

 978-1-4799-1622-1/14/$31.00 ©2014 IEEE

 1

A Network-on-Chip for Radiation Tolerant, Multi-core

FPGA Systems
Justin A. Hogan, Raymond J. Weber and Brock J. LaMeres

Electrical and Computer Engineering Department
Montana State University

Bozeman, MT 59717
justin.hogan@msu.montana.edu

raymond.weber@msu.montana.edu
lameres@ece.montana.edu

Abstract— This paper describes research efforts to mitigate

weaknesses in a TMR+spares radiation tolerant SRAM-based

FPGA computer system. An existing 9-tile Microblaze

architecture is reviewed and the desired improvements of

fault-mitigated routing, fault location determination and

performance enhancement via runtime-configurable hardware

accelerators are discussed. Hamming encoding is proposed as

a method for protecting the routing resources from radiation-

induced single event upsets and as feedback to the computer’s

configuration control system to distinguish faults occurring in

routing from those occurring within partially reconfigurable

processing tiles. This is important as the recovery operation

for each of these conditions is unique. Without the ability to

distinguish routing faults from tile faults, routing faults are

aliased as tile faults and unnecessary tile repair steps are

taken. In addition to the protected routing with configuration

control feedback, architecture for implementing TMR,

processor-peripheral hardware accelerators is introduced.

TABLE OF CONTENTS

1. INTRODUCTION ... 1

2. PREVIOUS WORK .. 2
3. SYSTEM LIMITATIONS 3

4. OUR SOLUTIONS ... 4
5. CONCLUSIONS ... 6
REFERENCES ... 7

1. INTRODUCTION

Field programmable gate arrays (FPGAs) have gained wide

acceptance in aerospace applications as a result of their

desirable combination of high performance, low cost, low

power and design flexibility. In high bandwidth,

computationally intensive applications FPGAs stand as a

compromise between custom ASICs and traditional

computer processors. FPGAs enable interfacing with high

data rate instruments through the use of optimized custom

logic cores, are capable of processing large data sets such as

those generated by high-resolution imaging systems, and

contribute to onboard data reduction through the use of real-

time digital signal processing routines. This data reduction

eases the onboard data storage requirements and reduces the

amount of downlinked data. These attributes are

particularly useful as payloads grow in complexity in an

effort to maximize scientific value.

FPGAs, particularly SRAM-based devices, provide a unique

flexibility to aerospace systems. The user design for these

devices is stored in volatile static RAM cells, which must be

initialized at power-up. A single FPGA can be used to

implement multiple system functions by loading different

configuration bitstreams based on current system needs or

operating mode. This allows hardware sharing by non-

concurrent processes that would otherwise require

independent hardware systems resulting in an overall

reduction in component count and system complexity.

More advanced configuration features, such as active partial

reconfiguration, allow specific portions of an FPGA to be

reprogrammed without affecting the operation of the rest of

the FPGA. This allows hardware peripherals to be

instantiated on an as-needed basis resulting in power

savings through an overall reduction in device resource

utilization. Yet another benefit of FPGAs is the ability to

change the implemented hardware design at any time during

a system lifecycle in response to design errors, technology

advancement or evolving mission requirements. In space

systems this capability is highly advantageous as modifying

hardware post-launch is problematic for obvious reasons.

Aerospace environments present well documented

challenges to commercial-grade SRAM-based FPGAs as the

memory elements that give the devices their flexibility are

themselves susceptible to faults induced by interactions with

high-energy ionizing radiation. Radiation effects can

generally be broken down into two categories based on the

nature of their interactions with the device’s constituent

materials. Total ionizing dose (TID) is a material-dependent

measure of energy deposition by ionizing radiation [1]. The

materials of most interest in CMOS devices are the gate and

field oxides as energy deposition can result in trapped

charge and a gradual degradation of the characteristic

electrical properties or an increase in leakage current [2].

As an ionizing particle transits through the gate oxide it

leaves behind a track of electron-hole pairs. Differences in

electron and hole mobility and a variety of charge trapping

mechanisms result in persistent holes in the oxide. Over

time, this charge builds up and affects transistor electrical

properties, such as the threshold voltage [2]. These effects

are strongly dependent on the thickness of the gate oxide

and tend to diminish with decreasing oxide thickness. In

deep sub-micron process nodes (< 45-nm), TID is less of a

concern to FPGA device reliability in aerospace application

 978-1-4799-1622-1/14/$31.00 ©2014 IEEE

 2

than the second category of radiation effects, known as

single event effects (SEE).

Single event effects describe the transient effects related to

radiation interactions. There are multiple subcategories of

SEEs including single event transients (SET), single event

functional interrupts (SEFI), single event upsets (SEU), and

single event latchup (SEL) [3]. SETs, SEUs and SEFIs are

closely related as they differ in where they occur spatially

within the device. Whereas SEL represents a potentially

damaging condition in which parasitic transistors are

activated resulting in a high current draw, SETs, SEUs and

SEFIs are considered to be soft errors correctable by writing

valid data into the affected memory element. SETs occur

when ionizing radiation induces a transient voltage in a

combinational logic circuit. This erroneous signal only

temporarily affects the combinational logic signals and

dissipates before being latched into a system memory

element [4]. If a SET is latched into a memory element it is

known as an SEU. SEUs are faults affecting either user

memory or configuration memory contents. SEFIs are a

subcategory of SEUs that affect core device configuration

functions including the configuration controller, clock

management tiles, etc [3]. Single event effects are of

primary interest due to their increasing rate of occurrence

with current semiconductor device technology scaling

trends [5,6]. For a more comprehensive review of single

event effects consult [6].

2. PREVIOUS WORK

The focus of this research is to build upon the traditional

fault mitigation techniques in an effort to increase the

performance and reliability of SRAM FPGAs for aerospace

applications. The approach to accomplishing this is to

combine readback scrubbing, active partial reconfiguration,

and TMR in a specific way to efficiently detect and mitigate

radiation induced faults while minimizing fault recovery

time. The FGPA is partitioned into discrete, partially

reconfigurable processing resources. These are referred to

as “tiles”, and they represent the granularity of the TMR

implementation. Our current research system, implemented

on a Xilinx Virtex-6 FPGA, consists of nine tiles each of

which contains a Microblaze microprocessor. During

normal operation, three tiles are active and constitute an

active triad. The outputs of the active tiles are routed

through a multiplexer to a majority voter to form a complete

TMR system. In the background, and without impacting the

operation of the active triad, a scrubbing routine maintains

the spare tiles using active partial reconfiguration. An

external configuration controller monitors the status of the

TMR+spares system, controlling which tiles are active,

performing configuration readback and scrubbing, and

tracking the status of each of the tiles. Figure 1 depicts a

TMR+spares system architecture.

Figure 1 – This figure shows the FPGA floorplan for a 9-

tile TMR+spares system. The FPGA fabric is partitioned

into nine discrete elements each of which contains a Xilinx

Microblaze soft processor.

The configuration controller is responsible for detecting and

recovering from faults in the system. The fault detection

mechanism is dependent upon fault location. A SEU

occurring in one of the active tiles is both detected and

mitigated by the voter circuit. The voter circuit alerts the

configuration controller to the faulted tile and by design

prevents the fault from propagating to the system output. In

this way the system tolerates faults in the active tiles. Upon

detection of a faulted active tile, the configuration controller

initiates a tile switch wherein a healthy spare tile is

substituted for the faulted tile in the active triad. The tiles

are synchronized and system operation is resumed. Active

partial reconfiguration is then used to repair the faulted tile.

After repair, the tile is reintroduced into the system as an

available spare tile and the system is returned to a nominal

state. The ability to bring healthy spare tiles online in place

of faulted tiles, and repair faulted tiles in the background is

advantageous in high fault rate environments. It is

generally faster to switch from a faulted tile to a healthy

spare than it is to wait for the readback scrubber to

correct the fault. Table 1 shows the approximate

recovery times for each method. The times are design-

dependent and vary according to bitstream length of the

tiles. The recovery time estimate for readback

scrubbing is a worst-case value for a system scrubbing

all bits. This time could be improved by only attending

to the configuration memory essential bits.

 978-1-4799-1622-1/14/$31.00 ©2014 IEEE

 3

Table 1–This table highlights the latency for various

recovery techniques. Equivalent configuration clock speed

is 1.3-MHz, 8-bit SelectMAP interface. The speed is limited

by configuration data retrieval from the MicroSD storage

device.

Recovery

Method

Recovery

time

Full

configuration

~2.5-s

Tile PR 126-ms

Blind tile

scrub rate (9

tiles)

1.1-s

Tile switch 200-µs

Figure 2—This figure shows the general architecture of a

nine-tile TMR+spares system. Blue features represent

system elements that are repaired via partial

reconfiguration. Green elements are repaired by the

scrubbing routine.

Since the fault rate is highly dependent on orbit, location

within orbit, and recent solar activity, the number of

available spare tiles can be adjusted accordingly. Reducing

the number of maintained spares can provide a reduction in

static power during low fault rate conditions. Similarly, the

configuration memory scrubbing activity can be throttled

based on observed or expected fault rates.

Spare tiles are maintained in a healthy state by a blind

scrubbing routine performed by the configuration controller.

This requires the partial bitstream for each of the tiles to be

loaded at a user-defined scrub rate. A SEU occurring in the

configuration memory for the routing between a tile and the

voter will be aliased as a faulted tile, and the previous steps

of repairing the tile will have been performed unnecessarily.

Upon reactivation of that tile, the fault in the routing would

be detected again. To prevent this from happening, the

scrubber continuously checks the configuration memory of

the entire FPGA and cleans up faults affecting the routing

which aren’t fixed in the tile repair process. This prevents

faults from accumulating in the static portion of the FPGA

design.

The fault-tolerant research architectures are implemented on

a custom research hardware platform shown in Figure 3. A

Xilinx Virtex-6 (XC6VLX75T) device, referred to as the

“main FPGA” plays host to the research systems. The

configuration control and user interface functionality are

implemented on a Spartan-6 (XC6SLX75) device, referred to

as the “control FPGA”. A USB interface provides

communication between the test platform and a host PC.

The printed circuit board conforms to CubeSat form-factor

requirements for eventual inclusion in a orbital or suborbital

payload electronics stack.

The control FPGA self-configures at power-up via a Master-

Serial connection to a Xilinx Platform Flash component.

Once configured, the control FPGA reads the bitstream for

the main FPGA from a MicroSD card and loads it over an 8-

bit SelectMAP interface. This same interface is used to

perform readback, scrubbing, active partial reconfiguration,

and eventually fault injection on the main FPGA. A large

GPIO bus between the two devices allows application data

to be passed between the devices as well as any control

signals necessary for system testing.

Figure 3–This figure shows the 4" by 4" custom FPGA

board used as a test platform for radiation tolerant

architectures. This board features a Virtex-6 and a

Spartan-6. Virtex configuration is controlled by the Spartan

FPGA via an 8-bit SelectMAP interface.

3. SYSTEM LIMITATIONS

The TMR+spares system has some weaknesses that can be

improved through straightforward design enhancements.

The first weakness is the inability to distinguish faults

occurring in a tile from faults occurring in the routing. As

the recovery mechanism is different for each, it is desirable

to isolate fault locations. A second limitation is the lack of

 978-1-4799-1622-1/14/$31.00 ©2014 IEEE

 4

inter-tile communication. Simply running soft processors in

TMR reduces the FPGA to a simple microcontroller. With

inter-tile communication, the processor tiles gain the ability

to instantiate custom logic cores as peripheral devices to

offload computationally intensive tasks. The ability to

instantiate peripheral hardware accelerators makes far better

use of the FPGA resources.

4. OUR SOLUTIONS

Isolating fault location is necessary as it can be used as
feedback to the configuration control system to more
efficiently handle the fault recovery process. The technique
we propose to accomplish this leverages the commonly used
Hamming encoding process to add redundancy to the routing
[15]. Hamming encoding is a technique for detecting and
correcting single bit errors and detecting multiple bit errors
by adding carefully calculated check bits to transmitted data.
These check bits constitute a check code, which is used by
the data receiver to determine if any bits were corrupted
during transmission. In the case of a single bit upset, the
Hamming decoding process, which is performed by the
receiver, yields a binary code whose decimal value indicates
which bit position was corrupted. Inverting the corrupted bit
yields the original, uncorrupted data. The added bits are
used to detect multiple bit errors and detect/correct single bit
errors. Figure 4 provides some details on the generation of
the Hamming code for a 32-bit word.

Figure 4—This figure shows the process for generating the

check bits for the Hamming encoding process. Hamming

bits are simply a series of even parity checks applied to

particular bits such that the location of a bit upset can be

determined by the decoder.

The use of Hamming codes to protect FPGA memory and
register contents against various upsets has been previously
demonstrated, e.g. [16]. In addition to using the Hamming
code to recover the original data in the event of a single-bit
upset, the detection of an upset in the Hamming decoding
process implies that the error occurred between the encoder
and the decoder. By placing an encoder immediately at the
boundary of a processing tile, the amount of routing
protected from faults is maximized. Faults occurring in a tile
are detected by the majority voting process, while faults

occurring in the routing between a tile and the voter are
detected by the Hamming decoding process. The system
configuration controller uses this information to either
initiate a tile swap in the event of a tile fault, or direct the
scrubber to the affected routing region. The TMR
architecture can tolerate multiple errors within the data path
of a single active triad member, so the system controller can
allow operation to continue in the presence of a detected
routing upset with the understanding that the routing faults
will, in time, be corrected by the scrubbing routine.

Table 2—This table shows the recovery options for various

fault conditions.

Fault
Location

Detection
Method

Recovery
Method

Tile Majority
voter circuit

Tile swap,
background
repair

Inter-tile
routing

Hamming
decoding
circuit

Scrub

A routing protection test system was designed and

implemented on a Xilinx Virtex-6 device. In this system,

simple counters generated 32-bit data that was Hamming

encoded using six check bits. Tile faults were simulated

using a design level injection circuit that inverted a single

data bit prior to encoding. Routing faults were simulated

using a design level injection circuit that inverted any one of

the 38-bit Hamming encoded vector bits. The routing faults

were induced between the Hamming encoder and decoder

circuits. Figure 5 depicts a block diagram of this system.

Each counter output is routed through a fault injection circuit

capable of inverting individual bits determined by a control

signal from an external processor. The data are input to

Hamming encoder circuits, which generate the proper check

codes used to protect the data in the routing between the

source tile and the voter circuit. The data pass through

another fault injection circuit used to simulate single-bit

routing faults. Finally, the data are decoded and input into a

majority voter circuit. If a single bit error is indicated by any

of the check codes then an error in the routing is suspected to

have occurred. If the data produced by a tile is deemed

incorrect by the majority voting circuit, a tile fault is

suspected to have occurred.

In the TMR+spares system this encoding scheme performs

two important tasks: (1) it identifies faults occurring in the

interconnect between two tiles allowing them to be

corrected by the scrubbing routine, and (2) it mitigates the

faults in the data allowing the system to continue normal

operation. This preserves the integrity of the data used by

the voting, and allows faults in the interconnect to be

identified and corrected. The detection of multiple bit

upsets in the interconnect is also useful because such a

condition may interfere with proper system operation.

 978-1-4799-1622-1/14/$31.00 ©2014 IEEE

 5

Multiple bit error detection allows a tile swap to be initiated

in advance of computations being performed on corrupt

data. Error detection and correction allows a greater

understanding of the nature of faults occurring within the

TMR+spares architecture.

Figure 5 shows the FPGA floorplan for the routing

protection test system. In this system the resource

utilization of the encoder/decoders is comparatively large

when placed adjacent to the simple counter blocks. When

used in a practical system the percentage increase in

overhead will be significantly reduced. Additionally, the

encoders/decoders themselves are susceptible to upset. The

susceptibility can be reduced through application of fine-

grained TMR, or they can be left unmitigated with the

knowledge that should the encoder/decoder be faulted, the

system simply reverts to being unable to resolve the location

of the fault. The likelihood of this occurring depends on the

area of the encoder/decoder circuitry.

Figure 5—This figure depicts the FPGA floorplan for the

TMR routing protection test system, noting that the resource

utilization is extremely small for this simple system and all

component blocks are grouped closely together.

Figure 6 shows the timing diagram for a routing fault

simulation including the original data, the Hamming

encoded data, the routing-faulted data, the Hamming

decoded and corrected data, the Hamming check word

representing which bit number was corrupted, and the final

output of the TMR system. In this experiment, the routing

fault was induced by performing an exclusive-OR operation

of the Hamming encoded data with a fault mask bit vector.

This is representative of an error occurring in a memory

element along the routing path.

This is fundamentally different from errors occurring in

configuration memory, but the effects of each manifest in

the same way at the design level. This experiment shows

that by encoding/decoding data over a routing path single

event upsets occurring in the configuration memory along

said path can be mitigated, and system operation can

proceed as normal with the knowledge that the fault will

eventually be corrected by a scrubbing routine. As single-

bit upsets occurring in routing can be corrected, there is no

need to take corrective action. In fact, such a system can

tolerate single-bit upsets in the routing in each of the three

TMR paths, and multiple-bit upsets in a single data path

without requiring targeted recovery action. The system is

able to tolerate a limited accumulation of errors, which may

be useful in a high fault rate environment. The system

presented is a simple proof-of-concept and is easily applied

to the aforementioned 9-tile system, or other practical

research systems.

The 9-tile system highlighted previously featured partially

reconfigurable regions each containing a Microblaze soft

processor. Each processor executed an identical counting

program, which was used to test the general operation of the

radiation tolerant architecture. This system was useful for

developing the requisite reconfigurable computing tools

such as SelectMAP device configuration, active partial

reconfiguration, configuration memory blind scrubbing, and

configuration memory readback. However, it is recognized

that this is a very restricted use of the FPGA capabilities that

make these devices so relevant to space applications.

The next step in this research is to increase the performance

of the computer system by making use of the flexibility of

the FPGA fabric. A research area currently being explored

is runtime instantiation of custom hardware accelerators as

peripheral devices to the Microblaze processors. This

allows the processors to offload computationally intensive

tasks to faster and more efficient computational resources

rather than performing operations in software. As there are

three microprocessors active at any time in a TMR system,

it is also required that three hardware accelerators be

instantiated, one for each processor. This presents a

problem similar to the unprotected routing wherein fault

location is indistinguishable. A fault occurring in a

peripheral accelerator would eventually be detected as a tile

fault by the voter circuitry. To recover, the configuration

control system would have to repair both the accelerator and

the processor tiles. Therefore, the hardware accelerators

must be instantiated in a TMR arrangement.

6

Figure 6– This figure demonstrates a simulated routing fault. The original count, the faulted Hamming encoded data, the

recovered data, the Hamming check code, and the TMR output values are depicted.

Figure 7– Proposed architecture for implementing TMR

hardware accelerators as processor peripherals in a

radiation tolerant FGPA system.

Figure 7 depicts the proposed architecture for implementing

custom hardware accelerator cores as peripheral devices to a

triad of TMR processor tiles. In this system, each tile

contains a voter circuit connected to the other two like-tiles

in the system. This allows the data passed between the

accelerators and the processing tiles to be fault-mitigated

using TMR. Since each tile contains a voter, the results of

which can be passed to the configuration control system,

faulted tiles can be identified and repaired efficiently. A

faulted accelerator tile continues to feed correct data to its

parent processor tile as the output is a majority vote from all

three of the accelerators. Similarly, a parent processor tile

feeds TMR-ed data to its accelerator allowing the

accelerator to continue operating properly in the event of a

processor fault. This arrangement isolates single faults

allowing the rest of the system to continue operating

nominally. Optionally, the TMR output from each tile can

be used as feedback into the local logic to aide in the

synchronization of newly repaired tiles. This TMR with

feedback is commonly used in radiation tolerant FPGA

applications [17]. The distribution of the voter to each of

the tiles eliminates it as a single point-of-failure in the

system. Though the processor output is depicted going to

an external voter circuit, any one of the tile-to-accelerator

TMR signals could conceivably be passed to the device

output rather than implementing another voter.

5. CONCLUSIONS

This paper describes research efforts to mitigate weaknesses

in a TMR+spares radiation tolerant SRAM-based FPGA

computer system. An existing 9-tile Microblaze

architecture is reviewed and the desired improvements of

fault-mitigated routing, fault location determination and

performance enhancement via runtime-configurable

hardware accelerators are discussed. Hamming encoding is

proposed as a method for protecting the routing resources

from radiation-induced single event upsets. In addition to

fault mitigation, the presence of faults in the Hamming

encoded data allows the computer’s configuration control

system to distinguish faults occurring in routing from those

occurring within the partially reconfigurable processing

tiles. This is important as the recovery operation for each of

these conditions is unique. Without the ability to

distinguish routing faults from tile faults, routing faults were

aliased as tile faults and unnecessary tile repair steps were

taken.

In addition to the protected routing with configuration

control feedback, architecture for implementing TMR,

processor-peripheral hardware accelerators was introduced.

This architecture allows the system to continue operating in

the event of a single faulted tile. Each tile contains a voter

circuit allowing TMR data to be passed between processor

tiles and accelerators, and vice versa. This eliminates the

voter as a single point-of-failure in the system at the cost of

increased resource utilization. Future work in this area will

move to a TMR+spare architecture which involves the

addition of spare tiles to both the processor and peripheral

triads, allowing a context switch from a faulted tile to a

healthy tile. As in the 9-tile system, faulted tiles are then

repaired in the background via active partial reconfiguration

without interfering with foreground operations. Lastly, the

7

routing among the tiles will be Hamming encoded to further

enhance the fault tolerance and increase the spatial

awareness of fault locations.

REFERENCES

[1] A. Holmes-Seidel and L. Adams, Handbook of
Radiation Effects. London, U.K.: Oxford Univ. Press,
2002.

[2] T. Oldham and F. McLean, “Total ionizing dose effects
in MOS oxides and devices,” IEEE Trans. Nucl. Sci.,
vol. 50, no. 4, pp. 483-499, Jun. 2003.

[3] D. White, Considerations surrounding single event
effects in FPGAs, ASICs, and processors, XAPP402
(v1.01), Xilinx Corp., 2012.

[4] G. Wirth, M. Vieria, E. Neto, and F. Kastensmidt,
“Single event transients in combinatorial circuits,”
Integrated Circuits and Systems Design, 18

th

Symposium on, pp. 121-126, Sept. 2005.

[5] J. Benedetto, P. Eaton, D. Mavis, M. Gadlage, and T.
Turflinger, “Digital single event transient trends with
technology node scaling,” IEEE Trans. Nucl. Sci.,vol.
53, no. 6, pp. 3462-3465, Dec. 2006.

[6] P. Dodd and L. Massengill, “Basic mechanisms and
modeling of single event upset in digital
microelectronics,” IEEE Trans. Nucl. Sci., vol. 50, no.
3, pp. 583–602, June 2003

[7] R. Lyons and W. Vanderkulk, “The use of triple-
modular redundancy to improve computer reliability,”
IBM Journal of Research and Development, IBM, vol.
6, pp. 200-209, 1962.

[8] C. Carmichael, Triple module redundancy design
techniques for Virtex FPGAs, XAPP197 (v1.0), Xilinx
Corp., 2001.

[9] F. Kastensmidt, L. Sterpone, L. Carro, and M. Reorda,
“On the optimal design of triple modular redundancy
logic for SRAM-based FPGAs,” Proc. Conf. Design,
Automation and Test Europe, vol. 2, pp. 1290-1295,
2005.

[10] B. Pratt, M. Caffrey, J. Carroll, P. Graham, K. Morgan
and M. Wirthlin, “Fine-grain SEU mitigation for
FPGAs using partial TMR,” IEEE Trans. Nucl. Sci.,
vol. 55, no. 4, pp. 2274-2280, Aug. 2008.

[11] Z. Wang, L. Ding, Z. Yao, H. Guo, H. Zhou, and M.
Lv, “The reliability and availability analysis of SEU
mitigation techniques in SRAM-based FPGAs,” Eur.
Conf. RADECS, pp. 497-503, Sept. 2009.

[12] P. Ostler, M. Caffrey, D. Gibelyou, P. Graham, K.
Morgan, B. Pratt, H. Quinn and M. Wirthlin, “SRAM
FPGA reliability analysis for harsh radiation
environments,” IEEE Trans. Nucl. Sci., vol. 56, no. 6,
pp. 3519-3526, Dec. 2009.

[13] Virtex-6 FPGA memory resources user guide,
UG363(v1.6), Xilinx Corp., 2011.

[14] Virtex-6 FPGA configuration user guide, UG360
(v3.4), Xilinx Corp., 2011.

[15] R. Hamming, “Error detecting and error correcting
codes,” Bell System Technical Journal, no. 2, pp. 147-
160, 1950.

[16] A. Frantz, M. Cassel, F. Kastensmidt, E. Cota and L.
Carro, “Crosstalk and SEU-aware networks on chips,”
IEEE Design and Test of Computers, vol. 24, no. 4, pp.
340-350, July 2007.

[17] N. Rollins, M. Wirthlin, M. Caffrey and P. Graham,
“Evaluating TMR techniques in the presence of single
event upsets,” Intl. Conf. Military and Aerospace
Programmable Logic Devices, Washington, D.C., Sept.
2003.

Brock J. LaMeres (M’98-SM’09)

received the B.S. degree in

electrical engineering from

Montana State University, Bozeman

in 1998, and the M.S. degree in

electrical engineering from the

University of Colorado, Colorado

Springs in 2001, and the Ph.D.

degree in electrical engineering

from the University of Colorado,

Boulder in 2005. He is currently an Associate Professor

in the Department of Electrical and Computer

Engineering at Montana State University, Bozeman

where his teaching and research focus is in digital

systems. Prior to coming to MSU, LaMeres worked for

Agilent Technologies Inc., in Colorado Springs, CO as a

hardware designer for digital test equipment

Raymond Weber received the B.S.

degree in computer engineering in

2008 and the M.S. degree in

electrical engineering in 2010 both

from Montana State University,

Bozeman. He is currently a

Doctoral degree candidate in the

Department of Electrical and

Computer Engineering at Montana

State University, Bozeman working

on radiation tolerant computing systems.

 Justin Hogan received the B.S.

degree in electrical engineering from

New Mexico State University in 2008

and the M.S. degree in electrical

engineering in 2011 from Montana

State University, Bozeman. He is

currently a Doctoral degree

candidate in the Department of

Electrical and Computer Engineering

at Montana State University,

Bozeman working on fault tolerant, on-chip routing

networks.

8

