagram of three active processors. 

4. SOFT FAULT RECOVERY 
The TMR circuit monitors the instruction memory 

interface between the processor and memory.  The TMR 
circuit also contains a state machine for the recovery of a 
faulted processor.  When a fault is detected on one of the 
processors, the system attempts to recover the bad processor 
using a reset sequence.   

Upon reset, each processor will read in its initial variable 
values from the TMR/recovery system.  All processors are 
reset at the same time in order to ensure they are 
synchronized and initialized to the beginning of the main 
program loop.  

The processors then enter their main program loop which 
services the peripherals.  At the end of the main program 
loop, an Error_Flag is checked to see if a TMR failure has 
been detected by the recovery circuit.  If no failure has been 
indicated, the computer continues to execute the main 
program loop.   

In the event that a failure is detected by the TMR voter, 
the recovery state machine sends an interrupt to all 
processors.  An interrupt service routine sets the Error_Flag 
indicating that a fault has been detected and processor 
recovery is necessary.  When the main program loop checks 
the Error_Flag and sees it is asserted, it will then proceed to 
write all of its register and variable information to the TMR 
recovery system and then wait for a reset.  In this manner, 
the processors will complete their current peripheral tasks 
prior to beginning the recovery sequence.  The TMR voter 
ignores the variable data that is read from the faulted 
processor and stores the data from a good processor.  The 
recovery state machine then resets all processors and 
reinitializes their variable data.  The system operation and 
recovery sequence flow charts are shown in the following 
figure.   

 

Fig. 5. Flow chart of many-core system operation.  
 

The Xilinx ChipScope Internal Logic Analyzer was used 
to observe the address and data lines between the processors 
and their instruction memory.  Figure 6 shows the 
ChipScope view of system operation after a reset with 
processors 0, 1, and 2 active as indicated in the GUI.  Figure 
7 shows the ChipScope view of the bus signals during a soft 
fault in the FPGA fabric.  The system continues to service 
the peripherals despite one of the processors being out of 
synch using the TMR voter circuit.  Once the peripherals are 
serviced, the recovery sequence is initiated on all processors 
which resets, reinitializes, and resynchronizes all three 
processors in the TMR triplet. 
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Fig. 6. ChipScope measurement of the address lines on the soft processor after reset showing that processor 0, 1, and 2 are 
active and in synch (right).  Also shown is the corresponding GUI (left) indicating that processors 0, 1, and 2 are active 
(blue) and the remaining processors are available as spares (gray). 

 

 

 

 

 

 

 

Fig. 7. ChipScope measurement of the address lines on the soft processor showing a soft fault occurring on processor 0.  The 
recovery sequence detects the fault, off loads the good variable data, and then resets and reinitializes all processors.  

5. SPATIAL AVOIDANCE OF TID FAILURES 
When an error is detected in the system that is not due to 

a soft fault in the FPGA fabric, our system attempts to 
spatially avoid the fault by bringing a new tile online.  For 
our prototype, this type of fault is injected using the GUI or 
by monitoring back-to-back faults on a processor that has 
undergone the soft fault recovery sequence (described in 
previous section).  Spatial avoidance of is applicable for 
tiles that have undergone functional failures due to TID.   

The process for enabling a new tile is identical to the 
process flow chart in figure 5.  When the TMR voter detects 
an error that cannot be recovered using the soft recovery 
process, it initiates an interrupt to all processors indicating 
that a fault has occurred.  The interrupt service routine sets 
the Error_Flag in the processors.  After the processors 
complete servicing the peripherals in the main program 
loop, they proceed to offload their variable data to the 
recovery state machine.  The recovery circuit then resets all 
processors.  Upon reset, the recovery circuit selects a spare 

tile to replace the faulted processor.  As the new processor 
comes out of reset, it is initialized with the same variable 
data that the two remaining good processors are loaded 
with.  In this way, any spare processor can be brought online 
and synchronized with two other processors in order to form 
a TMR triplet.  The system contains a log of which 
processors are available as spares and which ones are 
marked as damaged.   

Figure 8 shows the ChipScope measurement of a system 
which has undergone a fault on processor 2.  After an 
unsuccessful soft fault recovery (section 4), the system 
brings processor 3 online to form the TMR triplet.  The new 
processor is reset at the same time as the two remaining 
good processors and all three are loaded with the same 
variable data.  Figure 9 shows the ChipScope measurement 
for multiple faults in the system.  In this figure, processors 
2, 4, 6, and 7 have been faulted.  The system has activated 
processors 3, 5, and 8 to form the TMR triplet.  This 
recovery process will continue until only 3 functioning tiles 
remain. 

Processors 1, 2, and 3 
are active and in synch 
after reset.  Processors 

3-15 are spares.

Soft fault detected 
on processor 0

All processors 
are reset 

All processors 
resume program 

execution in synch 
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Fig. 8. ChipScope measurement of the address lines on the soft processor showing spatial avoidance of faults.  In this figure, 
processor 2 has undergone a fault as indicated by the red in the GUI (left).  The system brings processor 3 online to form the 
TMR triplet and continues operation.  Processors 4 through 15 are still available as spares. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. ChipScope measurement of the multiple processor faults.  Processors 2, 4, 6,and 7 have faulted as indicated in the 
GUI (red).  The system spatially avoids these tiles by activating processors 3,5 and 8. 
 
 

6. SEFI RECOVERY USING PR 
Section 5 described how this system spatially avoids 

faulted tiles that have undergone a failure that cannot be 
repaired using the soft fault recovery sequence.  Once the 
system has brought a new tile online, a repair attempt is 
made on the faulted tile using partial reconfiguration.  This 
type of recovery process will mitigate SEUs that have 
occurred in the reconfiguration SRAM of the FPGA (i.e., 
SEFIs).  The recovery sequence is performed independently 
of the normal system operation.  Once the tile has been 
reconfigured, it is entered back into the system’s log as an 
available spare. 

Tile Sizing 

 When designing a system to exploit partial 
reconfiguration, the first step is to select a tile size that has 
two features.  First, the tile must be sized such that it 
contains the smallest quantum of resources that will 
implement the circuit to be reconfigured.  In this prototype, 
the smallest circuit block that was to be reprogrammed was 
a picoBlaze soft processor.  The second feature of the PR 

tile is that it is as small as possible while still meeting the 
requirements of the partial reconfiguration capability of the 
FPGA. 

For this project, a picoBlaze processor was found to 
require 24 CLBs and 4 BRAMs.  The Xilinx PR tools allow 
PR tiles to be reconfigured in groups of 20 CLBs at a time.  
Furthermore, the PR tool require that 4 BRAMs be 
reconfigured at a single time.  Due to these requirements, 
the size of the smallest PR tile for this system is 40 CLBs 
and 4 BRAM.  The limitation of the PR tool leads to some 
inefficiencies in the system due to unused resources within 
the tile.  For this project, each tile contains 16 CLBs and 3 
BRAMs that are unused but must be included in the partial 
reconfiguration due to the requirements of the PR 
guidelines.  For perspective, the V5-LX110 FPGA has 
sufficient resources to implement over 100 picoBlaze 
processors; however, due to the limitations of the PR tile 
size, only a 16-core system was able to be implemented with 
PR.  Figure 10 shows a zoom of the floor plan for one of the 
PR tiles used in this work.  Highlighted in this figure are the 
CLB columns (20 each) and the BRAM columns (4 each).

Processors 3, 5, and 8 
are active.

Processor 2 has 
undergone a fault.  

Processor 3 is brought 
online to replace it 
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Fig. 10. Zoomed in view of the PR tile used in this work highlighting the constraints of partial reconfiguration.
 

Partial Reconfiguration Bit Streams 

Each of the 16 tiles in this system contains a unique 
configuration bit stream file (32k byte).  These bit streams 
were generated after the floor planning of the tiles and 
contain the specific addresses and configuration bits for 
their corresponding tile.  These configuration files are stored 
off-chip in a non-volatile Flash EEprom.  The bit file is 
retrieved from non-volatile memory using the Xilinx 
SystemACE component.  Each of the bit stream files 
contains a header with unique information about the bit 
stream file.  This is then followed by information regarding 
the size of the bit stream file.  This is then followed by a 
constant header of 54 bytes.  After this, unique 
configuration data is sent starting with a unique starting 
address corresponding to a location in the configuration 
SRAM.  Table 1 shows the starting address for each of the 
partial reconfiguration bit files in this design.  This 
information is useful when monitoring the partial 
reconfiguration in real-time using ChipScope.  Figure 11 
shows the HEX and ASCII translation of the bit stream file 
for Tile 0 in our system with the important words 
highlighted. 

 

 

picoBlaze Tile 
Configuration SRAM 

Starting Address (HEX) 

0 x00018280 

1 x00018780 

2 x00019400 

3 x00019980 

4 x00010280 

5 x00010800 

6 x00011400 

7 x00011980 

8 x00008280 

9 x00008800 

10 x00009400 

11 x00009980 

12 x00000280 

13 x00000800 

14 x00001400 

15 x00001980 
 

TABLE I 
TILE PR STARTING ADDRESSES FOR CONFIGURATION SRAM

BRAM column 
within the PR tile.  

Partial 
reconfiguration 

requires BRAMs to 
be configured in 

groups of 4. 

CLB column within the 
PR tile.  Partial 

reconfiguration requires 
CLBs to be configured in 

groups of 20. 
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Fig. 11. Partial reconfiguration bit stream file contents for tile 0 of our system highlighting key portions of file. 
 
 

A dedicated MicroBlaze soft processor is used to handle 
the independent partial reconfiguration of the tiles.  The 
MicroBlaze communicates directly with the Xilinx 
SystemACE component to retrieve the individual PR bit 
streams.  The SystemACE communicates with the off-chip 
Flash EEprom (figure 3) and reads the corresponding bit 
files out of non-volatile memory.  The MicroBlaze processor 
takes the information from the SystemACE and passes it into 
the HWICAP core.  This core is generated using the Xilinx 
PR tools.  Within this core are a series of FIFO blocks 
which handle retiming the bit stream files so that they can 
be driven into the ICAP port.  The ICAP port provides 
direct access to the configuration SRAM and enables partial 
reconfiguration. 

 
In order to monitor the partial reconfiguration occurring 

in the background while the processors are running, the 
ICAP port signals are observed with ChipScope.  Figure 12 
shows the system during the reconfiguration of tile 0.  In 
this figure, ChipScope displays the address busses of the 

three active processors (3, 5 and 8).  In this case, processors 
0, 1, 2, 4, 6, and 7 are faulted with a SEFI.  The system is 
currently repairing processor 0 by reprogramming its tile.  
The GUI indicates that processor 0 is being repaired and 
will be available as a spare upon completion by turning it 
from red to gray.  ChipScope is displaying the signals that 
are being driven into the ICAP port.  As the ICAP data is 
monitored, the unique starting address for tile 0 
(x00018280) appears on the bus indicating that tile 0 is 
being reprogrammed in the background as processors 3, 5, 
and 8 continue to run. 

 
Figure 13 shows the recovery of a SEFI on processor 1 

through partial reconfiguration of tile 1.  The GUI indicates 
that processor 1 is being repaired and will be available as a 
spare upon completion by turning it from red to gray.  
Again, ChipScope monitors the ICAP data and observes the 
unique starting address for tile 1 (x00018780) on the bus 
indicating that tile 1 is being reprogrammed in the 
background as processors 3, 5, and 8 continue to run. 

 
 
 
 
 
 

 
 

File 
Information 

Bit Stream 
Size 

Fixed 
Header 

Starting 
Address 

Config  
Data 
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Fig. 12. Recovery from SEFI on processor 0 using partial reconfiguration. The ICAP port is monitored using ChipScope 
showing the partial reconfiguration of tile 0 (address x00018280) while processors 3, 5, and 8 are active.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13. Recovery from SEFI on processor 1 using partial reconfiguration. The ICAP port is monitored using ChipScope 
showing the partial reconfiguration of tile 0 (address x00018780) while processors 3, 5, and 8 are active.   

7. PARAMETRIC PERFORMANCE 
Soft Fault Recovery 

The amount of time it takes to perform a soft fault 
recovery depends on the number of clock cycles it takes to 
generate the Interrupt and Reset plus the time it takes to off-
load the variable information from a good processor and 
then re-load the variable information back into the three 
active processors.  It takes two clocks for both the interrupt 
and reset in our system.  Each picoBlaze processor contains 
64 bytes of RAM data that needs to be off-loaded and 
reloaded during each recovery.  Each read/write takes 2 
clocks per bus cycle.  Our system runs off of a 100MHz 
system clock.  The timing overhead to perform a soft fault 
recovery was found to be 2.6us using the following: 

 
 
 
 
 

 
Spatial Avoidance of TID 

The amount of time to bring a spare processor online is 
identical to the time it takes to perform a soft fault recovery 
procedure (2.6us).  The only difference in the procedures is 
that when the variable data is loaded into the three 
processors, one of the active processors was previously a 
spare.  

SEFI Recovery 

The amount of time that it takes to perform partial 
reconfiguration of a tile depends on the size of the tile and 
the speed at which data can be written to the ICAP port.  For 
our system, the time for PR was obtained empirically by 
measuring the time between the start and stop of the 
reconfiguration.  The PR for each tile took approximately 
200 clocks for each byte of configuration data.  Our tiles 
were 31.2k bytes in size, which corresponded to a tile PR 
time of 66ms.  For comparison, an entire V5-LX110 device 
requires a bit stream size of 3,799k bytes to reconfigure and 
takes 984ms using the SystemACE. ( ) usMHzclkst

clksclksclksclkst

ttttt

erySoftFault

erySoftFault

InVarOutVarRSTIRQerySoftFault

6.2100
1260

12812822

covRe

covRe

__covRe

===

+++=

+++=

ICAP address x00018280 
corresponds to partial 

reconfiguration of Tile 0 
Active processors 

continue to run while PR 
occurs in background 

GUI indicates processor 0 
has been repaired and is 

available as a spare 

ICAP address x00018780 
corresponds to partial 

reconfiguration of Tile 1 
GUI indicates processor 1 
has been repaired and is 

available as a spare 
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8. CONCLUSION 
This paper presented the design and prototyping of a 

many-core computer architecture with fault detection and 
recovery.  Our approach uses three fault mitigation 
techniques to recovery from radiation induced failures on an 
FPGA.  The system partitions an FPGA into equally sized 
tiles, each containing a soft processor.  An SEU in the 
FPGA fabric is mitigated using a reset sequence.  An SEU 
in the configuration SRAM (ie., a SEFI) is mitigated using 
partial reconfiguration of the tile.  Finally, TID damage in a 
tile is mitigated using spatial avoidance of the effected 
region.  The soft fault recovery and spatial TID avoidance 
strategies were found to take 2.6us to complete.  The partial 
reconfiguration of a single tile was found to take 66ms to 
complete.  This type of comprehensive fault mitigation 
strategy addresses the three main failure mechanisms in 
FPGA-based computing systems (SEU in the fabric, SEFIs, 
and TID damage) and can be used to improve the reliability 
of FPGA-based flight computers for military and aerospace 
applications. 
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