

Overview

The purpose of this project is to **develop and pilot** test a set of adaptive learning course materials to improve mastery of computer engineering. The interventions proposed will target a sequence of introductory digital logic courses that are found in every accredited computer engineering program in the U.S.

Motivation

Can an adaptive, e-learning environment that provides personalized instruction improve student understanding of computer engineering?

Student Interest – Students lose interest when course material is either too hard or too easy.

Background Deficiencies - Students often lack the necessary prerequisite knowledge in introductory engineering courses due to their varied backgrounds and different high school curriculums.

Large Entry Level Courses – The sheer number of students in introductory courses prevents teachers from providing personalized instruction.

Prerequisite Gates - Failure in prerequisite courses can prevent students from accessing numerous higher level courses. This leads to increased time and cost, which lowers chances of graduation.

True 2+2 Transfer – Community colleges often don't offer lower level engineering courses that are prerequisite s for junior level courses. This prevents students from graduating in 2 years post-transfer.

Increasing Diversity – Generic example problems often don't promote the value of engineering. This makes engineering less attractive to females and 1st generation college students.

2015 ASEE Annual Conference and Exposition Seattle, WA June 14-17, 2015.

Deploying Adaptive Learning Environments to Overcome Background Deficiencies and Facilitate Mastery of Computer Engineering Content

Dr. Brock J. LaMeres & Dr. Carolyn Plumb

The course material is being deployed at four diverse institutions (MSU-Bozeman, MSU-Billings, Flathead Valley Community College, and Salish Kootenai Tribal College). This will allow a baseline of knowledge to be established and also overcome logistical obstacles of broad deployment. Once found, adaptive modules will be introduced and the impact measured.

> This work is supported by the NSF Program *Improving Undergraduate* STEM Education (IUSE) through award number 1432373.

