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Abstract— This paper describes research efforts to mitigate 

weaknesses in a TMR+spares radiation tolerant SRAM-based 

FPGA computer system.  An existing 9-tile Microblaze 

architecture is reviewed and the desired improvements of 

fault-mitigated routing, fault location determination and 

performance enhancement via runtime-configurable hardware 

accelerators are discussed.  Hamming encoding is proposed as 

a method for protecting the routing resources from radiation-

induced single event upsets and as feedback to the computer’s 

configuration control system to distinguish faults occurring in 

routing from those occurring within partially reconfigurable 

processing tiles.  This is important as the recovery operation 

for each of these conditions is unique.  Without the ability to 

distinguish routing faults from tile faults, routing faults are 

aliased as tile faults and unnecessary tile repair steps are 

taken.  In addition to the protected routing with configuration 

control feedback, architecture for implementing TMR, 

processor-peripheral hardware accelerators is introduced. 
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1. INTRODUCTION 

Field programmable gate arrays (FPGAs) have gained wide 

acceptance in aerospace applications as a result of their 

desirable combination of high performance, low cost, low 

power and design flexibility.  In high bandwidth, 

computationally intensive applications FPGAs stand as a 

compromise between custom ASICs and traditional 

computer processors.  FPGAs enable interfacing with high 

data rate instruments through the use of optimized custom 

logic cores, are capable of processing large data sets such as 

those generated by high-resolution imaging systems, and 

contribute to onboard data reduction through the use of real-

time digital signal processing routines.  This data reduction 

eases the onboard data storage requirements and reduces the 

amount of downlinked data.  These attributes are 

particularly useful as payloads grow in complexity in an 

effort to maximize scientific value. 

FPGAs, particularly SRAM-based devices, provide a unique 

flexibility to aerospace systems.  The user design for these 

devices is stored in volatile static RAM cells, which must be 

initialized at power-up.  A single FPGA can be used to 

implement multiple system functions by loading different 

configuration bitstreams based on current system needs or 

operating mode.  This allows hardware sharing by non-

concurrent processes that would otherwise require 

independent hardware systems resulting in an overall 

reduction in component count and system complexity.  

More advanced configuration features, such as active partial 

reconfiguration, allow specific portions of an FPGA to be 

reprogrammed without affecting the operation of the rest of 

the FPGA.  This allows hardware peripherals to be 

instantiated on an as-needed basis resulting in power 

savings through an overall reduction in device resource 

utilization.  Yet another benefit of FPGAs is the ability to 

change the implemented hardware design at any time during 

a system lifecycle in response to design errors, technology 

advancement or evolving mission requirements.  In space 

systems this capability is highly advantageous as modifying 

hardware post-launch is problematic for obvious reasons. 

Aerospace environments present well documented 

challenges to commercial-grade SRAM-based FPGAs as the 

memory elements that give the devices their flexibility are 

themselves susceptible to faults induced by interactions with 

high-energy ionizing radiation.  Radiation effects can 

generally be broken down into two categories based on the 

nature of their interactions with the device’s constituent 

materials.  Total ionizing dose (TID) is a material-dependent 

measure of energy deposition by ionizing radiation [1].  The 

materials of most interest in CMOS devices are the gate and 

field oxides as energy deposition can result in trapped 

charge and a gradual degradation of the characteristic 

electrical properties or an increase in leakage current [2].  

As an ionizing particle transits through the gate oxide it 

leaves behind a track of electron-hole pairs.  Differences in 

electron and hole mobility and a variety of charge trapping 

mechanisms result in persistent holes in the oxide.  Over 

time, this charge builds up and affects transistor electrical 

properties, such as the threshold voltage [2].  These effects 

are strongly dependent on the thickness of the gate oxide 

and tend to diminish with decreasing oxide thickness.  In 

deep sub-micron process nodes (< 45-nm), TID is less of a 

concern to FPGA device reliability in aerospace application 
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than the second category of radiation effects, known as 

single event effects (SEE). 

Single event effects describe the transient effects related to 

radiation interactions.  There are multiple subcategories of 

SEEs including single event transients (SET), single event 

functional interrupts (SEFI), single event upsets (SEU), and 

single event latchup (SEL) [3].  SETs, SEUs and SEFIs are 

closely related as they differ in where they occur spatially 

within the device.  Whereas SEL represents a potentially 

damaging condition in which parasitic transistors are 

activated resulting in a high current draw, SETs, SEUs and 

SEFIs are considered to be soft errors correctable by writing 

valid data into the affected memory element.  SETs occur 

when ionizing radiation induces a transient voltage in a 

combinational logic circuit.  This erroneous signal only 

temporarily affects the combinational logic signals and 

dissipates before being latched into a system memory 

element [4].  If a SET is latched into a memory element it is 

known as an SEU.  SEUs are faults affecting either user 

memory or configuration memory contents.  SEFIs are a 

subcategory of SEUs that affect core device configuration 

functions including the configuration controller, clock 

management tiles, etc [3].  Single event effects are of 

primary interest due to their increasing rate of occurrence 

with current semiconductor device technology scaling 

trends [5,6].  For a more comprehensive review of single 

event effects consult [6]. 

2. PREVIOUS WORK 

The focus of this research is to build upon the traditional 

fault mitigation techniques in an effort to increase the 

performance and reliability of SRAM FPGAs for aerospace 

applications.  The approach to accomplishing this is to 

combine readback scrubbing, active partial reconfiguration, 

and TMR in a specific way to efficiently detect and mitigate 

radiation induced faults while minimizing fault recovery 

time.  The FGPA is partitioned into discrete, partially 

reconfigurable processing resources.  These are referred to 

as “tiles”, and they represent the granularity of the TMR 

implementation.  Our current research system, implemented 

on a Xilinx Virtex-6 FPGA, consists of nine tiles each of 

which contains a Microblaze microprocessor.  During 

normal operation, three tiles are active and constitute an 

active triad.  The outputs of the active tiles are routed 

through a multiplexer to a majority voter to form a complete 

TMR system.  In the background, and without impacting the 

operation of the active triad, a scrubbing routine maintains 

the spare tiles using active partial reconfiguration.  An 

external configuration controller monitors the status of the 

TMR+spares system, controlling which tiles are active, 

performing configuration readback and scrubbing, and 

tracking the status of each of the tiles.  Figure 1 depicts a 

TMR+spares system architecture. 

 

Figure 1 – This figure shows the FPGA floorplan for a 9-

tile TMR+spares system.  The FPGA fabric is partitioned 

into nine discrete elements each of which contains a Xilinx 

Microblaze soft processor. 

The configuration controller is responsible for detecting and 

recovering from faults in the system.  The fault detection 

mechanism is dependent upon fault location.  A SEU 

occurring in one of the active tiles is both detected and 

mitigated by the voter circuit.  The voter circuit alerts the 

configuration controller to the faulted tile and by design 

prevents the fault from propagating to the system output.  In 

this way the system tolerates faults in the active tiles.  Upon 

detection of a faulted active tile, the configuration controller 

initiates a tile switch wherein a healthy spare tile is 

substituted for the faulted tile in the active triad.  The tiles 

are synchronized and system operation is resumed.  Active 

partial reconfiguration is then used to repair the faulted tile.  

After repair, the tile is reintroduced into the system as an 

available spare tile and the system is returned to a nominal 

state.  The ability to bring healthy spare tiles online in place 

of faulted tiles, and repair faulted tiles in the background is 

advantageous in high fault rate environments.  It is 

generally faster to switch from a faulted tile to a healthy 

spare than it is to wait for the readback scrubber to 

correct the fault.  Table 1 shows the approximate 

recovery times for each method.  The times are design-

dependent and vary according to bitstream length of the 

tiles.  The recovery time estimate for readback 

scrubbing is a worst-case value for a system scrubbing 

all bits.  This time could be improved by only attending 

to the configuration memory essential bits. 
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Table 1–This table highlights the latency for various 

recovery techniques.  Equivalent configuration clock speed 

is 1.3-MHz, 8-bit SelectMAP interface.  The speed is limited 

by configuration data retrieval from the MicroSD storage 

device. 

Recovery 

Method 

Recovery 

time 

Full 

configuration 

~2.5-s 

Tile PR 126-ms 

Blind tile 

scrub rate (9 

tiles) 

1.1-s 

Tile switch 200-µs 

 

 

 

Figure 2—This figure shows the general architecture of a 

nine-tile TMR+spares system.  Blue features represent 

system elements that are repaired via partial 

reconfiguration.  Green elements are repaired by the 

scrubbing routine. 

Since the fault rate is highly dependent on orbit, location 

within orbit, and recent solar activity, the number of 

available spare tiles can be adjusted accordingly.  Reducing 

the number of maintained spares can provide a reduction in 

static power during low fault rate conditions.  Similarly, the 

configuration memory scrubbing activity can be throttled 

based on observed or expected fault rates. 

Spare tiles are maintained in a healthy state by a blind 

scrubbing routine performed by the configuration controller.  

This requires the partial bitstream for each of the tiles to be 

loaded at a user-defined scrub rate.  A SEU occurring in the 

configuration memory for the routing between a tile and the 

voter will be aliased as a faulted tile, and the previous steps 

of repairing the tile will have been performed unnecessarily.  

Upon reactivation of that tile, the fault in the routing would 

be detected again.  To prevent this from happening, the 

scrubber continuously checks the configuration memory of 

the entire FPGA and cleans up faults affecting the routing 

which aren’t fixed in the tile repair process.  This prevents 

faults from accumulating in the static portion of the FPGA 

design. 

The fault-tolerant research architectures are implemented on 

a custom research hardware platform shown in Figure 3.  A 

Xilinx Virtex-6 (XC6VLX75T) device, referred to as the 

“main FPGA” plays host to the research systems.  The 

configuration control and user interface functionality are 

implemented on a Spartan-6 (XC6SLX75) device, referred to 

as the “control FPGA”.  A USB interface provides 

communication between the test platform and a host PC.  

The printed circuit board conforms to CubeSat form-factor 

requirements for eventual inclusion in a orbital or suborbital 

payload electronics stack. 

The control FPGA self-configures at power-up via a Master-

Serial connection to a Xilinx Platform Flash component.  

Once configured, the control FPGA reads the bitstream for 

the main FPGA from a MicroSD card and loads it over an 8-

bit SelectMAP interface.  This same interface is used to 

perform readback, scrubbing, active partial reconfiguration, 

and eventually fault injection on the main FPGA.  A large 

GPIO bus between the two devices allows application data 

to be passed between the devices as well as any control 

signals necessary for system testing. 

 

Figure 3–This figure shows the 4" by 4" custom FPGA 

board used as a test platform for radiation tolerant 

architectures.  This board features a Virtex-6 and a 

Spartan-6.  Virtex configuration is controlled by the Spartan 

FPGA via an 8-bit SelectMAP interface. 

 

3. SYSTEM LIMITATIONS 

The TMR+spares system has some weaknesses that can be 

improved through straightforward design enhancements.  

The first weakness is the inability to distinguish faults 

occurring in a tile from faults occurring in the routing.  As 

the recovery mechanism is different for each, it is desirable 

to isolate fault locations.  A second limitation is the lack of 
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inter-tile communication.  Simply running soft processors in 

TMR reduces the FPGA to a simple microcontroller.  With 

inter-tile communication, the processor tiles gain the ability 

to instantiate custom logic cores as peripheral devices to 

offload computationally intensive tasks.  The ability to 

instantiate peripheral hardware accelerators makes far better 

use of the FPGA resources. 

4. OUR SOLUTIONS 

Isolating fault location is necessary as it can be used as 
feedback to the configuration control system to more 
efficiently handle the fault recovery process.  The technique 
we propose to accomplish this leverages the commonly used 
Hamming encoding process to add redundancy to the routing 
[15].  Hamming encoding is a technique for detecting and 
correcting single bit errors and detecting multiple bit errors 
by adding carefully calculated check bits to transmitted data.  
These check bits constitute a check code, which is used by 
the data receiver to determine if any bits were corrupted 
during transmission.  In the case of a single bit upset, the 
Hamming decoding process, which is performed by the 
receiver, yields a binary code whose decimal value indicates 
which bit position was corrupted.  Inverting the corrupted bit 
yields the original, uncorrupted data.  The added bits are 
used to detect multiple bit errors and detect/correct single bit 
errors.  Figure 4 provides some details on the generation of 
the Hamming code for a 32-bit word. 

 

Figure 4—This figure shows the process for generating the 

check bits for the Hamming encoding process.  Hamming 

bits are simply a series of even parity checks applied to 

particular bits such that the location of a bit upset can be 

determined by the decoder. 

The use of Hamming codes to protect FPGA memory and 
register contents against various upsets has been previously 
demonstrated, e.g. [16].  In addition to using the Hamming 
code to recover the original data in the event of a single-bit 
upset, the detection of an upset in the Hamming decoding 
process implies that the error occurred between the encoder 
and the decoder.  By placing an encoder immediately at the 
boundary of a processing tile, the amount of routing 
protected from faults is maximized.  Faults occurring in a tile 
are detected by the majority voting process, while faults 

occurring in the routing between a tile and the voter are 
detected by the Hamming decoding process.  The system 
configuration controller uses this information to either 
initiate a tile swap in the event of a tile fault, or direct the 
scrubber to the affected routing region.  The TMR 
architecture can tolerate multiple errors within the data path 
of a single active triad member, so the system controller can 
allow operation to continue in the presence of a detected 
routing upset with the understanding that the routing faults 
will, in time, be corrected by the scrubbing routine. 

Table 2—This table shows the recovery options for various 

fault conditions. 

Fault 
Location 

Detection 
Method 

Recovery 
Method 

Tile Majority 
voter circuit 

Tile swap, 
background 
repair 

Inter-tile 
routing 

Hamming 
decoding 
circuit 

Scrub 

 
A routing protection test system was designed and 

implemented on a Xilinx Virtex-6 device.  In this system, 

simple counters generated 32-bit data that was Hamming 

encoded using six check bits.  Tile faults were simulated 

using a design level injection circuit that inverted a single 

data bit prior to encoding.  Routing faults were simulated 

using a design level injection circuit that inverted any one of 

the 38-bit Hamming encoded vector bits.  The routing faults 

were induced between the Hamming encoder and decoder 

circuits.  Figure 5 depicts a block diagram of this system. 

Each counter output is routed through a fault injection circuit 

capable of inverting individual bits determined by a control 

signal from an external processor.  The data are input to 

Hamming encoder circuits, which generate the proper check 

codes used to protect the data in the routing between the 

source tile and the voter circuit.  The data pass through 

another fault injection circuit used to simulate single-bit 

routing faults.  Finally, the data are decoded and input into a 

majority voter circuit.  If a single bit error is indicated by any 

of the check codes then an error in the routing is suspected to 

have occurred.  If the data produced by a tile is deemed 

incorrect by the majority voting circuit, a tile fault is 

suspected to have occurred. 

In the TMR+spares system this encoding scheme performs 

two important tasks: (1) it identifies faults occurring in the 

interconnect between two tiles allowing them to be 

corrected by the scrubbing routine, and (2) it mitigates the 

faults in the data allowing the system to continue normal 

operation.  This preserves the integrity of the data used by 

the voting, and allows faults in the interconnect to be 

identified and corrected.  The detection of multiple bit 

upsets in the interconnect is also useful because such a 

condition may interfere with proper system operation.  
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Multiple bit error detection allows a tile swap to be initiated 

in advance of computations being performed on corrupt 

data.  Error detection and correction allows a greater 

understanding of the nature of faults occurring within the 

TMR+spares architecture. 

Figure 5 shows the FPGA floorplan for the routing 

protection test system.  In this system the resource 

utilization of the encoder/decoders is comparatively large 

when placed adjacent to the simple counter blocks.  When 

used in a practical system the percentage increase in 

overhead will be significantly reduced.  Additionally, the 

encoders/decoders themselves are susceptible to upset.  The 

susceptibility can be reduced through application of fine-

grained TMR, or they can be left unmitigated with the 

knowledge that should the encoder/decoder be faulted, the 

system simply reverts to being unable to resolve the location 

of the fault.  The likelihood of this occurring depends on the 

area of the encoder/decoder circuitry. 

 

Figure 5—This figure depicts the FPGA floorplan for the 

TMR routing protection test system, noting that the resource 

utilization is extremely small for this simple system and all 

component blocks are grouped closely together. 

Figure 6 shows the timing diagram for a routing fault 

simulation including the original data, the Hamming 

encoded data, the routing-faulted data, the Hamming 

decoded and corrected data, the Hamming check word 

representing which bit number was corrupted, and the final 

output of the TMR system.  In this experiment, the routing 

fault was induced by performing an exclusive-OR operation 

of the Hamming encoded data with a fault mask bit vector.  

This is representative of an error occurring in a memory 

element along the routing path. 

This is fundamentally different from errors occurring in 

configuration memory, but the effects of each manifest in 

the same way at the design level.  This experiment shows 

that by encoding/decoding data over a routing path single 

event upsets occurring in the configuration memory along 

said path can be mitigated, and system operation can 

proceed as normal with the knowledge that the fault will 

eventually be corrected by a scrubbing routine.  As single-

bit upsets occurring in routing can be corrected, there is no 

need to take corrective action.  In fact, such a system can 

tolerate single-bit upsets in the routing in each of the three 

TMR paths, and multiple-bit upsets in a single data path 

without requiring targeted recovery action.  The system is 

able to tolerate a limited accumulation of errors, which may 

be useful in a high fault rate environment.  The system 

presented is a simple proof-of-concept and is easily applied 

to the aforementioned 9-tile system, or other practical 

research systems. 

The 9-tile system highlighted previously featured partially 

reconfigurable regions each containing a Microblaze soft 

processor.  Each processor executed an identical counting 

program, which was used to test the general operation of the 

radiation tolerant architecture.  This system was useful for 

developing the requisite reconfigurable computing tools 

such as SelectMAP device configuration, active partial 

reconfiguration, configuration memory blind scrubbing, and 

configuration memory readback.  However, it is recognized 

that this is a very restricted use of the FPGA capabilities that 

make these devices so relevant to space applications. 

The next step in this research is to increase the performance 

of the computer system by making use of the flexibility of 

the FPGA fabric.  A research area currently being explored 

is runtime instantiation of custom hardware accelerators as 

peripheral devices to the Microblaze processors.  This 

allows the processors to offload computationally intensive 

tasks to faster and more efficient computational resources 

rather than performing operations in software.  As there are 

three microprocessors active at any time in a TMR system, 

it is also required that three hardware accelerators be 

instantiated, one for each processor.  This presents a 

problem similar to the unprotected routing wherein fault 

location is indistinguishable.  A fault occurring in a 

peripheral accelerator would eventually be detected as a tile 

fault by the voter circuitry.  To recover, the configuration 

control system would have to repair both the accelerator and 

the processor tiles.  Therefore, the hardware accelerators 

must be instantiated in a TMR arrangement. 
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Figure 6– This figure demonstrates a simulated routing fault.  The original count, the faulted Hamming encoded data, the 

recovered data, the Hamming check code, and the TMR output values are depicted. 

 

Figure 7– Proposed architecture for implementing TMR 

hardware accelerators as processor peripherals in a 

radiation tolerant FGPA system. 

Figure 7 depicts the proposed architecture for implementing 

custom hardware accelerator cores as peripheral devices to a 

triad of TMR processor tiles.  In this system, each tile 

contains a voter circuit connected to the other two like-tiles 

in the system.  This allows the data passed between the 

accelerators and the processing tiles to be fault-mitigated 

using TMR.  Since each tile contains a voter, the results of 

which can be passed to the configuration control system, 

faulted tiles can be identified and repaired efficiently.  A 

faulted accelerator tile continues to feed correct data to its 

parent processor tile as the output is a majority vote from all 

three of the accelerators.  Similarly, a parent processor tile 

feeds TMR-ed data to its accelerator allowing the 

accelerator to continue operating properly in the event of a 

processor fault.  This arrangement isolates single faults 

allowing the rest of the system to continue operating 

nominally.  Optionally, the TMR output from each tile can 

be used as feedback into the local logic to aide in the 

synchronization of newly repaired tiles.  This TMR with 

feedback is commonly used in radiation tolerant FPGA 

applications [17].  The distribution of the voter to each of 

the tiles eliminates it as a single point-of-failure in the 

system.  Though the processor output is depicted going to 

an external voter circuit, any one of the tile-to-accelerator 

TMR signals could conceivably be passed to the device 

output rather than implementing another voter. 

5. CONCLUSIONS 

This paper describes research efforts to mitigate weaknesses 

in a TMR+spares radiation tolerant SRAM-based FPGA 

computer system.  An existing 9-tile Microblaze 

architecture is reviewed and the desired improvements of 

fault-mitigated routing, fault location determination and 

performance enhancement via runtime-configurable 

hardware accelerators are discussed.  Hamming encoding is 

proposed as a method for protecting the routing resources 

from radiation-induced single event upsets.  In addition to 

fault mitigation, the presence of faults in the Hamming 

encoded data allows the computer’s configuration control 

system to distinguish faults occurring in routing from those 

occurring within the partially reconfigurable processing 

tiles.  This is important as the recovery operation for each of 

these conditions is unique.  Without the ability to 

distinguish routing faults from tile faults, routing faults were 

aliased as tile faults and unnecessary tile repair steps were 

taken. 

In addition to the protected routing with configuration 

control feedback, architecture for implementing TMR, 

processor-peripheral hardware accelerators was introduced.  

This architecture allows the system to continue operating in 

the event of a single faulted tile.  Each tile contains a voter 

circuit allowing TMR data to be passed between processor 

tiles and accelerators, and vice versa.  This eliminates the 

voter as a single point-of-failure in the system at the cost of 

increased resource utilization.  Future work in this area will 

move to a TMR+spare architecture which involves the 

addition of spare tiles to both the processor and peripheral 

triads, allowing a context switch from a faulted tile to a 

healthy tile.  As in the 9-tile system, faulted tiles are then 

repaired in the background via active partial reconfiguration 

without interfering with foreground operations.  Lastly, the 
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routing among the tiles will be Hamming encoded to further 

enhance the fault tolerance and increase the spatial 

awareness of fault locations. 
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