Evaluating the Effectiveness of Obfuscated
Instruction Codes for Malware Resistance

Lucas L Ritzdorf, Colter Barney, Christopher M Major, Tristan Running Crane,
Hezekiah Austin, Benjamin Macht, Clemente Izurieta and Brock J LaMeres
Montana State Unviersity

Abstract—Malware and maliciously crafted user input repre-
sent serious threats to modern computer systems. Many attacks
begin with difficult-to-prevent vulnerabilities, such as code in-
jection or memory corruption, usually achieved by exploiting
known bugs in specific programs. We introduce a novel processor
architecture which utilizes obfuscated hardware in order to
effectively detect altered memory contents before they can be
executed. This detection system also uses hardware reconfigura-
bility to its advantage, providing the flexibility to counteract
other attack vectors relying on code execution and demonstrating
significant resistance to brute-force attacks. In addition, we
present a prototype architectural implementation as an initial
demonstration of feasibility.

Index Terms—Computing, CPU central processing unit, OS
command injection, cyber security, endpoint security, cyber-
attack, attack detection, FPGA

I. INTRODUCTION

In 2022, The MITRE Corporation tracked over twenty-
five thousand new Common Vulnerabilities and Exposures
(CVEs) across a variety of categories. Vulnerabilities which
allow an attacker to “execute code” and “overflow” memory
regions were the first and third most common such categories,
respectively [1] (see Fig. 1). While there exist a variety of
methods to guard against these types of vulnerabilities, such
techniques are insufficient to fully prevent their occurrence
and subsequent exploitation.

Modern programmable logic devices have enabled the prac-
tical implementation of redundant processors on a single chip.
This facilitates the compile-time assignment of obfuscated in-
struction codes to otherwise functionally equivalent processor
cores. In this paper, we present an evaluation of a novel pro-
cessor architecture, utilizing heterogeneous obfuscated cores
to prevent the execution of malware injected into memory.
This architecture would confer immunity to all known attacks
which rely on the improper insertion of executable code
into memory. In addition, such hardware diversity has been
shown to produce increased resilience to system failures in an
information technology monoculture environment [2].

II. BACKGROUND
A. Memory Overflows

Memory overflow vulnerabilities are particularly infamous
for both their relative commonality and potentially devastat-
ing effects. Several distinct classes of software development
mistakes can lead to an overflow, but all give rise to the same
general condition: data over which a user has control is written

4000

o
[
& 3000
5
o
el
£ 2000
o
&
5
5
g 1000
Z

0

2000 2005 2010 2015 2020

Year
— Execute Code —XSS Overflow
Fig. 1. Incidences of the three most common (in 2022) CVE classes over

time. Data captured from [1].

to an improper memory location, which the user may also
be able to influence. (Specific relevant vulnerabilities include
“write-what-where” conditions and other out-of-bounds writes
[3], all of which enable the same or similar attacks compared
to the “classic buffer overflow.”) Utilizing this access, a
malicious user with sufficient knowledge of the vulnerable
program can craft their input such that it causes the program to
write addresses, executable instructions, or both into memory.

Overflows can be exploited to enable a variety of attack
mechanisms, such as initiating low-level system procedures,
launching a reverse shell, or manipulating the return address
stack to cause the execution of instructions elsewhere in the
program. All such vulnerabilities fall into the category of
arbitrary code execution (ACE), meaning that an attacker could
exploit them to run any code they desire on an affected system.
The situation is worsened when vulnerable input channels are
accessible via a network, leading to remote code execution
(RCE) scenarios, in which potentially devastating attacks can
be conducted by an attacker with nothing more than network
access.

B. Redundant and Reconfigurable Hardware

Processor redundancy has been used effectively within
aerospace flight computers as a way to overcome faults caused
by environmental factors, and serves as a foundation for this
work. Redundant computing has proven especially effective
against faults caused by radiation strikes, which can, for exam-
ple, flip bits in memory or otherwise disrupt the configuration
parameters and operational state of a computer system. These
problems can be mitigated by running multiple processor cores

in lockstep, executing identical instructions and comparing
their outputs (a technique known as modular redundancy).
If a single core is affected by a radiation strike, its output
will differ from that of the other cores, allowing for error
detection and correction by way of an “output voter” module
and memory-scrubbing systems. An architecture implementing
this approach, as well as a sophisticated fault recovery system,
is described by Hane, LaMeres, Kaiser, et al. [4], and forms
part of the conceptual and functional basis for the architecture
proposed here.

In addition to redundancy, this research demonstrates an-
other important concept — the use of field-programmable
gate arrays (FPGAs) to implement custom, reconfigurable
hardware. An FPGA is a programmable logic device composed
of two main component classes: configurable logic blocks and
programmable interconnect points. Configurable logic blocks
can be configured to emulate a variety of combinational and
sequential logic circuits, typically with up to six inputs [5].
A single FPGA might contain several thousand such blocks,
which are wired together using programmable interconnects.
These act as configurable switches, knitting logic blocks
together into a cohesive “fabric” and routing signals between
blocks as needed.

The relevant result of this is that an FPGA is capable of be-
ing configured to essentially become an arbitrary digital system
(up to and including a computer processor), as long as the chip
model in use has sufficient resources to implement the desired
hardware. FPGA configuration is performed by an automated
synthesis program, which typically reads hardware description
language (HDL) code as input, generating a bitstream which
is written to the FPGA’s configuration memory. The effects of
this reconfigurability are discussed in Sections III-B and IV-C.

III. APPROACH

The primary exploit channel of concern in this investigation
is the injection of executable code (i.e. binary instructions) into
memory, and the subsequent execution of this code. Preventing
development errors which give rise to such vulnerabilities has
proven to be quite difficult, as evidenced by their continued
occurrence and the high proportion of relevant CVEs described
in Section II-A and illustrated in Fig. 1. Instead, we focus
on detecting the presence of injected code in memory, and
preventing its execution.

A. Architectural Concept

As the mechanism for this defense, we propose a cus-
tomized processor architecture, composed of multiple uniquely
designed compute cores. These cores run in lockstep, similarly
to existing modularly redundant systems, but with a key
distinction: the control units in each are designed such that
they understand different instruction codes from any other
core in the system. This yields a heterogeneously obfuscated
processor where, for instance, an ADD instruction might be
represented by the opcode 0x53 in one core, and by 0x09
in another. This is accomplished by applying an offset O,
to the decoding logic of each core ¢, and modifying the

compiler such that any original opcode N is translated into
N. = N + O,. Note that the “obfuscated opcode” N, will
be decoded correctly only by a core ¢ whose internal logic
incorporates the appropriate offset O.. Furthermore, since
each processor will contain multiple obfuscated cores, the
opcode translation step is performed for each core (with its
unique offset O, during compilation, in order to generate an
appropriate number of obfuscated instruction memory blocks.

One notable effect of this obfuscation technique is that,
in order to successfully execute, a given program must be
compiled especially for the exact hardware on which it is to
be used. Any improperly compiled program will fail to decode
on at least one core, causing an error. This should substantially
increase the difficulty of creating a binary executable that will
run on this obfuscated architecture to begin with, providing
some measure of protection against malware.

While such “security through obscurity” measures should
not be relied upon, the true strength of our architectural
concept lies in its heterogeneity, rather than its obfuscation.
Since all cores run in parallel and receive the same operational
inputs, they execute in a functionally equivalent manner,
despite each receiving differently obfuscated instruction codes.
As a consequence of this, in the event that a memory injection
attack does occur, each core will load the same injected
instructions from shared data memory. Upon execution of said
instructions, they will be correctly decoded by at most one core
(or, more probably, none at all), creating an easily detectable
attack signature.

To further improve the strength of this approach, we
envision a separate ‘“voter” hardware module designed to
constantly monitor the instruction register in each core, which
would raise a security flag upon detecting identical opcodes
in all, or just some, of the cores. If implemented using
combinational logic, independently from the remainder of the
processor, such a module could facilitate injection detection
and recovery within a single clock cycle of attempted execu-
tion.

B. Proposed Implementation

Recent advances in field-programmable gate array technol-
ogy should facilitate the design, synthesis, and implementation
of the architecture described here. FPGA-based hardware has
the advantage of avoiding the rather involved process of semi-
conductor chip design, which we imagine most researchers
would not be prepared to perform, particularly on the scale
required to construct such a novel multi-core processor. The
use of an FPGA would also significantly ease the implementa-
tion of the voter hardware module just described, as each core
could easily be augmented with data lines to feed the contents
of its instruction register into the module.

In addition, an FPGA-based system could be reconfigured
on-demand, for instance to recover from accidental disclosure
of instruction offset values by generating new hardware with
different configuration parameters. Especially in this regard,
we view FPGA design as more than simply a research and
development tool — its use in a production-ready version of

our proposed architecture could significantly improve the level
of security achievable in such a system.

C. Practical Design

In order to better evaluate our proposed design, we are
currently developing a basic functional prototype based on
the open RISC-V instruction set architecture (ISA). Among
other considerations, this prototype has allowed us to validate
that the implementation of a complex redundant processor
system on an FPGA is indeed feasible. The current iteration
includes four functional cores, each with 4 KiB of obfuscated
instruction memory and 4 KiB of data memory. Figure 2
illustrates various features of the prototype, implemented on a
Xilinx Artix-7 35T device.

In addition to assessing basic design feasibility, we are
developing a sample application for the system, based on
image processing tasks which can be made to leverage the
strengths of our custom hardware. This will include such
functions as I>?C and SPI communication, while also testing
the system’s ability to perform real-time data processing and
eventually recover from a proper memory injection attack.

This application will be implemented not as a binary
executable in the typical sense — instead, our prototype
system is designed to behave more like an embedded mi-
croprocessor than a standard user-facing computer. The com-
pilation toolchain consists of the RISC-V gcc compiler, its
accompanying readelf program, and a custom Python script
which translates binary disassembly into hardware description
language constants. These are output in the form of a VHSIC
Hardware Description Language (VHDL) package, the lan-
guage in which our prototype is developed. VHDL files are
converted into an FPGA programming bitstream via the device
manufacturer’s synthesis chain, which in this case is provided
by Xilinx’s Vivado software. The exported VHDL package
from our own toolchain is incorporated into the synthesis
process as a source of compile-time constants, including per-
core obfuscation offsets (which affect the cores’ control state
machines) and instruction memory contents.

IV. CONCEPTUAL EVALUATION

In addition to the basic infeasibility of code injection
attacks, our proposed architecture has properties that signifi-
cantly impede other known exploit techniques. While we again
emphasize that “security through obscurity” should not be
relied upon alone, we believe that it can serve as a useful layer
within a more complex security strategy. We now consider the
strengths and potential weaknesses of FPGA-based hardware
obfuscation against a few relevant attack vectors.

A. Code Execution

As noted in Section III, a heterogeneous obfuscated pro-
cessor is substantially more difficult to program for than a
standard, homogeneous processor of known architecture. This
is primarily because it will successfully execute only binaries
which have been explicitly compiled to work with its particular
architectural parameters — specifically, the number of parallel

cores configured in the system, and the opcode offset for each.
Thus, without access to these parameters, a potential attacker
would be unable to compile malware or other binaries for an
obfuscated system.

In practice, we anticipate that this could protect against such
techniques as DLL injection, adding binaries to PATH, and
many other methods of running malicious programs. Further,
while strong defense postures are of course necessary in any
security-sensitive context, obfuscated architecture stands in a
category of its own, implementing deeply-integrated hardware
attack countermeasures and the potential for detection within
a single clock cycle.

There are, however, attack vectors against which hardware
measures are likely to be less effective — they may not protect
against scripting attacks implemented using, for instance,
Python or Bash. Though community opinions on the relevant
terminology vary, we will use the word “script” in reference
to code which is not used to generate processor-level instruc-
tions, but is instead executed by way of an interpreter. This
interpreter is typically implemented as a binary executable
which (as before) must be compiled for the particular target
system, so an adversary who attempts to download a generic
interpreter as part of their attack would be unable to utilize
it. If a usable interpreter has been installed on the system,
however, the environment is no more secure than a standard
computer. The interpreter will execute normally, loading and
running the malicious script.

As with all secure computing systems, it is important
that only required binaries be installed, and all nonessential
functions be disabled. This will reduce the availability of
scripting environments, as well as preventing attackers from
“living off the land” — a technique wherein an adversary
utilizes legitimate system functions in unintended ways in
order to carry out an attack.

In addition, a compiler configured with obfuscated architec-
tural parameters should never be installed on a system imple-
menting that same architecture, since this could allow attackers
to generate valid obfuscated binaries for use in an attack on the
system itself. Beyond this, obfuscation parameters in any form
should be protected (including any preconfigured compilers).
However, unconfigured or generic compilers should pose no
risk to an appropriately obfuscated system, as we describe in
Section IV-B.

B. Brute-Forcing Obfuscation Offsets

When system synthesis is performed, each core in the
obfuscated processor is assigned a unique opcode offset,
within a range determined by the details of the instruction set
architecture from which the processor is derived. For example,
the popular x86-64 ISA (also known as Intel 64, AMD64, or
simply x64) utilizes opcodes ranging from one to four bytes,
so any given instruction will contain at least one obfuscable
opcode byte. This yields a choice of 22 = 256 possible
obfuscation offsets for an individual core.

In any security context, when a situation arises in which
combinations of parameters are involved, the first consid-

YWWITI0 12345
1&.};!1“2& 9 wm: 5

ms

g oo o= (o 'um fe= .«m |M:n

suq

(b) Floorplan for the prototype processor with four obfuscated cores,
as generated by Xilinx Vivado. Even as a midrange device, the Artix-7
35T is able to accommodate a basic four-core system.

L]
- N\
iil!
m
(nn
_ m uln

unn
un

w2
l(vm |<u» Bas |unn Bus | Bus Bas | .(uxo

MName

Bus]] I?
EE 11
. EEW
|

1 DIO

|
0 [LSE] oo o | |
Bus2]] Is I] Is
3 [MSE] L] L

SCH-—-E=8

2 o off|
:

0 [L5E] DIO 4
Bus3 11 11T 111
Bus4 T 111 1= 11

(c) Obfuscated opcodes being executed in each of the four cores. Each
“BusN” signal displays the contents of a core’s instruction register.

Fig. 2. Selected examples of prototype system implementation and functionality.

eration should be whether the correct combination can be
brute-forced. If too few offset combinations are possible, it
might be possible for an attacker with sufficient resources to
simply generate a binary executable for each possible case,
and attempt to run them in sequence until one succeeds.

We begin by determining the total number of distinct
processor configurations available on a given system. Note
that since each core loads instructions from its own region of
instruction memory, the order in which offsets are mapped
to cores does matter (i.e. we care about permutations, not
combinations thereof). Assuming an ISA with one obfuscable

byte per instruction, we find that generating a four-core
processor in which every core has a unique offset yields
-, (2% — n) &~ 4.195 x 10° possible system variations.

In order to give a reasonable impression of attack feasibility
against such a system, we estimate the compute time required
to compile an executable for every possible configuration.
Assuming a generation time of one second for each obfuscated
binary, we find that 132.9 Gregorian calendar years of compute
time would be required to generate every such executable. (In
practice, the average time required would be half as long,
assuming executables are being tested continually so that it is

immediately obvious when success is achieved.)

This is already impractical for an attacker without signifi-
cant computing resources, but actually executing such a brute-
force attack would also require inducing the obfuscated system
to run arbitrary binaries — a difficult task on any properly
secured system, much less one in which instruction injection is
not possible. In addition, uploading each executable file to the
targeted system will impose further overhead, and the volume
of network traffic generated would increase the likelihood of
attack discovery by monitoring systems. In combination, we
feel that these obstacles represent a significant challenge to
any would-be attacker, providing an extra layer of protection
not found in traditional processor architectures.

C. FPGA Vulnerabilities

When introducing new technology into a secure environ-
ment, it is prudent to evaluate any new vulnerabilities that
might be introduced as a consequence. As discussed in Sec-
tion II-B, FPGAs are explicitly engineered to be capable
of in-place reconfiguration, effectively rewiring themselves
to become new digital devices. This flexibility immediately
suggests a potential attack vector: if an adversary gains the
ability to program the FPGA which hosts an obfuscated
processor, they could easily replace it with arbitrary hardware
of their own design and synthesis.

In the trivial case, this “injected hardware” might do nothing
at all, as a means of carrying out a denial-of-service attack, for
instance. However, a more strongly motivated or maliciously
inclined adversary might wish to reconfigure the FPGA to act
as a “Trojan horse” in the network, carrying out functions of
their own choosing.

In the case of a particularly advanced attacker, one might
ask whether this assumed programming access could be used
to analyze the FPGA’s existing configuration and determine the
obfuscated core offsets. If so, that information could facilitate
the generation of a malicious binary without requiring the
effort of brute-forcing all possible system configurations. (As
noted in Section I'V-B, inducing the execution of an additional
binary would still pose a challenge, though perhaps less so
for an attacker with direct access to the device’s programming
interface.) The possible advantage of such an approach lies in
its stealth — if the attacker were to reconfigure the system
entirely, they would need to replace it with a very similar one
of their own design in order to evade detection. If it were
possible to simply compromise the original device in a more
traditional manner, they might be able to simply add their
own programs to the system without disrupting its intended
functionality.

Fortunately, this turns out not to be a realistic attack vector,
since FPGAs are also designed to be heavily resistant to re-
verse engineering. This is partially done in order to protect the
intellectual property of the FPGA manufacturers themselves,
so significant incentives exist for them to make this protection
as strong as possible. Thus, even with programming access to
the device, the adversary’s only option would be to completely
reconfigure the system, risking detection in the process.

In addition, reconfiguring an FPGA requires specific physi-
cal connections to be made, and thus is best defended against
by a strong physical security system, rather than by architec-
tural mechanisms. We also note that, given the impracticality
of stealthily compromising such an obfuscated system, an
attacker with physical access might achieve more effective
results with less effort by simply destroying the device.

V. RELATED WORK

Our effort to counter code injection attacks is far from
unique in its goal. Several techniques already exist, and in
fact are commonly present in modern computing, to defeat
some forms of injection. However, they also operate in very
different ways to the method proposed here, and thus present
unique comparative strengths and weaknesses, which we now
examine.

A. StackGuard

When considering countermeasures to overflow-based code
injection attacks, the venerable StackGuard system inevitably
comes to mind. StackGuard, proposed at USENIX ’98 by
Cowan, Pu, Maier, et al., is a simple change to the gcc
compiler which adds special values to the program stack
when a function call is made, and checks their values upon
returning from the function [6]. Such a “canary” will be
overwritten along with the function’s return address as part of
a stack-smashing attack, allowing the program’s return logic to
detect tampering and abort execution. While generally a very
effective countermeasure, StackGuard does nothing to protect
against overflows that occur in heap memory, and can also be
bypassed by more advanced attack methodologies [7].

In addition, StackGuard has a fundamentally different focus
than our proposed architecture. It is a simple compiler tweak
that facilitates stack tampering detection, whereas our architec-
ture is designed to completely prevent the execution of binaries
not built for its specific configuration. StackGuard is far
more straightforward to implement, and integrates seamlessly
with existing systems, but does not directly protect against
unauthorized code execution. In comparison, our architecture
is more complex to implement, but has the advantage of
explicitly preventing the execution of improperly formatted
instructions, backed by hardware that accomplishes attack
detection within a single clock cycle.

B. Non-Executable Stack

Closer to the realm of hardware-based protection, the
concept of a “non-executable stack” has also been widely
deployed in modern computer systems. Initially developed by
Solar Designer [8], it relies on kernel and hardware mecha-
nisms to detect the attempted execution of instructions from
specially marked memory areas. Similarly to our proposed
architecture, this non-executable flag (or “NX bit”) offers no
protection against attacks that “live off the land,” assembling
code from other sources (especially common libraries such as
libc) to perform desired actions. Memory regions containing
this code will be marked as executable, and such attacks can

thus proceed uninhibited. Other bypass mechanisms that do
allow for code injection also exist, commonly focusing on
injection into unprotected heap memory [6].

As previously noted, the non-executable stack depends
on hardware and kernel support in order to function. This
constitutes an important distinction from our architecture,
which implements its detection mechanism purely in hardware,
and was concieved with embedded systems applications in
mind. Embedded processors frequently run compiled binaries
directly, without the presence and management authority of a
kernel, a convention that renders the NX bit largely inappli-
cable to the embedded domain.

VI. CONCLUSIONS

While the heterogeneous obfuscated processor architecture
proposed here will not remove the need to follow other
security practices, it has the potential to serve as an additional
component in a layered defensive strategy. In this capacity, we
believe that it would provide an extremely effective barrier to
high-severity memory injection attacks by entirely preventing
the execution of injected instructions at the architectural level.

While such systems would most likely still be vulnerable
to other attack vectors, particularly those involving interpreted
programming languages, there are other known defense mech-
anisms for these — most obviously, refraining from installing
interpreters on the system to begin with. Meanwhile, even
for the fairly simple case of an x86-64 instruction set obfus-
cated across four compute cores, we believe that sufficiently
many potential system variations exist to strongly discourage
attempts to determine the processor’s obfuscation parameters
by means of brute force. Lastly, we conclude that no serious
risk is posed by the introduction of field-programmable gate
array technology into secure computing environments which
might benefit from this new architectural concept.

[1]

[5]

REFERENCES

S. Ozkan. “Vulnerability distribution of CVE security
vulnerabilities by types.” (May 2, 2010), [Online]. Avail-
able: https://cvedetails.com/vulnerabilities- by-types.php
(visited on 01/04/2022).

J. H. Lala and F. B. Schneider, “IT monoculture security
risks and defenses,” IEEE Security & Privacy, vol. 7,
no. 1, pp. 12-13, 2009. por: 10.1109/MSP.2009.11.
The MITRE Corporation. “CWE Category: Memory
buffer errors.” (Apr. 28, 2022), [Online]. Available: https:
//cwe . mitre.org/data/definitions/1218.html (visited on
01/04/2022).

J. S. Hane, B. J. LaMeres, T. Kaiser, R. Weber, and
T. Buerkle, “Increasing radiation tolerance of field-
programmable-gate-array-based computers through re-
dundancy and environmental awareness,” Journal of
Aerospace Information Systems, vol. 11, no. 2, pp. 68-81,
2014. por: 10.2514/1.1010106.

B. J. LaMeres, Introduction to Logic Circuits & Logic
Design with VHDL, 2nd ed. Springer Cham, Mar. 27,
2019, 1SBN: 978-3-030-12488-5. pot1: 10.1007/978-3-
030-12489-2.

C. Cowan, C. Pu, D. Maier, et al., “Stackguard: Au-
tomatic adaptive detection and prevention of buffer-
overflow attacks,” 7th USENIX Security Symposium,
vol. 98, no. 7, pp. 63-78, Jan. 1998.

G. Richarte, “Four different tricks to bypass stackshield
and stackguard protection,” May 2002.

Solar Designer. “Linux kernel patch from the Openwall
Project.” (2001), [Online]. Available: https :// www .
openwall.com/linux (visited on 04/15/2023).

