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ABSTRACT 
 
 

           The discovery of new methods to protect electronics from harsh radiation 
environments outside earth’s atmosphere is important to the future of space exploration.  
Reconfigurable, SRAM-based Field Programmable Gate Arrays (FPGAs) are especially 
promising candidates for future spacecraft computing platforms; however, their 
susceptibility to radiation-induced faults in their configuration memory makes their use a 
challenge.  This thesis presents the design and testing of a redundant fault-tolerant 
architecture targeted at the Xilinx Virtex-6 FPGA.  The architecture is based on a 
combination of triple modulo redundancy (TMR), numerous spare units, repair 
(scrubbing), and environmental awareness.  By using the spares and the partial 
reconfiguration capabilities of the FPGA, the system can remain operational while repair 
of damaged modules proceeds in the background.  The environmental awareness is 
supplied by a multi-pixel radiation sensor designed to rest above the FPGA chip, 
providing information about which areas of the chip have received radiation strikes.  The 
system places these potentially damaged areas first in the queue for scrubbing.  Four 
implementations of the architecture with different types of computing module and 
numbers of spares reveal its versatility and scalability.  These four demonstration systems 
were modeled with theoretical Markov calculations, for the purpose of determining their 
reliability.  They were also implemented on Xilinx hardware and tested by the injection 
of simulated faults, based on realistic orbital fault rate data from the Cosmic Ray Effects 
on Micro-Electronics Code (CREME96) tool.  These results confirm that the systems will 
be highly reliable under typical earth orbit conditions.  The results also demonstrate that 
the inclusion of numerous spares and the sensor both lead to substantial improvements in 
the Mean Time Before Failure, over a traditional TMR system with only three modules 
and scrubbing.
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INTRODUCTION 
 
 

The work presented here concerns the ongoing quest to bring increased 

computing power to the harsh environment of space.  As spacecraft and planetary rovers 

acquire increased autonomy and more complex tasks, the demand for improved 

performance in their onboard computers will continue to increase.  However, this 

performance must be coupled with reliability.  Computer systems face special challenges 

outside earth’s atmosphere, one of the most notable being higher levels of ionizing 

radiation.  This radiation can produce various types of erroneous voltage levels, or faults, 

inside electronic devices, leading to incorrect outputs.  Attempts to protect electronics 

from radiation with shields have had limited success.  A shield capable of blocking all of 

the high-energy particles found in space would be impractically massive, and any level of 

shielding adds undesirable weight and volume to the system.  While radiation-hardened 

parts are available, these are typically slower and more expensive than their standard 

counterparts [1].  Thus, computer systems designed for extraterrestrial use face tradeoffs 

between dependability, performance, and cost.  This thesis presents work intended to help 

make these tradeoffs more favorable for space system designers by enabling the reliable 

use of fast, comparatively inexpensive commercial off-the-shelf (COTS) parts.  

Reliability is achieved through a combination of redundancy, repair, and environmental 

awareness. 

Of late, much attention has been focused on SRAM-based Field Programmable 

Gate Arrays (FPGAs) as computing platforms for space vehicles.  The reconfigurable 

nature of these devices essentially allows them to morph into different specialized 
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computing systems over the course of a mission, or serve as universal spares.  Thus, they 

combine the high performance of customized hardware with the flexibility of traditional 

microprocessors.  Since one FPGA can serve its spacecraft in multiple capacities, they 

have the potential to greatly reduce weight and space requirements for the mission.  

FPGAs also allow spacecraft designers to upload new configuration data (essentially 

modifying the hardware) after launch, if an error is found or the mission requirements 

change. 

SRAM-based FPGAs can bring many benefits to a space mission, but their use 

also carries unique challenges.  When ionizing radiation strikes the SRAM inside an 

FPGA, it can flip bits that control the configuration of the circuitry, effectively changing 

the hardware and creating erroneous outputs.  To correct such errors, one must overwrite 

the faulty configuration memory; simply resetting the device will not return it to normal 

operation.  FPGAs that use a different type of configuration memory can avoid these 

problems, but they cannot compare to SRAM-based FPGAs in their versatility.  Antifuse 

FPGAs can only be programmed once, while FPGAs based on Flash memory do not 

support partial reconfiguration [1]. 

To improve the reliability of an SRAM-based FPGA without building the entire 

system from radiation-tolerant hardware, one must make use of an architecture that 

employs techniques based on redundancy and/or repair to avoid errors.  One such 

technique is triple modulo redundancy (TMR).  TMR triplicates the computational 

hardware and adds circuitry that determines the final output by majority vote.  If any one 

of the three computational modules experiences a fault, the two good modules will 
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overrule it.  Initially, TMR is more reliable than a simplex (single module) system; 

however, ultimately its reliability will fall below that of a simplex system.  The 

probability of faults in multiple modules begins to exceed the probability of a fault in any 

given single module after a certain period of time, because the TMR system has more 

area in which to collect faults.  For this reason, TMR alone is not suitable for long 

missions [2].  Even if TMR were able to exceed the reliability of simplex for the entire 

mission duration, we could ensure much better reliability by continually correcting faults 

as they occur.  A repair technique called scrubbing fulfills this need when combined with 

TMR.  Scrubbing is the process of continually overwriting the contents of the 

configuration memory with known good data (the “golden copy”), which is read from a 

non-volatile storage device.  The golden copy should be stored in a type of memory that 

is highly radiation-resistant (e.g. fuse-based memory), or triplicated itself.  Scrubbing 

prevents the accumulation of errors which would otherwise eventually doom TMR.  

However, since the process of reconfiguring the entire FPGA is relatively slow, TMR is 

still necessary to detect errors instantaneously and prevent them from propagating to the 

output.  Scrubbing and TMR are, therefore, complementary approaches to fault tolerance. 

The topic of this thesis is a radiation-tolerant system that extends the TMR-plus-

scrubbing technique in two ways.  First, it provides many spare modules which the TMR 

system may draw on as replacements if a member of the active triad suffers a fault.  The 

presence of these spares, which are kept in good condition by the scrubber while they 

remain on standby, can significantly improve the reliability of the TMR system, 

especially if multiple faults occur in quick succession.  Partial reconfiguration, which 
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allows the modification of a portion of the configuration memory without overwriting all 

of the memory, is used so that the scrubber can repair inactive parts of the device without 

disrupting active parts. Reconfiguration of part of an FPGA’s SRAM is a comparatively 

slow process, and the availability of spares allows useful computations to continue while 

faulted parts of the FPGA are repaired in the background.  Second, our system 

incorporates a novel radiation sensor which provides spatial awareness to the processes of 

scrubbing and fault recovery.  This sensor is designed to be mounted above the FPGA die 

in such a way that high-energy particles will pass through it on their way to strike the 

FPGA.  The sensor has 256 pixels, each of which can signal when radiation passes 

through it.  This information can then be used to concentrate the scrubber’s efforts in the 

areas of greatest potential damage and avoid bringing “dirty” spares online before they 

are scrubbed.  The sensor is described in more detail in [3].  Our analysis demonstrates 

that the inclusion of many spares in the TMR system and the use of the radiation sensor 

substantially improve the reliability of the fault-tolerant systems. 

The remainder of this paper is organized as follows.  Chapter 2 gives additional 

background on some of the design methods used for this project, and summarizes 

previous work in this field.  Chapter 3 gives a more extensive description of and 

justification for our approach to fault tolerance.  Chapter 4 describes the basic 

architecture that was used for all of our fault tolerant systems, while Chapter 5 discusses 

each system in detail.  Chapter 6 contains a theoretical analysis of the systems’ reliability, 

based on Markov models.  Chapter 7 presents the results of various experiments that were 

performed to measure the dependability, overhead, etc. of the systems.  Finally, Chapter 8 
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concludes the paper with a summary of the project results and expectations for future 

work. 
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BACKGROUND AND RELATED WORK 

 
Radiation Effects on Electronic Hardware 

 
 

Ionizing radiation can affect electronics in a variety of damaging ways.  Total 

Ionizing Dose, or TID, refers to the cumulative permanent damage done to an electronic 

device by ionizing radiation.  It takes the form of charge carriers that are injected into the 

device’s insulators by radiation strikes and subsequently trapped there, where they alter 

the electrical characteristics of the integrated circuits.  TID causes a device to degrade 

slowly and inevitably over time; for this reason, space hardware is rated for the amount of 

TID it can withstand, and is simply replaced after the specified dose has been exceeded. 

 

 
Figure 2.1 The effects of TID on the electrical characteristics of a MOS device [4]. 

 
 

Radiation-induced transient faults make up the other major category of negative 

effects.  Unlike TID, these faults do not permanently damage the device, but they may 

cause undesirable outputs while they are active.  All transient effects result from the 

production of extra charge carriers when a high-energy particle strikes or passes through 
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part of the device, ionizing some of the silicon atoms.  If enough charge is concentrated 

in the area to reverse the state of a digital logic line in the system, the event is called a 

single event transient (SET).  A SET is likely to result in a brief “glitch” before the 

excess charge dissipates, unless the new state of the line is captured and retained by a 

storage device (e.g. a flip-flop).  A SET that is captured in this way is identified as a 

single event upset (SEU) and can have a more enduring effect on the output of the 

system.  However, an SEU can generally be corrected with a quick system reset that 

restores all flip-flops to a known state.  SEUs that cannot be dislodged by a simple reset 

are known as single event functional interrupts (SEFIs). 

 

 
Figure 2.2: The transient charge created by a heavy ion passing through a MOS 

device [5]. 
 
 

SEUs can also lead to another type of effect called Single Event Latchup (SEL), 

which occurs when parasitic transistors in the silicon substrate are turned on by ionizing 

radiation.  For these transistors, the “on” condition is stable, and they may continue 

conducting current until the device is reset.  In some cases, latchup-induced currents can 
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cause destructive overheating and burn out parts of the device.  It is possible to 

manufacture chips in such a way that they are essentially immune to latchup, at least 

below certain energy thresholds.  Xilinx FPGAs follow the appropriate manufacturing 

rules to avoid latchup concerns [6], so we will not discuss this phenomenon further. 

Yet another radiation effect is bulk/displacement damage, which is created when a 

high-energy particle knocks silicon atoms out of their places in the crystal lattice as it 

passes through the device.  These displaced atoms result in crystal defects (vacancies and 

interstitials) which can alter the electrical characteristics of the device.  Bulk damage is 

semi-permanent; the vacancies and interstitials persist in the crystal lattice, but they can 

migrate and will annihilate each other if they meet.  Heat treatment increases the rate of 

movement and annihilation of defects; thus, bulk damage can be annealed away.  

Fortunately, this effect is fairly minor in the sort of electronic hardware we are 

considering, since it has a minimal effect on MOS devices [7]. 

 
FPGA-Specific Consequences of Radiation 

 
 

This thesis focuses on mitigation of the radiation issues most critical for FPGAs, 

namely SEUs and SEFIs.  In some ways, FPGAs are uniquely susceptible to radiation-

induced problems.  A typical FPGA stores data that represents its current configuration in 

banks of SRAM inside the device.  Protecting this data is crucial, since it dictates which 

FPGA parts have connections to each other and therefore determines the nature of the 

circuitry.  Radiation-induced faults within this SRAM can actually change the function of 

the device.  Such faults cannot be corrected by a simple reset; rather, the damaged 
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configuration data must be overwritten.  Hence, any fault in the configuration SRAM is a 

SEFI, making SEFIs far more common in FPGAs than in traditional integrated circuits.  

FPGAs are also vulnerable to SEUs in their logic fabric, and can be weakened over time 

by TID, just like other integrated circuits.   

Antifuse and flash-based FPGAs do not suffer from SEFIs the way SRAM-based 

FPGAs do.  However, the antifuse FPGAs are not reconfigurable; they can only be 

programmed once.  They also tend to be smaller (i.e. have fewer logic elements) than 

SRAM-based FPGAs [1].  Flash-based FPGAs do not yet support partial reconfiguration; 

to make any changes in the FPGA, one must configure the entire FPGA at once.  This 

property reduces their versatility.  Due to the lack of suitable alternatives, a few radiation-

tolerant SRAM-based FPGAs have been produced.  Different manufacturing techniques 

make these chips more resistant to faults.  However, the number of radiation-tolerant 

FPGA models available is quite limited, they are still not completely reliable, and they 

are more expensive than their commercial counterparts.  Thus, technologies that would 

enable the use of SRAM-based, COTS FPGAs are still important and sought after by the 

aerospace community. 

 
Previous Attempts to Improve Reliability 

 
 
Triple Modulo Redundancy and Scrubbing 
 

Numerous fault-tolerant FPGA systems featuring TMR and scrubbing have been 

designed.  In fact, this combination of techniques is officially recommended and 

supported by Xilinx [8], one of the major manufacturers of FPGAs.  A few examples 
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should be sufficient to reveal the state of the art in this field.  First of all, a sample system 

which uses scrubbing and TMR to protect block RAMs was created by Xilinx, as part of 

an application note for their FPGAs [9].  TMR and scrubbing techniques were deployed 

on-orbit in the Cibola satellite, where their effectiveness at mitigating SEUs was tested 

[10].  The Space Cube design proposed in [11] votes on the outputs of four active 

modules (QMR, not TMR), but in its basic concept, it is essentially similar to the other 

designs showcased here.  The four computation modules are scrubbed to prevent 

accumulation of errors, and the voter and system controller are housed in an external 

radiation-hardened part.  An FPGA-based system featuring TMR with one spare was 

developed at the University of Tsukuba [12].  While this system did not continuously 

scrub itself, faulted computation modules could be repaired by manually triggered 

reconfiguration.  Further examples of systems that use TMR and scrubbing may be found 

in [13, 14]. 

 
Figure 2.3: Diagram of a simple TMR setup with two functioning modules and one 

faulted module.  Since the outputs of System 1 and System 2 agree, the majority voter 
will overrule System 3 and maintain a correct final output in this scenario. 

 
 



11 
 

 

Previous work at Montana State University has also included TMR systems.  One 

of MSU’s first experiments with reconfigurable computing was an FPGA system that 

could be optimized for one of three modes: high performance, low power, or radiation 

tolerance.  The radiation tolerant version featured three soft processors that performed 

identical computations, connected to a TMR voter; the low power version had only one 

processor; and the parallel processing version incorporated three processors, each with its 

own task.  Full reconfiguration of the FPGA was used to switch between modes [15].  

The second set of systems built at MSU was based on TMR with spares, and could use 

partial reconfiguration to repair damaged modules.  One of the systems in this set 

featured a total of sixteen PicoBlaze processor tiles (three active tiles plus thirteen 

spares), while the other incorporated four MicroBlaze processor tiles (three active tiles 

plus one spare).  Both of these systems targeted the Virtex-5 FPGA from Xilinx [16].   

 
Other Related Approaches  
 

It may also be instructive to examine other types of fault-tolerant systems which, 

while they do not employ the TMR/scrubbing combination, have some relevance to the 

work presented here.  In [17], a reconfigurable, many-tile processor system is presented.  

Like our systems, this concept has many SEU-susceptible tiles for performing 

computations, with critical control logic located in a radiation-hardened part.  TMR is 

applied to the critical circuits, but the computational tiles can be configured for a variety 

of fault-tolerance levels, including triple redundancy, double redundancy, and 

independent parallel processing.  However, this system consists of traditional processors, 

and lacks the customizability of a completely reconfigurable FPGA.  Another example of 
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a fault-tolerant multi-processor architecture may be found in [18].  It is similar to the 

preceding one in [17], but appears to have no radiation-hardened central controller, 

relying instead on a “switch processor” in each tile.  Thus, the routing controls 

themselves are protected by redundancy. 

A very fine-grained approach to reconfigurable fault tolerance is presented in 

[19].  That paper envisions a many-tile system, in which each tile contains some spare 

resources, and multiple configurations (with the same function but different placement 

and routing) are provided for the tile.  Thus, a permanently faulted tile could be 

reconfigured with a design that would avoid using faulty combinational logic blocks.  

The Triple Modular Redundancy with Standby model [20] features a similar concept.  

Creating multiple routing configurations for each tile is unnecessary for dealing with 

SEUs and SEFIs, but would improve the system’s resilience against TID, and could be 

complementary to our approach.  Advanced scrubber-like mechanisms that can detect 

latent TID failures are also available [21], and would, again, be complementary to our 

work.  

 
Unique Contributions of Our Approach 

 
 

Our new systems are distinguished from our previous work in several ways.  1)  

They include larger numbers of tiles (our newest PicoBlaze system has 36 tiles, and the 

newest MicroBlaze system, 16).  2) They incorporate fully automatic scrubbing routines 

to keep the spare tiles in good repair.  3) They are designed to interface with our multi-

pixel radiation sensor, and use this information to improve their fault tolerance.  4) They 
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were designed using the newest Xilinx partial reconfiguration tool flow, and targeted at a 

more advanced FPGA, the Virtex-6. Points 1) and 3) also set our new systems apart from 

the TMR-plus-scrubbing examples listed in the previous paragraph.  

We are not aware of any previous attempts to create a fault-tolerant FPGA 

computing system with the large number of spare modules and high level of spatial 

radiation awareness that ours possesses.  The sensor gives the scrubber knowledge of 

ionizing radiation passing through the FPGA circuits, allowing it to jump to areas with 

potential damage and “clean” them quickly.  Standard scrubbers move through an 

FPGA’s configuration memory sequentially, correcting errors as they find them, so the 

amount  of  time  a  SEFI  remains  in  the  memory  depends  on  the  relative  location  of  the  

scrubber when the fault occurs.  The ability to locate faults as they happen removes this 

disadvantage.  It also reduces the average time needed to bring a spare tile online after 

one of the active tiles experiences a fault, since the system knows the location of all 

“dirty” spares and does not have to test multiple tiles before finding a functional tile to 

activate. 
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OUR APPROACH: DESIGN COMPONENTS AND JUSTIFICATION 
 
 

Triple Modulo Redundancy 
 
 

The radiation-tolerant systems presented in this paper rely heavily on redundancy 

to maintain their reliability in the harsh environment of space.  Specifically, they employ 

triple modular redundancy (TMR) with majority voting.  TMR is a proven technique with 

a long history of use in spacecraft computers and other critical systems [22].  TMR 

requires more than three times as much hardware as a non-fault-tolerant simplex system, 

since the computing hardware must be triplicated and a voter added; such an expense is 

troublesome for designers of space systems, who are always concerned with minimizing 

the  weight  and  power  requirements  of  their  electronics.   Nonetheless,  TMR  proves  its  

worth by frequently demonstrating superior reliability when compared to other forms of 

fault tolerance, such as self-checking pairs and error correction codes [23, 24].  However, 

this improved reliability only applies for relatively short missions, because TMR can 

endure a fault in only one of its three modules before failing.  Since the larger amount of 

hardware used for TMR creates a greater chip area in which faults can occur, a TMR 

system can actually become less reliable than a simplex system if the TMR is improperly 

applied [25] or if the system is exposed to radiation for too long without repairs [2]. 

Spares can be added to a TMR system to improve its resilience against faults.  

Allowing the TMR system to replace a faulted triad member with a spare (assumed to be 

fault-free) can significantly increase the amount of time TMR can run without seeing its 

reliability degrade below that of a simplex system [26]. 
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Scrubbing 

 
Repair of the computational modules via scrubbing can assist TMR, by restoring 

any member of the triad that becomes damaged [2].  Like the inclusion of extra spares, 

scrubbing allows the TMR system to tolerate multiple single-event faults before failure.  

Continuous scrubbing of dormant spares also helps to ensure that the fault-free-when-

activated assumption holds true for every spare.  If the rate of scrubbing is rapid enough 

compared to the rate at which faults arrive, the system could (theoretically) remain 

functional for a near-indefinite amount of time, until TID-related damage begins to wear 

out the hardware.   

It is important to note that, just as TMR without scrubbing is insufficient for long 

missions, scrubbing alone has its disadvantages.  In a system that employs scrubbing but 

lacks redundancy, a single fault can arrive and have an adverse effect on the system’s 

output before the scrubber has time to correct it [27].  Thus, while scrubbing helps to 

prevent faults from accumulating in a TMR system, a TMR system helps to compensate 

for the inherent slowness of the scrubbing process.  A scrubber is useless for protecting 

the system from transient faults that only cause brief glitches on the output, rather than 

affecting the memory; the majority voting of TMR will cover those errors, however.  

TMR with spares is even better; should a rapid burst of faults arrive, the availability of 

many clean spares will help keep the system operational while the scrubber “catches up.”  

Block RAMs and other types of user memory have ever-changing contents that cannot be 

compared to a golden copy, so scrubbing them is impossible unless error detection and 

correction codes (ECC) are employed.  Putting TMR or another form of redundancy in 
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the system, in addition to the scrubber, helps to solve this problem.  Redundancy also 

mitigates the effects of TID (something scrubbing alone cannot do).  A device affected by 

high TID levels may not fail all at once, and the ability to replace a computational 

module with a spare in another part of the FPGA helps one avoid localized permanent 

errors due to TID.  Therefore, TMR, scrubbing, and the inclusion of inactive spares 

should be seen as complementary techniques.  By integrating all three of them in one 

system, we attempted to design a computational platform that is robust against three of 

the major radiation fault types that afflict FPGAs: SEUs, SEFIs, and TID. 

 
Environmental Awareness/Radiation Sensing 

 
 

The final ingredient of our fault-tolerance strategy is environmental awareness, 

which is provided by our custom-made radiation sensor.  The speed with which the 

scrubber can find and remove faults is important to the overall dependability of the 

system; the faster a module can be repaired, the lower the probability of a second module 

becoming damaged before the first one is made operable again.  The sensor provides the 

system with information about where and when radiation is striking the FPGA, allowing 

it to pinpoint the location of faults almost as soon as they happen, even in dormant spares.  

This feature reduces the latency between the occurrence of a SEFI and its removal by the 

scrubber. 
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Protection of Single Points of Failure and Other Remarks 
 
 

In summary, an SRAM-based FPGA was chosen as the platform for our designs 

because of its inherent flexibility and attractiveness to space systems designers.  Our 

approach incorporates TMR, scrubbing, localized radiation strike detection, and large 

numbers of spare modules (at least thirteen), to provide a high level of reliability.  One 

point remains to be addressed, and that is the issue of protecting crucial control circuitry 

and single points of failure in the system.  Crucial circuitry in our systems includes the 

TMR voter, the control and switching logic for swapping spares in and out of the active 

triad, and the circuits that implement the scrubber.  Faults in this circuitry could be 

mitigated by 1) triplicating and voting on all of the crucial hardware as well, as described 

in [28], or 2) implementing all of the crucial hardware in a slower radiation-tolerant part, 

external to the FPGA.  If the latter approach were followed, the system could still possess 

an advantage in cost-effectiveness and performance over a completely rad-hard / rad-

tolerant system.  For example, implementing the control circuitry alone in a rad-tolerant 

part could allow the designers to purchase a smaller rad-tolerant part than would be 

required to implement all of the desired computation modules, and would allow the 

computation modules to operate at speeds above the capabilities of the rad-tolerant part.  

Placing the control and voting circuitry of a redundant system in a radiation-tolerant unit 

is contemplated in [11].  For the present work, we have chosen to assume that the control 

circuitry is secure, and have only considered the impact of faults in the computational 

tiles.  The work is still conceptual and has not yet progressed to a phase in which we 
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would consider purchasing an actual radiation-hardened part to house the control 

circuitry. 

Despite its incorporation of multiple fault-tolerant techniques which compensate 

for one another’s weaknesses, the system may still require a complete 

reset/reconfiguration due to more drastic types of faults.  Multiple Bit Upsets (MBUs) 

have the potential to damage two tiles in the active triad at once, preventing the TMR 

voter from determining the correct output.  Two SEUs or SEFIs which occur in quick 

succession, with a separation smaller than the time needed to replace a faulted tile with a 

spare, could have the same effect as an MBU.  Such weaknesses are common to all TMR 

systems. 

Thanks to the SRAM-based FPGA’s ability to be dynamically partially 

reconfigured, the fault-tolerant techniques described above can be made highly flexible, 

and much potential exists for future modifications of our design.  For example, an FPGA 

could reconfigure its voting circuits and routing on the fly as it entered areas of increased 

or decreased radiation in an orbit.  Though the FPGA system might regard TMR as its 

standard configuration, it could switch to duplex or simplex operation to conserve power 

in safe regions, or employ an even higher level of redundancy (NMR) to guard against 

multiple simultaneous faults in more dangerous areas.  (An example of such an adjustable 

system is given in [1].)  It could increase or decrease the frequency of scrubbing as 

necessary, to balance fault tolerance against power consumption.  If one FPGA were 

performing multiple functions (one essential, others non-essential), and the essential 

circuit exhausted all of its spares, other portions of the FPGA could be quickly converted 
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into more spares for the high-priority system.  Although we have left the implementation 

of such possible techniques to future work, they illustrate the utility of a many-tile FPGA 

system for fault-tolerant computing.  In particular, the ability of an FPGA to convert one 

specialized circuit into a fresh spare for a different circuit gives it an edge over, for 

instance, an array of fixed processors with reconfigurable interconnect. 
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PROOF-OF-CONCEPT DESIGNS: GENERAL STRUCTURE 
 
 
In order to illustrate, analyze, and test our unique approach to radiation fault 

tolerance, we have designed and implemented four prototype computing systems.  

Although each design performs a different task and they feature different numbers of 

spare tiles, they hold their fault tolerance techniques and control architectures in 

common.  This chapter discusses that basic system design.  All four designs were targeted 

at the Xilinx ML605 demonstration board, which features a Virtex-6 FPGA and many 

convenient peripherals.  The Virtex-6 was chosen as a platform for this project because, 

at the time the project was initiated, it was the largest commercially available FPGA that 

supported partial reconfiguration.  The designs were created in the VHDL hardware 

description language, then compiled and prepared for download to the FPGA with the 

Xilinx ISE Design Suite of software tools.  The final versions of most of the systems 

were developed in ISE version 13.2, but parts of one system were finished in 13.1. 

 
Many-Core System with TMR and  
Partial Reconfiguration Capability 

 

The basic fault-tolerant design produced for this project consists of a number of 

small hardware units, or “tiles,” that perform the computations required by the system.  

(The required computations depend on which specific design variant is being considered; 

variants will be discussed in Chapter 5.)  Each tile takes up a rectangular portion of the 

FPGA chip; the FPGA hardware within this region is configured to create the circuits 

required by the tile.  Depending on the specific system (see Chapter 5), each tile may be a 
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soft processor or a more specialized circuit.  At any given time, three tiles are active and 

connected to a majority voter, providing Triple Modulo Redundancy (TMR).  The 

remaining tiles function as spares, and are held in reset to conserve power.  If one of the 

three active tiles suffers a serious fault, the majority voter will mask its incorrect output, 

since the outputs of the two good tiles will overrule that of the bad one.  The voting 

circuitry is also able to detect the disagreement of one tile with the other two, and declare 

the tile that disagrees “damaged.”  A simple state machine will then handle the process of 

deactivating the faulty tile, bringing a spare tile online, and re-initializing all three active 

tiles to a common state (e.g. the closest checkpoint in a processor’s code) before 

resuming computations.  The complexity of the re-initialization, and the time needed, 

depends on the module type.  See Figures 5.2, 5.6, 5.10, and 5.14 for flow diagrams 

depicting the spare swap/recovery process for each of the four systems. 

Each computational tile circuit includes an input that can be used to force a fault 

on the output (e.g. by driving the output to zero).  This feature can be used to simulate 

transient faults that alter the output without committing any changes to the configuration 

memory (i.e. SEUs), for the purpose of testing the voting and recovery circuitry. 

Each tile occupies a Partially Reconfigurable Region (PRR) within the FPGA.  

Thus, if it is necessary to overwrite the portion of configuration memory that is specific 

to the tile, that can be done without disturbing the operation of the other tiles or the 

control circuitry.   Multiple circuit designs can be generated for the same PRR, as long as 

the interfaces to the FPGA hardware that lies outside the PRR (referred to as the static 

region) are consistent across designs.  Hence, partial reconfiguration can be used either to 
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repair a PRR by overwriting its memory with clean data for the circuit that is currently 

present in the PRR, or to change the PRR’s functionality by overwriting its memory with 

data for a different circuit.  With that in mind, we created two different circuits that 

would fit inside each PRR, the first being the actual computational tile circuit (a counter, 

a processor, etc.).  The other is a “fake” circuit which has the same input and output ports 

as the desired computational module, but gives a faulty, useless output.  These fake tiles 

represent severe corruption of the original computational modules (e.g. by SEFIs).  They 

allow us to use partial reconfiguration to perform coarse fault injection, in order to test 

the system’s ability to respond to and repair damage to the configuration memory. 

 

 
Figure 4.1: A diagram of the FPGA floorplan and implementation for one of the 

demonstration systems, captured from Xilinx’s PlanAhead tool.  Each of the sixty-four 
pink rectangles surrounds a PRR.  The cyan dots pinpoint FPGA resources used by the 

design. 
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Once chosen, the PRRs cannot change shape or be moved to new locations within 

the FPGA at runtime (relocation is possible, but requires additional reverse-engineering 

effort; see [29]).  Therefore, while the contents of the tiles in our systems may be 

dynamically reconfigured, the layout of the tiles themselves is fixed.  Each PRR contains 

more combinational logic blocks than are actually necessary to create the circuits it may 

contain; these extra resources help the system meet timing closure by providing more 

possible routing paths for the Place and Route tool to use. 

 
Scrubbers 

 

The basic design also includes the necessary hardware and software to perform 

both blind and readback-compare scrubbing.  The blind scrubber simply overwrites the 

contents of each reconfigurable tile that it scrubs, correcting errors without detecting 

them.  The readback scrubber, however, examines each frame of the configuration 

memory, and only triggers a partial reconfiguration if it finds errors.  It can also report the 

number of faults found.  The scrubbers are controlled by a master MicroBlaze soft 

processor on the FPGA.  The MicroBlaze is a standard processor core supplied to the 

public by Xilinx.  Both scrubbers read their “golden” copy of the configuration data from 

the compact Flash card provided with the ML605 board, and use the Virtex-6 FPGA’s 

Internal Configuration Access Port (ICAP) to scrub the configuration memory.  The 

HWICAP, a standard peripheral for the MicroBlaze, is used to communicate with the 

ICAP port.   
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Notably, in systems whose tiles contain processors or other elements that make 

use of the FPGA’s BRAMs and LUT RAMs, some frames cannot be scrubbed.  Since the 

data located in RAM blocks changes over time, it cannot be reliably compared with the 

golden copy data.  The Xilinx tools can create “mask files” which pinpoint the location of 

bits/frames that should not be scrubbed.  These masks are stored on the Flash card with 

the partial bit files, and the readback scrubber consults them to avoid detecting false 

errors in bits that are off-limits to scrubbing.  Since our spare processor tiles refresh their 

RAM after being brought into active service, and the TMR system will detect any faults 

in the RAM of the active tiles, scrubbing the BRAM blocks is not essential for system 

reliability.  

 
Radiation Sensor Interface 

 

The radiation sensor has sixteen conducting channels on its upper side and sixteen 

more on the underside, running in perpendicular directions.  Simultaneous current pulses 

on a top channel and a bottom channel indicate a radiation strike at the pixel which 

corresponds to the intersection of those two channels.  The sensor is connected to a 

custom circuit board which conditions and amplifies its signals to match the FPGA’s 

logical voltage levels.  After amplification, they are sent to the FPGA through thirty-two 

parallel general-purpose IO channels.   Because the pulses are short when compared to 

the period of the system clock, it was necessary to design a high-speed event detector to 

capture them.  The detector passes each channel’s signal through a chain of flip-flops.  A 

pulse on the channel will appear as a binary ‘1’ traveling through the chain.  The contents 
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of the flip-flop chain are periodically assigned to a register.  If a ‘1’ is present anywhere 

in a channel’s register, that channel is considered active; thus, the register makes the short 

pulses persist in the system for a much longer time than their original width would allow.  

Also present on the FPGA is a binary counter for each sensor pixel.  If the top and bottom 

sensor channels corresponding to a pixel are active at the same time, the enable line for 

that pixel’s counter is triggered.  Essentially, the system keeps count of how many high-

energy particles have struck each sensor pixel.  The sensor itself is designed to be 

mounted above the FPGA, so that any radiation which strikes the FPGA must pass 

through it (except for the small percentage that enters through one of the sides of the 

FPGA package).  Since the tile PRRs reside at fixed locations within the FPGA, a 

correspondence between each tile and the sensor pixels above it can be established.  

Refer to [3] and [30] for more information about the radiation sensor, the amplifier board, 

and the hardware interface within the FPGA (including the event detector and counters).   
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Figure 4.2: The ML605 board on which all of the demonstration designs were 

implemented, along with its peripherals.  The Morph-IC II appears at the lower right; a 
temporary voltage divider which connects the FPGA to the sensor’s amplifier board 

appears at left.  An oscilloscope probe lies in the lower center. 
 

 
Figure 4.3: The final version of the voltage divider. 



27 
 

 

It was necessary to integrate the internal hardware interface with the radiation-

tolerant many-core system, so that the sensor information could be put to use.  To that 

end, the same state machine which takes faulty tiles offline and replaces them is also 

responsible for monitoring the sensor counters while in its “idle” state.  If any counter 

corresponding to one of the pixels registers one or more counts, the tile that the pixel 

covers is declared damaged.  If it is an active tile, it is proactively taken offline and a 

spare is brought online to replace it, even if its output has not yet been found faulty.  

Every 250 ms, the value of each pixel counter is sent across the USB interface (see User 

Interfaces, below), and all counters are reset. 

 

 
Figure 4.4: The radiation sensor and its stack of interface and power boards. 

 
 

User Interfaces 
 

Two communication interfaces, based on serial UART and USB technology, 

respectively, were included in each system, so that users could send commands to the 

system and display its internal state.  The USB interface was included for its high 



28 
 

 

maximum data rate, the UART for its ease of setup and use.  Two Graphical User 

Interfaces (GUIs) were also designed to present information from the system in a 

convenient fashion.     

  
UART and USB Communication Interfaces  
 

The master MicroBlaze which governs the scrubbing process was also provided 

with a UART peripheral.  This UART could be connected to a virtual COM port on any 

computer via the USB-UART bridge provided on the ML605 demonstration board.  

Since the UART was simple and easy to set up, it was the first communication interface 

completed.  It was initially used for simple text-based debugging of various system 

features, including the USB interface.  Later, it was employed to communicate with our 

MATLAB-based GUI, because this application did not require a high data rate, and it was 

more straightforward to design the MATLAB program to use a virtual COM port rather 

than a USB port.  (See “Orbital Environment GUI,” below.)   

A true USB interface was also included; although more complicated to interface 

with computer programs than the UART is, it offers a greater maximum data rate.  

Therefore, it was used to connect the FPGA board to the System Status GUI (which 

needs to receive a large volume of radiation strike data from the sensor).  Unfortunately, 

the USB port on the ML605 board is difficult to use; we were unable to find any drivers 

that a computer on the other end of the USB cable could use to communicate with it.  

Instead, we chose to purchase a small USB interface board that came with drivers.  Our 

choice was the Morph-IC-II, which includes an Altera Cyclone II FPGA and many 

general-purpose IO pins.  Some of these pins were connected to a corresponding set of 
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GPIO pins on the ML605 board, and the small FPGA on the Morph-IC-II board was 

programmed to perform the needed conversions between parallel data and serial USB 

packets.    

  
System Status and Control GUI  
 

The purpose of this GUI is to provide an abstract visual representation of the 

interior of the FPGA, and allow the user to send commands to the fault-tolerant system.  

It was created in Visual Basic.  Each computational tile is represented as a group of 

buttons in the GUI.  Three of the buttons are color-coded to represent the status of the 

tile; the color green indicates a member of the active triad, red indicates a tile that has 

been declared damaged, and yellow indicates that the tile has been reconfigured with the 

“fake” version, i.e. its configuration memory has been artificially corrupted.  Tiles with 

three beige/gray buttons are dormant, undamaged spares.  The remaining button, located 

at the lower right of the group, displays the number of radiation strikes detected by the 

sensor for that tile.  The radiation strike buttons begin with a white background, and 

gradually fade from white to red to black as the strike counts mount up.  A tile whose 

button group is surrounded by a bright blue border is currently being scrubbed.  If the 

readback scrubber is active and finds errors in the configuration memory of a tile, the 

number of corrupted memory frames will be reported in the text box at the upper right of 

the GUI.  Some versions of the GUI have a performance graph at the lower right.  This 

graph displays the number of processor MIPS being used for computations and the 

number being used for the fault recovery process.  A higher fault rate forces the TMR 
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system to swap in spares for faulted active tiles more often, reducing the amount of time 

the system can spend on useful work. 

A user can click the appropriate buttons in a tile’s button group to force a 

simulated SEU fault on the tile, repair the tile through partial reconfiguration, or replace 

the tile with a fake through partial reconfiguration.  The user can turn the blind and 

readback scrubbers on and off with the checkboxes at the middle right (only one scrubber 

can be active at a time).  The GUI also includes controls that allow the user to log and/or 

clear the radiation sensor count information.  

Figure 4.5: The System Status and Control GUI for the 36-Tile PicoBlaze system. 

 
 
 
 



31 
 

 

Orbital Environment Display  
 

The Orbital Environment Display was born out of a desire to demonstrate the 

behavior of the systems in realistic orbital environments.  It is based on a MATLAB 

program which runs a simulation of a spacecraft traveling on an orbit around the earth.  

The spacecraft is presumed to be carrying a Virtex-6 FPGA running one of our systems, 

and the simulation calculates and plots the fault rate of the device at each point in the 

orbit.  The Display also includes a projection of the earth, on which the orbit and the 

current location of the craft are plotted.  Viewers can watch the fault rate change in real 

time as the craft moves along the orbit.  Four preset orbits are available: the International 

Space Station (or Zarya) orbit, a Low Earth Orbit; Molniya 1-80, a Highly Elliptical 

Orbit; Satcom 5, a geosynchronous orbit; and EXP-1 Prime, the orbit of Montana State 

University’s student-built cubesat (later renamed the Hiscock Radiation Belt Explorer, or 

HRBE).   

The Orbital Environment Display can communicate with the FPGA’s UART 

interface through a virtual COM port on the computer.  If the FPGA is connected, the 

Display will send it current simulation information about the fault rate the device would 

be experiencing on-orbit.  The master MicroBlaze can accept this information and force 

faults on the computational tiles at the specified rate, making the FPGA and its fault-

tolerant system participants in the simulation. 

 The Display relies on data from Vanderbilt University’s CREME96 tool to create 

a realistic simulation.  CREME96 is designed to compute the expected fault rate due to 

ionizing radiation for an electronic device in a given orbit.  The orbit may be divided into 
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segments, and an average fault rate computed for each segment.  Each segment is 

specified by a range of McIlwain-L parameters.  The Display program includes a routine 

which uses a model of the magnetic field surrounding the earth to calculate the L-value 

for each point on the orbit.  The fault rate may then be obtained as a function of the L-

value, using an interpolated version of the imported CREME96 data.  Since we could find 

no appropriate radiation test data for the Virtex-6 FPGA, we used data from the Virtex-5 

[31, 32] as an input to CREME instead.  This yields a conservative estimate, as the 

Virtex-5 is actually more vulnerable to radiation than the Virtex-6 [6].  Certain types of 

faults were trimmed from the data set in [31] and possibly in [32] as well; however, since 

the number of faults trimmed is several orders of magnitude lower than the number of 

faults remaining in the data set [31], it is not likely that they had a substantial impact on 

the calculations. 
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Figure 4.6: A screenshot of the Orbital Environment GUI, currently plotting an ISS orbit. 
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PROOF-OF-CONCEPT DESIGN: VARIATIONS 

 
64-Tile Binary Counter System 

 
 

The first reconfigurable fault-tolerant design that was prepared was the 64-tile 

binary counter system.  Its main purpose was to test the scalability of the design, in terms 

of the number of tiles.  Each tile in this system contained a 32-bit binary counter; we 

purposely chose a relatively small, simple circuit, in order to fit as many of them inside 

the FPGA as possible.  The initial target for the size of the system was 256 counter tiles; 

however, this criterion proved too difficult to meet.  Although the FPGA has sufficient 

logic resources for 256 binary counters, the complexity of the multiplexers needed to 

connect that many tiles to the control circuitry made the design nearly impossible to 

route.  Since three tiles are active at any given time, the system has a total of sixty-one 

spares.  The eight most significant bits of the final voter output are displayed on the 

ML605 board’s user LED lights.  See Figure 5.1 for a block diagram of the system, 

Figure 5.2 for a representation of the recovery process as a flow diagram, Figure 5.3 for 

the FPGA floorplan (showing the PRRs in which the counter tiles reside), and Figure 5.4 

for the System Status and Control GUI. 



35 
 

 

 
Figure 5.1: Block diagram of the 64-tile Binary Counter System. 
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Figure 5.2: Flow chart 
describing the recovery 

process for the 64-Tile Binary 
Counter System (each block 
corresponds roughly to one 
state in the recovery state 

machine). 

 
Figure 5.3: The floor plan of the 64-Tile Binary Counter 
System, obtained from PlanAhead.  Each pink rectangle 

is a partially reconfigurable region, able to hold one 
counter module. 
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Figure 5.4: The 64-Tile Binary Counter System’s graphical user interface. 

 
 

36-Tile PicoBlaze System 
 

The PicoBlaze is a simple soft processor which Xilinx provides to users of its 

FPGA products.  Versions optimized for use on the Virtex-6 are available.  The second 

proof-of-concept system uses these small processors as the basis of its computational 

tiles.  Each PicoBlaze runs a test program which computes an eight-point FFT on hard-

coded data.  After passing through the voter, the outputs of the FFT computation are 

stored in memory and cycled across the LEDs on the ML605 board. 

When an active PicoBlaze experiences a fault, the two good PicoBlazes remaining 

in the active triad will advance to the next checkpoint in their code, then copy the 



38 
 

 

contents of their RAM and registers to storage in the control circuitry.  Once the faulted 

processor has been replaced with a spare and all three active processors have been reset, 

they will reload their RAM and registers with the values stored before reset, jump to the 

appropriate code checkpoint, and resume computations where they left off.  Another 

portion of the control circuitry monitors the progress of the PicoBlazes, and reports the 

number of successful FFT computations they complete to the System Status and Control 

GUI every 250 ms.  Numbers of spare swaps in the past 250 ms are also sent to the GUI.  

This information is used to draw the performance plot.  See Figure 5.5 for a block 

diagram of the system, Figure 5.6 for a representation of the recovery process as a flow 

diagram, Figure 5.7 for the FPGA floorplan, and Figure 5.8 for the System Status and 

Control GUI.  One peculiarity of both this system and the 16-Tile PicoBlaze + FFT Core 

system is the need to go through the memory offload/reload process twice.  If this is not 

done, the new PicoBlaze module will not be in sync with the other two when the system 

resumes normal operation.  I was never able to determine why this is the case. 
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Figure 5.5: Block Diagram of the 36-Tile PicoBlaze System. 
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Figure 5.6: Flow chart 
describing the recovery 
process for the 36-Tile 

PicoBlaze System (each 
block corresponds roughly 
to one state in the recovery 

state machine). 

 
Figure 5.7: The floor plan of the 36-Tile PicoBlaze System, 

obtained from PlanAhead.  Each pink rectangle is a 
partially reconfigurable region, able to hold one PicoBlaze 

module. 
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Figure 5.8: The 36-Tile PicoBlaze System’s graphical user interface. 

 
 

16-Tile PicoBlaze + FFT Core System 
 

The 16-tile PicoBlaze system is much like the previous 36-tile version in some 

respects.  Each tile contains a PicoBlaze soft processor, whose interfaces with the voter 

and other control circuitry are the same as in the previous case.  When a tile swap is 

necessary, the PicoBlazes in the 16-tile system follow the same procedure of offloading 

and reloading their registers and RAM as in the 36-tile system.  However, in the 16-tile 

version, each tile also includes an FFT core defined in hardware, which functions as the 

PicoBlaze’s co-processor.  The FFT core is another pre-designed Xilinx module, which 

was customized for this application using the Core Generator program.  The superior 

performance of the customized hardware allows this system to perform a more practical 
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256 point FFT.  The input data for the computation is stored on the ML605 board’s 

platform Flash chip.  Outputs are placed in memory after passing through the voter, and 

can be fetched and displayed in the terminal by sending a command to the master 

MicroBlaze via the UART interface.  Much like the 36-Tile PicoBlaze System, this 

system also reports numbers of computations and spare swaps to the GUI so that the 

performance graph can be updated.  See Figure 5.9 for a block diagram of the system, 

Figure 5.10 for a representation of the recovery process as a flow diagram, Figure 5.11 

for the FPGA floorplan (showing the PRRs in which the counter tiles reside), and Figure 

5.12 for the System Status and Control GUI.  In Figure 5.10, you may observe the 

practice of offloading and reloading the memory twice, which is necessary for unknown 

reasons (see the 36-Tile PicoBlaze System section, above). 
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Figure 5.9: Block Diagram of the 16-Tile PicoBlaze + FFT Core System. 
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Figure 5.10: Flow chart 
describing the recovery 
process for the 16-Tile 
PicoBlaze + FFT Core 

System (each block 
corresponds roughly to one 
state in the recovery state 

machine). 

 
Figure 5.11: The floor plan of the 16-Tile PicoBlaze 

System, obtained from PlanAhead.  Each pink rectangle is 
a partially reconfigurable region, able to hold one 

PicoBlaze + FFT core module. 
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Figure 5.12: The 16-Tile PicoBlaze + FFT Core System’s graphical user interface. 

 
 

16-Tile MicroBlaze System 
 

The last of the four demonstration systems is based on the MicroBlaze soft 

processor, another Xilinx product which is larger and more capable than the PicoBlaze.  

Although every one of our demonstration systems has a master MicroBlaze that functions 

as part of the scrubbing and control circuitry, in this system the computational tiles are 

also MicroBlaze processors.  Each tile MicroBlaze has 32 KB of memory, drawn from 

the block RAMs inside the FPGA.  In our demonstration system, they run a program 
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which calculates digits of pi.  After being voted on, the resulting outputs are placed in 

memory and cycled across the ML605 board’s LED lights.  Like the PicoBlaze systems, 

this system reports the number of successful computation cycles and spare swaps that 

occur during each 250 ms period to the GUI, so that the performance graph can be 

updated.  See Figure 5.13 for a block diagram of the system, Figure 5.14 for a 

representation of the recovery process as a flow diagram, Figure 5.15 for the FPGA 

floorplan (showing the PRRs in which the counter tiles reside), and Figure 5.16 for the 

System Status and Control GUI. 
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Figure 5.13: Block diagram of the MicroBlaze System. 
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Figure 5.14: Flow chart 
describing the recovery 
process for the 16-Tile 
MicroBlaze System (each 
block corresponds roughly 
to one state in the recovery 
state machine). 

 
Figure 5.15: The floor plan of the 16-Tile MicroBlaze 
System, obtained from PlanAhead.  Each pink rectangle is 
a partially reconfigurable region, able to hold one 
MicroBlaze module. 
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Figure 5.16: The 16-Tile MicroBlaze System’s graphical user interface. 

 
 

System Performance and Resource Utilization 
 

The four systems listed above place different demands on the FPGA tools.  Some 

require more space than others, and some have lower maximum clock rates due to more 

complex routing.  Table 5.1 reveals the relevant statistics for each system; the reported 

maximum clock rate and the overall resource utilization percentage were obtained from 

PlanAhead’s implemented design report summary.  The maximum reported clock rate 

was not always attainable, and if implemented, could cause a failure to achieve timing 
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closure for the system during Place and Route.  Therefore, the actual speed of the clock 

used to run each system is lower than the reported maximum in every case.  For more 

detailed breakdowns of the resources used by each system, refer to Figures 5.16 – 5.19, 

which were also obtained from PlanAhead. 

 

 
 

 
Figure 5.17: Resource utilization graph for the 64-Tile Binary Counter System. 
 

TABLE 5.1 
Performance and Resource Utilization for Proof-of-Concept 

Systems 

 64 Counters 36 PicoBlazes 16 PicoBlazes 
+ FFT Cores 

16 
MicroBlazes 

Reported Max. 
Clock Rate 71.664 MHz 63.399 MHz 52.743 MHz 78.388 MHz 

Actual Clock 
Rate Used 66 MHz 50 MHz 30 MHz 30 MHz 

Percent of 
Virtex-6 

Resources 
Required 

20.0% 17.0% 13.0% 28.0% 
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Figure 5.18: Resource utilization graph for the 36-Tile PicoBlaze System. 
 
 

 
Figure 5.19: Resource utilization graph for the 16-Tile PicoBlaze + FFT Core System. 
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Figure 5.20: Resource utilization graph for the 16-Tile MicroBlaze System. 
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THEORETICAL ANALYSIS 

 
The Markov Model 

 
 
 We chose to analyze our fault-tolerant systems for their reliability using Markov 

models.  A Markov model describes a system as a combination of states and transitions 

between those states.  Each transition is assigned a rate, depending on how often that 

transition happens.  The mathematical representation of the model is a system of 

differential equations, which can be solved to determine the system’s probability of 

reaching the failed state.  From this, the overall failure rate and Mean Time Before 

Failure (MTBF) may be calculated. 

 

 
Figure 6.1: Diagrammatic representation of the Markov model for one of the sixteen-tile 

systems.  S0 represents the initial state of the system, in which all tiles are in usable 
condition, and S14 represents the failure state, in which only two usable tiles remain.  

The system transitions to a state with a higher number at the failure rate, , and 
transitions to a state with a lower number at the repair rate, .  Both of these may vary 

depending on the current state.  The only essential difference between the 16-tile model 
and the others is the number of states. 
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Figure 6.2:  Diagram of the Markov model for the 36-Tile PicoBlaze System. 

 
 

 
 

Figure 6.3:  Diagram of the Markov model for the 64-Tile Binary Counter System. 
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In the Markov models for our systems, each state corresponds to some number of 

good spares.  When only two undamaged tiles are left, the system is said to be in the 

failed state.  The system may transition from its current state to a state with one less good 

spare, or a state with one more good spare.  The latter transition occurs at the state’s 

“repair rate,” which is based on the amount of time that passes before the scrubber arrives 

at a bad tile and repairs it.  The transition to a state with one less good spare occurs at that 

state’s “fault rate.”  Our Markov calculations were based on the solution methods 

described in [33]; specifically, we calculated the steady-state solution using a matrix 

representation of the Markov equations.  These calculations were implemented with a 

Matlab script. 

 
Derivation of Parameters 

 

In order to construct the Markov model, it was necessary to ensure that we had 

reasonable values for the fault and repair rates, corresponding to what we might expect 

from our physical system.  Our methods of obtaining these parameters are the topic of 

this section. 

 
Fault Rates (CREME96 Calculations) 
 

Fault rates are based on realistic estimates of the faults our system’s configuration 

SRAM would experience if it were riding on a spacecraft in various orbits, obtained from 

Vanderbilt University’s CREME96 tool.  Refer to the section above on the Orbital 

Environment Display for more information about CREME96 and the input data we used.  

Unlike the Orbital Environment Display, each Markov model uses an average fault rate 
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for the entire orbit, rather than attempting to break the orbit up into segments.  However, 

the same four orbits were featured: the International Space Station (or Zarya) orbit, a 

Low Earth Orbit; Molniya 1-80, a Highly Elliptical Orbit; Satcom 5, a geosynchronous 

orbit; and EXP-1 Prime, the orbit of Montana State University’s student-built cubesat, the 

Hiscock Radiation Belt Explorer.  These will be hereinafter referred to as ISS, HEO, 

GEO, and HRBE, respectively.   

 

 
 
 

For the “average” environment calculations, the CREME model for solar 

maximum with peak protons and a stormy magnetosphere, without a flare event, was 

used.  The “worst week” fault rate is based on a seven-day running average taken during 

the most intense part of a flare during solar maximum.  Similarly, the “peak 5 minutes” 

fault rate comes from a running average taken during the most intense five minutes of a 

flare.   

The fault rates obtained from CREME are reported in Table 6.1.  They represent 

the number of faults per device per second; however, this is simply a “base” fault rate 

that must be modified depending on the nature of the system and the state it is currently 

in.  For example, if we model one of our systems without the radiation sensor included, 

TABLE 6.1 
Orbital Fault Rates from CREME96, in 

Faults/Device/Second 
 Average Worst Week Peak 5 Minutes 

ISS 0.0003479 3.544 72.96 

HEO  0.08788 120.2 2398 

HRBE 0.003464 29.93 612.3 

GEO .0002494 149.8 3059 
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we are only concerned about faults that occur in sensitive bits, i.e. those portions of the 

configuration SRAM which, if altered, would actually cause a malfunction in our design.  

However, if the sensor is present, it will give alarm and declare a tile bad whenever the 

FPGA is struck by radiation; the sensor has no way of discerning whether any particular 

particle struck a sensitive bit or not.  Discovering how many sensitive bits are present in 

each of our systems would require extensive testing, so we chose to use a worst-case 

estimate of 35% sensitive bits.  This is based on the empirically obtained sensitive bit 

densities for various circuits on a Virtex-4 FPGA, found in [34].  Motivated by these 

considerations, we reduced the fault rate by 65% in system variations without the sensor.   

A further assumption made was that each radiation strike would affect one and 

only one tile.  Since the tiles do not completely fill the FPGA in any of our systems, this 

assumption may be somewhat pessimistic – some high-energy particles would strike in 

completely empty areas of the FPGA, where they would be less likely to have any impact 

on the operation of the tiles.  When modeling systems with only three tiles (see the 

Results and Discussion section), we assumed that the tiles would occupy a fraction of the 

FPGA equal to three divided by the maximum number of tiles for that system, and 

reduced the fault rate accordingly. 

The fault rates require further adjustment depending on the state of the system.  

As the number of damaged tiles grows, the rate of new tile failures must drop, since the 

radiation has a chance of passing through a previously damaged region of the device.  

Therefore, as the system moves to progressively more damaged states, the fault rate is 

reduced in proportion to the number of good tiles remaining. 
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Repair Rates 
 

The amount of time needed to repair a tile through partial reconfiguration was 

derived empirically for each system; the results of these measurements are reported in 

Table 6.2.  In each system, we created a signal that would be driven high when the 

scrubber began refreshing a tile, then driven low again when scrubbing concluded.  This 

signal was connected to an external pin on the FPGA board and monitored with an 

oscilloscope, and average times needed to scrub the tiles were measured.  Within a 

system, the actual time needed to scrub a given tile varies, due to differences in tile 

placement within the FPGA, so the scrub times given in Table 6.2 are averages.  

Scrubbing time also varies by system, since some systems have larger tiles than others.  

In systems with very short scrub times, a lower limit on the scrub time is imposed by the 

timer interrupt that initiates scrubbing (hence the appearance of multiples of 250 ms in 

the data). 
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Scrubbing a tile with readback takes longer than scrubbing it blindly, and the 

readback scrubber takes even longer if it finds damage and must repair the tile.  For this 

reason, minimum and maximum values are reported for the readback scrubber in Table I, 

corresponding to scrubs of undamaged and damaged tiles, respectively.  We believe that 

the time required to read the “golden data” from the compact flash card is a substantial 

contributor to scrubbing time.  Finding an alternate method of data storage for the bit 

files, in order to shorten the scrubbing cycle, should be a high priority for future work. 

The time needed to scrub one tile is not necessarily equivalent to the actual repair 

time; this assumption can only be made if the scrubber is aware of which tiles are 

damaged and can prioritize them for immediate scrubbing.  Thus, setting the repair rate 

equal to the single-tile scrubbing rate (for a damaged tile) is appropriate if and only if the 

TABLE 6.2 
Spare Swap and Scrubbing Times 

 64 
Counters 

36 
PicoBlazes 

16 
PicoBlazes 

+ FFT 
Cores 

16 
MicroBlazes 

Clock 
Speed 66 MHz 50 MHz 30 MHz 30 MHz 

Tile Swap 106 ns 45.38 us 992 us 267 ns 

Blind 
Scrub 

(one tile) 
250 ms 500 ms 2.07 s 2.63 s 

Readback 
Scrub  

(one tile) 

500 ms 
/500 ms 1 s /1.5 s 4.11 s /6.13 

s 
2.88 s /5.30 

s 

Blind 
Scrub   

(all tiles) 
16 s 18 s 33.12 s 42.08 s 

Readback 
Scrub    

(all tiles) 
32 s /  32 s 36 s /54 s 65.76 s 

/98.08 s 
46.08 s / 

84.8 s 

The two numbers in the Readback Scrub rows represent the 
time needed to scrub undamaged/damaged tiles, respectively. 
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radiation sensor is present in the system.  If the scrubber is constrained to travel 

sequentially through the FPGA, then the average repair rate will depend on the number of 

damaged tiles.  A greater frequency of damaged tiles within the set of all tiles increases 

the probability that the scrubber will locate and repair one on its next move, raising the 

overall repair rate.  However, unless all tiles are damaged, the average repair rate can 

never be as great as the single-tile scrubbing rate. 

 
Results and Discussion 
 

We wished to model several variations of our designs, in order to determine how 

the inclusion of certain features affected their reliability.  The first design variation 

contained only three active tiles and no spares; it represents the behavior of our designs if 

we had implemented them as traditional TMR plus scrubbing systems.  The second 

design variation includes the maximum number of spare tiles we were able to implement 

(sixty-four, thirty-six, or sixteen, depending on the system), but does not include the 

radiation sensor.  Since the sensor is not present to alert the scrubber to potentially 

damaged tiles, the scrubber must travel sequentially, and a repair rate that varies with the 

number of damaged tiles is used.  The base fault rate is also reduced by 65% to reflect the 

percentage of sensitive bits.  The third design variation incorporates the maximum 

number of spare tiles and the sensor.  Since we do not yet have a good estimate of the 

sensor’s accuracy and sensitivity, we assumed for the purposes of this calculation that the 

sensor is able to detect all damaging radiation strikes.  Therefore, we used a constant 

repair rate equal to the single-tile scrubbing rate in the models for this design variation.  

We also used the standard base fault rate, without adjusting for sensitive bits, since the 
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sensor will declare tiles damaged regardless of which bits are hit.  Our desire to model 

each of our four demonstration systems on each of the four example orbits produced 

sixteen different Markov models for each design variation, for a grand total of forty-eight 

models. 

 

 

TABLE 6.3 
MTBF of 64-Tile Counter System (Theoretical), in Seconds 

   TMR Only 
(Baseline) 

TMR + 
Spares 

TMR, Spares, 
and Sensor 

Percent 
Improvement 
from Spares 

Percent 
Improvement 
from Spares 
and Sensor 

Average 

Blind 

ISS 5.12E+09 6.77E+231 2.20E+274 1.32E+222% 4.29E+264 

HEO 8.03E+04 1.28E+85 4.93E+125 1.59E+80% 6.14E+120 

HRBE 5.16E+07 1.07E+170 2.92E+212 2.07E+162% 5.67E+204 

GEO 9.95E+09 6.06E+240 1.98E+283 6.09E+230% 1.99E+273 

RB 

ISS 2.56E+09 3.00E+213 9.55E+255 1.17E+204% 3.73E+246 

HEO 4.02E+04 5.19E+68 4.30E+107 1.29E+64% 1.07E+103 

HRBE 2.58E+07 5.76E+151 1.30E+194 2.23E+144% 5.05E+186 

GEO 4.98E+09 2.67E+222 8.59E+264 5.36E+212% 1.72E+255 

Worst Week 

Blind 

ISS 5.15E+01 4.98E+17 5.03E+35 9.67E+15% 9.77E+33 

HEO 1.06E-01 4.62E+01 1.26E+02 4.35E+02% 1.19E+03 

HRBE 9.46E-01 4.91E+04 1.92E+08 5.19E+04% 2.03E+08 

GEO 7.83E-02 2.41E+01 4.02E+01 3.07E+02% 5.12E+02 

RB 

ISS 2.68E+01 1.46E+12 1.58E+24 5.45E+10% 5.88E+22 

HEO 8.49E-02 1.54E+01 1.26E+01 1.80E+02% 1.47E+02 

HRBE 6.00E-01 1.45E+03 5.19E+04 2.42E+03% 8.64E+04 

GEO 6.46E-02 9.85E+00 6.55E+00 1.51E+02% 1.00E+02 

Peak 5 
Minutes 

Blind 

ISS 2.21E-01 2.92E+02 4.20E+03 1.32E+03% 1.90E+04 

HEO 3.14E-03 2.77E-01 1.03E-01 8.72E+01% 3.17E+01 

HRBE 1.40E-02 1.51E+00 6.90E-01 1.07E+02% 4.83E+01 

GEO 2.56E-03 2.12E-01 7.75E-02 8.18E+01% 2.93E+01 

RB 

ISS 1.63E-01 5.19E+01 9.12E+01 3.17E+02% 5.59E+02 

HEO 3.14E-03 2.62E-01 9.42E-02 8.24E+01% 2.90E+01 

HRBE 1.31E-02 1.21E+00 4.77E-01 9.14E+01% 3.54E+01 

GEO 2.52E-03 2.03E-01 7.25E-02 7.96E+01% 2.78E+01 
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TABLE 6.4 
MTBF of 36-Tile PicoBlaze System (Theoretical), in Seconds 

   TMR Only 
(Baseline) 

TMR + 
Spares 

TMR, Spares, 
and Sensor 

Percent 
Improvement 
from Spares 

Percent 
Improvement 
from Spares 
and Sensor 

Average 

Blind 

ISS 1.44E+09 1.65E+123 1.49E+139 1.15E+114% 1.03E+130 

HEO 2.26E+04 9.61E+42 6.81E+57 4.25E+38% 3.01E+53 

HRBE 1.45E+07 2.16E+89 1.77E+105 1.49E+82% 1.22E+98 

GEO 2.80E+09 1.33E+128 1.21E+144 4.75E+118% 4.33E+134 

RB 

ISS 5.40E+08 2.44E+112 1.74E+129 4.52E+103% 3.22E+120 

HEO 8.54E+03 3.21E+33 1.72E+48 3.76E+29% 2.01E+44 

HRBE 5.45E+06 3.68E+78 2.13E+95 6.75E+71% 3.90E+88 

GEO 1.05E+09 1.97E+117 1.41E+134 1.88E+108% 1.35E+125 

Worst Week 

Blind 

ISS 1.60E+01 8.06E+07 2.27E+12 5.04E+06% 1.42E+11 

HEO 7.54E-02 4.09E+00 1.83E+00 5.32E+01% 2.33E+01 

HRBE 4.49E-01 9.10E+01 1.37E+02 2.02E+02% 3.05E+02 

GEO 5.86E-02 2.93E+00 1.24E+00 4.90E+01% 2.01E+01 

RB 

ISS 7.35E+00 1.45E+05 7.60E+07 1.97E+04% 1.03E+07 

HEO 6.80E-02 2.95E+00 1.19E+00 4.24E+01% 1.65E+01 

HRBE 3.27E-01 2.55E+01 1.88E+01 7.70E+01% 5.66E+01 

GEO 5.37E-02 2.25E+00 8.82E-01 4.09E+01% 1.54E+01 

Peak 5 
Minutes 

Blind 

ISS 1.37E-01 9.82E+00 5.48E+00 7.07E+01% 3.90E+01 

HEO 3.14E-03 1.18E-01 4.17E-02 3.66E+01% 1.23E+01 

HRBE 1.29E-02 5.03E-01 1.83E-01 3.80E+01% 1.32E+01 

GEO 2.51E-03 9.20E-02 3.24E-02 3.57E+01% 1.19E+01 

RB 

ISS 1.17E-01 5.72E+00 2.59E+00 4.79E+01% 2.11E+01 

HEO 3.14E-03 1.16E-01 4.09E-02 3.59E+01% 1.20E+01 

HRBE 1.26E-02 4.72E-01 1.70E-01 3.65E+01% 1.25E+01 

GEO 2.50E-03 9.09E-02 3.19E-02 3.54E+01% 1.18E+01 
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TABLE 6.5 
MTBF of 16-Tile PicoBlaze + FFT Core System (Theoretical), in Seconds 

   TMR Only 
(Baseline) 

TMR + 
Spares 

TMR, Spares, 
and Sensor 

Percent 
Improvement 
from Spares 

Percent 
Improvement 
from Spares 
and Sensor 

Average 

Blind 

ISS 1.55E+08 3.88E+45 1.42E+48 2.50E+37% 9.19E+39 

HEO 2.51E+03 1.48E+13 1.36E+15 5.90E+09% 5.43E+11 

HRBE 1.56E+06 4.61E+31 1.59E+34 2.96E+25% 1.02E+28 

GEO 3.01E+08 4.06E+47 1.50E+50 1.35E+39% 4.97E+41 

RB 

ISS 5.86E+07 1.40E+41 1.92E+44 2.39E+33% 3.28E+36 

HEO 1.01E+03 6.51E+09 6.43E+11 6.45E+06% 6.36E+08 

HRBE 5.93E+05 1.90E+27 2.27E+30 3.20E+21% 3.82E+24 

GEO 1.14E+08 1.47E+43 2.02E+46 1.29E+35% 1.77E+38 

Worst Week 

Blind 

ISS 3.64E+00 1.28E+02 6.59E+01 3.42E+01% 1.71E+01 

HEO 6.46E-02 7.52E-01 2.65E-01 1.06E+01% 3.09E+00 

HRBE 2.75E-01 3.51E+00 1.26E+00 1.18E+01% 3.58E+00 

GEO 5.17E-02 5.97E-01 2.10E-01 1.05E+01% 3.06E+00 

RB 

ISS 2.71E+00 5.06E+01 2.31E+01 1.77E+01% 7.54E+00 

HEO 6.40E-02 7.31E-01 2.57E-01 1.04E+01% 3.02E+00 

HRBE 2.63E-01 3.13E+00 1.12E+00 1.09E+01% 3.28E+00 

GEO 5.11E-02 5.84E-01 2.05E-01 1.04E+01% 3.02E+00 

Peak 5 
Minutes 

Blind 

ISS 1.08E-01 1.28E+00 4.52E-01 1.09E+01% 3.18E+00 

HEO 3.14E-03 3.60E-02 1.26E-02 1.05E+01% 3.01E+00 

HRBE 1.26E-02 1.42E-01 4.97E-02 1.03E+01% 2.94E+00 

GEO 2.49E-03 2.83E-02 9.90E-03 1.04E+01% 2.98E+00 

RB 

ISS 1.06E-01 1.22E+00 4.32E-01 1.05E+01% 3.07E+00 

HEO 3.14E-03 3.60E-02 1.26E-02 1.05E+01% 3.01E+00 

HRBE 1.26E-02 1.41E-01 4.94E-02 1.02E+01% 2.92E+00 

GEO 2.49E-03 2.80E-02 9.80E-03 1.02E+01% 2.94E+00 
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TABLE 6.6 
MTBF of 16-Tile MicroBlaze System (Theoretical), in Seconds 

   TMR Only 
(Baseline) 

TMR + 
Spares 

TMR, Spares, 
and Sensor 

Percent 
Improvement 
from Spares 

Percent 
Improvement 
from Spares 
and Sensor 

Average 

Blind 

ISS 1.22E+08 1.73E+44 6.35E+46 1.42E+36% 5.20E+38 

HEO 1.99E+03 1.26E+12 8.67E+13 6.33E+08% 4.36E+10 

HRBE 1.23E+06 2.12E+30 7.20E+32 1.72E+24% 5.86E+26 

GEO 2.37E+08 1.81E+46 6.66E+48 7.64E+37% 2.81E+40 

RB 

ISS 7.12E+07 6.03E+42 1.95E+46 8.47E+34% 2.74E+38 

HEO 1.20E+03 8.92E+10 3.12E+13 7.43E+07% 2.60E+10 

HRBE 7.20E+05 3.50E+28 2.23E+32 4.86E+22% 3.10E+26 

GEO 1.38E+08 6.31E+44 2.05E+48 4.57E+36% 1.48E+40 

Worst Week 

Blind 

ISS 3.32E+00 9.07E+01 4.20E+01 2.63E+01% 1.17E+01 

HEO 6.43E-02 7.44E-01 2.61E-01 1.06E+01% 3.07E+00 

HRBE 2.71E-01 3.36E+00 1.20E+00 1.14E+01% 3.42E+00 

GEO 5.14E-02 5.92E-01 2.08E-01 1.05E+01% 3.04E+00 

RB 

ISS 2.84E+00 6.31E+01 3.64E+01 2.12E+01% 1.18E+01 

HEO 6.40E-02 7.35E-01 2.60E-01 1.05E+01% 3.07E+00 

HRBE 2.64E-01 3.22E+00 1.18E+00 1.12E+01% 3.47E+00 

GEO 5.11E-02 5.87E-01 2.07E-01 1.05E+01% 3.06E+00 

Peak 5 
Minutes 

Blind 

ISS 1.07E-01 1.26E+00 4.43E-01 1.08E+01% 3.14E+00 

HEO 3.14E-03 3.60E-02 1.26E-02 1.05E+01% 3.01E+00 

HRBE 1.26E-02 1.41E-01 4.96E-02 1.02E+01% 2.94E+00 

GEO 2.49E-03 2.83E-02 9.90E-03 1.04E+01% 2.98E+00 

RB 

ISS 1.06E-01 1.23E+00 4.40E-01 1.06E+01% 3.15E+00 

HEO 3.14E-03 3.60E-02 1.26E-02 1.05E+01% 3.01E+00 

HRBE 1.26E-02 1.41E-01 4.95E-02 1.02E+01% 2.93E+00 

GEO 2.49E-03 2.80E-02 9.90E-03 1.02E+01% 2.98E+00 
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Each model was used to calculate the Mean Time Before Failure (MTBF) for the 

corresponding system and orbit.  The results appear in Tables 6.3 – 6.6.  Table 6.3 

contains the results for the 64-Tile Counter System, Table 6.4 those for the 36-Tile 

PicoBlaze system, Table 6.5 those for the 16-Tile PicoBlaze-plus-FFT system, and Table 

6.6 those for the 16-Tile MicroBlaze system.  In each table, the fourth data column gives 

the percent change in MTBF that occurs when the maximum number of spares is added 

to the system without spares.  The fifth (rightmost) data column displays the percent 

change that takes place when both the maximum number of spares and the sensor are 

added to the system without spares. 

The results of these theoretical calculations reveal that the inclusion of many 

spares in the TMR system yields dramatic improvements in its reliability under standard 

orbital conditions, increasing the MTBF by many orders of magnitude in some cases.  

The sensor yields more modest, but still considerable, improvements in reliability under 

standard orbital conditions, as well as Worst Week conditions in some of the more 

protected orbits.  A positive, but very small improvement is obtained from addition of the 

spares-sensor combination when the system is under severe stress.  This is not 

unexpected, since the system failure rate is still significantly greater than the scrubbing 

rate under these conditions, even if the improved scrubbing rate occasioned by the 

addition of the sensor is used. 

Under standard space weather conditions, many of the systems (including all of 

the systems with numerous spares) could theoretically operate for decades without 

experiencing a complete failure.  However, like many extant spacecraft systems, they 
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would need to be turned off temporarily during periods of intense solar activity, which 

could cause failures in as little as a fraction of a second.   
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EXPERIMENTS 

 
Basic Verification 

 
 

The four demonstration systems were downloaded to the ML605 board and tested 

to ensure proper operation.  The output of each system was viewed on the ML605 board’s 

LEDs and/or fetched and printed in a terminal program by the master MicroBlaze, and 

checked for correctness based on the inputs.  Since the System Status and Control GUI 

displays all active, damaged, and dormant tiles, it was used to verify that the TMR system 

could correctly identify damaged tiles and swap in spares as needed.  It was also used to 

observe the operation of the scrubber and determine that it was correctly walking through 

the tiles, detecting errors (in the case of the readback scrubber) and repairing damage.  In 

addition to these methods, the Chipscope program was used to monitor a number of 

crucial signals inside the FPGA and ensure that they maintained the correct values.  The 

fault injection commands made available by the System Status and Control GUI were 

used to introduce simulated SEUs and SEFIs in a controlled fashion, so that the system’s 

response to them could be verified. 
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Figure 7.1: A portion of the Chipscope window, monitoring the 64-Tile Binary Counter 
System.  The complete 32-bit voter output and the status register appear at the top; below, 

the two least significant bits of the output of each tile are shown.  Tile 01 has been 
subjected to a forced SEU fault. 

 
 

Verifying the sensor interface presented some special challenges, since our 

research team is not yet equipped to bombard the sensor with actual ionizing radiation.  A 

special version of the amplifier board was fabricated, with its signal gains set in such a 

way that the sensor’s responses to light from a laser pointer would register as radiation 

strikes.  This amplifier board was used to connect the sensor to the ML605 board for 

testing.  Using standard red and infrared laser pointers, we were able to determine that the 

fault-tolerant architecture on the FPGA responded appropriately to radiation strike reports 

from the sensor. 

Eventually, the sensor and its interface with the FPGA architecture were tested at 

Texas A&M University’s Radiation Effects Testing Facility.  Since characterizing the 

sensor’s response was the primary goal of the facility visit, the sensor interface was 

connected to simple FPGA circuitry that sent the data to a computer for display, rather 

than the fault-tolerant architecture.  Nonetheless, the tests demonstrated the functionality 
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of the sensor; coupled with the previous laser pointer tests, they show that the system can 

detect radiation strikes and respond appropriately.  The test consisted of striking the 

sensor with pulses from a 25 MeV beam of Krypton ions.  The numbers of strikes 

registered by the pixel counters were sent through the USB interface to a computer and 

logged.  The sensor was tested with an amplifier board whose gains varied by pixel, 

granting information on the optimal gain level for detecting heavy ions.  So long as the 

correct gains were used, the sensor was definitely able to detect the heavy ions and report 

their strike locations to the FPGA. 

 
Measurement of the MTBF 

 
 

In order to obtain an empirical plot of the relationship between fault rate and 

mean time before failure (MTBF), we modified the 64-tile counter system to include a 

timer that would cause a simulated SEU fault in a random tile after each tick.  The 

addition of the timer necessitated a reduction in the system’s clock speed from 66 MHz to 

40 MHz, so these experimental results are somewhat more pessimistic than the 

theoretical Markov model results for this system.  The system was set up with a given 

fault rate and allowed to run until failure, with the blind scrubber active, and the time 

taken to reach the failure state was measured.  Since the time to failure was variable, 

sixteen trials were performed for each fault rate and the results were averaged.  The 

scrubber was required to travel sequentially through the tiles, i.e. the sensor was not 

included in the system for this measurement.  A plot of the MTBF vs. fault rate appears 

in Figure 7.2. 
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Figure 7.2: The measured MTBF of the 64-tile Binary Counter System with the blind 

scrubber, running at 40 MHz, vs. fault rate. 
 

 
Overhead vs. Number of Spares 

 

We wished to know how the addition of numerous spares to the system might 

impact resource utilization and maximum clock speed.  We devised an experiment to 

determine this, but only performed it on the 64-tile counter system due to time 

constraints.  First, an optimal size for the partially reconfigurable regions (PRRs), based 

on what PRR size would yield the best clock speed for the 64-tile system, was chosen by 

trial-and-error.  Certain features that were included for demonstration purposes only (e.g. 

the USB interface for communicating with the GUI) were removed from the system to 

reduce its complexity and ensure that only essential features were being tested.  Then the 

system was recreated with only four tiles.  Additional spare tiles were added one at a 

time, and after each tile addition, the system was re-synthesized and put through all steps 

of the development process, up to and including Place and Route in PlanAhead.  The 

addition of each new tile required the creation of a new partially reconfigurable region in 

the floor plan; the initial four were clustered near the center of the FPGA, and new ones 
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were added around them, spiraling outward from the center.  See Figure 7.3 for several 

example floor plans featuring different numbers of tiles.  After the PAR tool completed 

its work on each system, the maximum clock rate and resource utilization numbers 

reported by PlanAhead were collected.  Since the MAP and PAR tools are deterministic 

(i.e. multiple runs on the same system and floor plan yield the same results), only one test 

was performed for each number of tiles.   

 

 
Figure 7.3: Several floor plans from the overhead test Binary Counter System, showing 

the gradually increasing number of spares. 
 

Refer to figures 7.4 and 7.5 for the results of the overhead experiment.  Figure 7.4 

demonstrates that adding spares to the system increases the percentage of FPGA 

resources consumed, a fairly obvious result.  Since the tiles in this system are simple and 

small, the percentage of resources needed goes up slowly with the addition of spares; the 

rate of increase would no doubt be different for systems with larger individual tiles.  No 

clear relationship between the number of spares and the maximum clock rate is revealed 

by the results in Figure 7.5, although the exact routing (and thus the clock rate) changes a 

great deal as new tiles are added to the system. 
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Figure 7.4: Percentage of FPGA resources used by variations of the Binary Counter 

System with different numbers of tiles.  PlanAhead reports whole number percentages 
only, hence the steps that appear in the plot. 

 
 

 
Figure 7.5: Maximum possible clock rate reported by the PAR tool in PlanAhead, vs. 

number of tiles, for the Binary Counter System. 
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CONCLUSIONS AND FUTURE WORK 
 
 

Over the course of this thesis project, a novel approach to fault-tolerance in 

SRAM-based FPGAs was designed, implemented, and tested.  Although based on the 

time-honored combination of TMR and scrubbing techniques, this approach incorporated 

two new features.  The TMR scheme was modified to include numerous dormant spares 

(also known as tiles) which could be substituted for any member of the active triad that 

suffered a fault, thereby extending the lifetime of the system.  A multi-pixel radiation 

sensor was also integrated with the system, providing the scrubber with information 

about which areas of the FPGA were most likely to be damaged, and thereby improving 

the system’s overall repair rate.  Together, the techniques utilized by the system are able 

to offer robustness against the three major types of radiation damage: SEUs, SEFIs, and 

TID. 

Four demonstration systems were created to illustrate and test this approach.  

Each system featured a different number of spare tiles, and a different type of 

computational unit inside each tile.  Each system was tested on the Xilinx ML605 board 

and verified to work as intended.  The successful implementation of this variety of 

systems, created with different requirements and goals, indicates that the presented 

approach is scalable and adaptable to an assortment of different applications. 

Theoretical modeling of the demonstration systems revealed that all four designs 

would be extremely reliable in representative earth orbits under average conditions.  The 

models also showed that the addition of the two novel features (the numerous spares and 

the radiation sensor) could greatly increase the robustness of the systems, depending on 
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the fault rate conditions to which they were subjected.  Additional experiments conducted 

on one of the systems illuminated the relationships between fault rate and MTBF, and 

between  the  number  of  spares  included  in  the  system  and  two  different  measures  of  

overhead (FPGA resource utilization and maximum achievable clock rate). 

Many avenues for further research remain.  Future work will include porting the 

four demonstration systems to custom FPGA boards which can be used for in situ testing 

(e.g. on a high-altitude balloon platform or sounding rocket).  The planned boards will 

include a separate controller FPGA to house the master microprocessor and scrubber, as 

was originally envisioned for the final design.  Future work will also include the design 

of a system with multi-purpose tiles and additional voters, so that fault tolerance and the 

full flexibility of a partially reconfigurable system can be realized in the same device.  

Both of these projects are in progress as of this writing. 

An additional problem that needs to be resolved concerns our ability to make the 

reconfigurable tiles within the FPGA truly independent of one another.  Our 

investigations up to this point indicate that flipping a random configuration bit that 

pertains to one tile can affect another, because routes that serve one PRR may be sent 

through another, unrelated PRR.  (Reconfiguring a tile with a “fake” does not cause this 

problem, since the tools preserve all of the PRR-crossing routes in the “fake” tile as 

well.)  Exactly how this behavior might be prevented is an important topic for future 

study. 
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