
TRIPLICATED INSTRUCTION SET

RANDOMIZATION IN PARALLEL

HETEROGENOUS SOFT-CORE PROCESSORS

by

Trevor James Gahl

A thesis submitted in partial fulfillment
of the requirements for the degree

of

Master of Science

in

Electrical Engineering

MONTANA STATE UNIVERSITY
Bozeman, Montana

April 2019

©COPYRIGHT

by

Trevor James Gahl

2019

All Rights Reserved

ii

ACKNOWLEDGEMENTS

I would like to acknowledge my friends and family for standing by me and helping

me throughout my time in grad school. My friend and lab-mate Skylar Tamke for

always letting me bounce ideas off of him and helping me blow off steam. My advisor

Dr. Brock LaMeres for helping me refocus in a field I love. More than anybody

though, I’d like to acknowledge my wife Kaitlyn for helping me with anything I

needed, whether that was bringing me food late at night or listening to rants about

compiler errors and code bugs, I couldn’t have asked for a better support system.

iii

TABLE OF CONTENTS

1. INTRODUCTION ..1

Introduction ...1

2. BACKGROUND AND MOTIVATION...5

Monoculture Environment...5
Opcodes and Instruction Sets ..7
Cybersecurity Threats... 10
Technology Attacks... 11

Spectre ... 12
Meltdown ... 13
Buffer Overflow ... 14

Instruction Set Randomization .. 15
Hardware Implementations.. 17
What’s Next... 19

3. MONTANA STATE UNIVERSITY CONTRIBUTIONS 21

Existing Lab Research .. 21

4. SYSTEM DESIGN.. 24

Processor Foundation.. 24
Triplication .. 28
Illegal Opcode Fault ... 29
Opcode Packages and Assembler.. 30
Preliminary Testing .. 33
Processor Expansion ... 36

Stack .. 38
Push/Pull ... 39
Push... 40
Pull .. 43
Interrupts and Faults... 46
UART .. 54
Serial Buffer.. 56

Triplication of Extended Processor... 58

5. RESULTS .. 60

Overhead ... 67

iv

TABLE OF CONTENTS – CONTINUED

6. FUTURE RESEARCH.. 70

Instruction Set Expansion .. 70
Processor Size Expansion ... 70
Component Randomization .. 71
Partial Reconfiguration.. 71
Compiler... 72
Linux ... 72
Future Use Implementations .. 73

REFERENCES CITED.. 74

APPENDICES .. 77

APPENDIX A : Instruction Package Example.. 78
APPENDIX B : Assembler ... 80

v

LIST OF TABLES

Table Page

5.1 Known attack opcodes... 63

vi

LIST OF FIGURES

Figure Page

2.1 Operating system market share from 2013 to 2019 [25]6

2.2 AMD vs Intel market share (Q1 2019) [4] ...7

2.3 HCS08 instruction set opcode table [23]..8

2.4 Elaboration on information contained in an opcode [23].......................9

2.5 Breakdown of the Spectre attack. Arrows 1 and
2 indicate the repeated runs of the correct values.
Arrow 3 demonstrates the effect that has on the
branch predictor. Arrows 4 and 5 display the results
of an attack after training [26]. .. 13

2.6 Breakdown of reported vulnerabilities in 2015 [20]............................. 14

2.7 Early implementation of instruction set randomiza-
tion [8] ... 16

2.8 ASIST hardware support for run-time instruction
decryption. Demonstrating the 32-bit key selected
for either user space (usrkey register) or OS space
(oskey register). Every instruction is decoded before
reaching the instruction cache [17].. 18

2.9 High level view of Polyglot [24] .. 19

3.1 Prior implementation of triple modular redundancy [7] 21

3.2 LEON3 Processor [27] ... 22

4.1 Top level view of the processor developed as part of
Montana State University’s EELE 367 course [11] 25

4.2 Memory block diagram [11].. 26

4.3 CPU block diagram [11] .. 27

4.4 Processor triplication with shared inputs and outputs........................ 29

4.5 Processor triplication with exception and output
voter system ... 30

4.6 Processor triplication with independent opcodes................................ 31

vii

LIST OF FIGURES – CONTINUED

Figure Page

4.7 Initial testing of system. This figure demonstrates
operation in the absence of attack. ... 34

4.8 Initial testing of system. This figure demonstrates
operation while under attack.. 35

4.9 Picoblaze block diagram [28] .. 36

4.10 Block diagram of OpenRISC 1200 processor [5] 37

4.11 PSH A State Diagram ... 40

4.12 Push A simulation .. 41

4.13 Push B Simulation .. 42

4.14 Push PC Simulation.. 42

4.15 PLL A State Diagram ... 44

4.16 Pull A Simulation ... 45

4.17 Pull B Simulation ... 46

4.18 Pull PC Simulation ... 46

4.19 STI State Diagram.. 48

4.20 RTI State Diagram.. 52

4.21 STI state chain simulation. .. 53

4.22 RTI state chain simulation... 54

4.23 Serial communications settings for processor 55

4.24 Empty serial buffer.. 57

4.25 Serial buffer holding first value... 58

4.26 Full serial buffer triggering injection ... 58

5.1 Triplicated processor, normal operation .. 61

5.2 Triplicated processor, serial code-injection .. 62

viii

LIST OF FIGURES – CONTINUED

Figure Page

5.3 Triplicated processor, normal operation. Load and
store program ... 65

5.4 Triplicated processor, under attack. Load and store program 66

5.5 Single core utilization report .. 68

5.6 Triple core utilization report .. 68

ix

ABSTRACT

Today’s cyber landscape is as dangerous as ever, stemming from an ever
increasing number of cybersecurity threats. A component of this danger comes
from the execution of code-injection attacks that are hard to combat due to the
monoculture environment fostered in today’s society. One solution presented in the
past, instruction set randomization, shows promise but requires large overhead both in
timing and physical device space. To address this issue, a new processor architecture
was developed to move instruction set randomization from software implementations
to hardware. This new architecture consists of three functionally identical soft-
core processors operating in parallel while utilizing individually generated random
instruction sets. Successful hardware implementation and testing, using field
programmable gate arrays, demonstrates the viability of the new architecture in small
scale systems while also showing potential for expansion to larger systems.

1

INTRODUCTION

Introduction

Today’s society is driven by computers. Everything from shopping to filing

taxes have become online processes. It’s commonly believed that the majority of

computer systems produced are used for general computing devices such as laptops

and desktops. However, of the over 6 billion microprocessors manufactured in 2008

only 2% were used for general computing devices [1]. The rest were used in embedded

systems in devices ranging from kitchen equipment to automotives. Embedded

systems are such a fundamental part of today’s society that as of 2017 over 100

billion ARM processors were shipped [22]. All of these devices are susceptible to

interference from malicious sources. Cyber attacks such as these generally fall into

one of three categories; configuration attacks, technology attacks, and trust attacks.

Configuration attacks are any attack that targets configuration exploits. A

lot of these are geared towards default manufacturer configurations such as default

passwords. Trust attacks are any attacks that target the trust between different

systems. Commonly these are network level attacks that are geared towards spreading

viruses to increase an attackers available computing power. Configuration attacks and

trust attacks are largely outside the scope of this project but will be briefly covered.

Technology attacks are any attacks that target the technology of the victim

machine. A system’s ”technology” can be considered the underlying architecture and

operating system. Of these attacks, there are again two main categories, software

based attacks and hardware based attacks. A large number of attacks utilize software

to attack other software, these are commonly attacks that target passwords and

2

remote access to a variety of internet connected systems.

Beyond software attacks are hardware attacks. However, there is some overlap

between the two as many such attacks target computer hardware through software

manipulation. Of these software based hardware attacks, code-injection attacks have

been particularly devastating. This method of attack was even utilized as part of

the Morris Worm’s devastating propagation in 1988 [9]. While code-injection attacks

have been around for decades, they still make up a large portion of today’s cyber

exploits.

As the number of cyber-based attacks increased, a new field of research was

developed to combat the criminal application of technology. The field of cybersecurity

is focused on finding methods to mitigate any malicious action targeting technology

based systems, both hardware and software. In the event a software flaw is discovered,

a fix can be readily supplied through a patch and updated software release. These can

be quickly implemented and rapidly released in the case of day one bugs. Examples

of this can be seen in the updates pushed out through the Windows Update service.

Windows Update is utilized to constantly release patches and code-fixes to the large

number of machines running the Windows operating system.

If a hardware flaw is discovered, and exploited as an attack vector, the solution

is not as quickly distributed. Currently fixing a hardware flaw can cost millions

of dollars and take years to implement. This massive time delay between exploit

detection and patch release is caused by the requirement to manufacture an entirely

new product. In some rare cases, microcode, machine code that is used for processor

configuration, can be used to patch hardware flaws, but only in compatible devices.

Examples of this can be seen in the recent Spectre and Meltdown attacks. These two

attacks focused on hardware exploits targeted towards reading privileged memory

locations.

3

Ideally it would be possible to deploy hardware patches as quickly and efficiently

as software patches. The ability to make these rolling releases for hardware

patches exists through implementing soft core processors in the fabric of a field

programmable gate array (FPGA). An FPGA is a semiconductor device made of

custom programmable logic components with programmable interconnects, allowing

for custom digital logic to be developed and implemented. Devices such as these

are commonly used in a variety of industries ranging from aerospace to medical to

automotive and audio. Custom configurations are developed through a hardware

description language such as VHDL or Verilog. Configurations are then synthesized

and implemented in hardware through generated bitstreams, informing the device

which logic components are required and how they are connected.

Montana State University (MSU) has extensive history in the application of

FPGA’s to a multitude of engineering problems. As part of a new focus on

cybersecurity MSU has begun to leverage this expertise as a method to solve the

prevalence of technology attacks in today’s cyber landscape. To this effect, this

thesis provides a solution to a common form of cyberattacks, code-injection, through

the implementation of triplicated instruction set randomization using a triple core

softprocessor on an FPGA. Each core provides identical functionality through the

implementation of individual instruction sets. Testing is performed using a custom

built softcore processor implemented on a Xilinx Artix-7 FPGA. Multiple test

programs were written using a standard assembly language that is then run through

a basic assembler to generate the processor memory. Additionally, this assembler also

generates three pseudo-random sets of instruction sets, one for each core. An attack

voter system is used to detect if a core has been compromised and halts the system

if an attack is detected.

4

Successful testing was performed through serial code injection. This demon-

strates the functionality of such a system. An added benefit to a method such as this,

hardware implementation using a FPGA, is the ability for future hardware patches to

be released through an updated bitstream that can be rapidly deployed without the

need for new hardware to be manufactured. While future expansion is necessary for

industrial usage, this thesis serves as a proof of concept in hardware based instruction

set randomization without the need for secondary encryption.

5

BACKGROUND AND MOTIVATION

At the advent of the computer age there were a large number of computer

manufacturers. Companies such as Apple, Commodore, Tandy, Radio Shack, IBM,

Atari and Sinclair, were all manufacturing their own custom computer systems. As

the market was still new, all of these companies were competing for dominance in

the marketplace. This heterogeneous environment for computing was defined by the

broad selection of devices produced by manufacturers. Today, this is no longer the

case. While there may be a plethora of computer brands such as Dell, HP, and

Lenovo, the components that power them and the software they run are dominated

by just a few companies. This can be seen in today’s homogeneous, or monoculture,

environment.

Monoculture Environment

There are predominantly three major operating systems in use today; Windows,

Mac, and Linux. Windows clearly demonstrates market dominance at over 70% of

the market share [25]. Distantly following Windows is Mac at approximately 12%

with the remaining market shares consisting of Linux, ChromeOS and miscellaneous

or unknown. This can be seen graphically in Figure Figure 2.1.

While there are multiple operating systems available, the architecture that runs

them is a different story. Two major processor manufacturers produce the majority

of the hardware utilized in the ever growing number of technology systems; Intel and

AMD. As of April 2019, Intel owns a lions share of the market at approximately

77% of the market share while AMD controls the other 23% [4]. This can be seen in

Figure 2.2. It’s worth noting that this market share reflects only the x86 processor

architecture. X86 is the architecture required to run most desktop level operating

6

Figure 2.1: Operating system market share from 2013 to 2019 [25]

systems, such as Windows and Mac. Other manufacturers such as ARM have separate

architectures that are utilized in a variety of different microprocessor systems, such

as the Raspberry Pi family [19]. These alternative architectures are more likely to be

compatible with Linux and the assorted other operating systems.

While Figure Figure 2.2 displays an alternative to Intel, the underlying

instruction set architecture is the same between AMD and Intel. While certain

technological aspects are different between the two processor manufactures, their

instruction sets are the same, resulting in an overwhelming number of general

computing devices using the same instruction set.

The homogeneous nature of the computer market comes with both pros and

cons. Today’s data centers, driving the ever expanding computational cloud, are

made up of these monoculture environments. Due to the monoculture nature of these

server farms, configuration can be easily automated. With a networked configuration

of identical systems comes the ability to deploy configurations simultaneously across

7

Figure 2.2: AMD vs Intel market share (Q1 2019) [4]

the entire network. Creating a datacenter in this fashion ensures that each individual

system operates in the same fashion. Having every system utilize the same

architecture and operating system also cuts down on the training cost of employees

by reducing time spent teaching multiple systems.

What drives the ability to construct these monolithic data centers is the

versatility of the processor driving every individual component of the system. This

versatility comes from the opcodes and instruction set architectures configured in

each processor.

Opcodes and Instruction Sets

Understanding a computers ability to execute software is crucial in understand-

ing the way in which instruction set randomization can mitigate monoculture risks.

At it’s core, a computer is simply a piece of hardware capable of executing strings

8

of instructions. These strings of instructions, crafted into very specific sequences,

become the software used to execute desired tasks. At a lower level, these instructions

are called a systems ”instruction set”, which is comprised of a set of ”opcodes”. An

opcode is a type of machine code that specifies what operation is desired. They

commonly include the type of data, called the operand, they will be processing as

well as the operation. Opcodes, as well as the format of the expected operands, are

created during the processor’s design cycle. When finished, these instruction sets can

be very large, allowing for a wide variety of potential uses, or very small in the case of

a processor geared towards a specific purpose. An example of a device geared towards

a wide range of uses can be seen in the instruction set of the HCS08 microcontroller,

seen in Figure 2.3.

Figure 2.3: HCS08 instruction set opcode table [23]

9

An opcode table representation of an instruction set, as seen in Figure 2.3,

contains a lot of information important to the proper use of a system. Each square

contains the mnemonic representation of the opcode, the opcode value in hex, the byte

size of the instruction, the number of clock cycles required to execute the instruction,

and the addressing mode for the specified instruction. A breakout of the index mode

subtraction opcode can be seen in Figure 2.4.

Figure 2.4: Elaboration on information contained in an opcode [23]

In a broader sense, these opcodes can be generally separated into three

categories. Arithmetic/logic, data movement, and flow control. Arithmetic opcodes

are operations that perform some sort of arithmetical function such as adding,

subtracting, multiplying or dividing. Logical operations are anything that performs

a logical manipulation on a set of data, these include operations such as ”and”, ”or”,

and ”exclusive or”. Data movement refers to any operation that pertaining to the

movement of data from one register to another, these include instructions such as

load, move and store. The final primary category, flow control, consists of operations

that allow for movement throughout the program. These generally include branch and

jump instructions that allow for code execution dependent on a variety of different

flags being manipulated in the processor. Depending on the processor, there is a fifth

category, the special instructions. For example, the CPUID instruction for Intel’s x86

architecture returns information about the processor to the software that called it.

When a monoculture environment is fostered, leading to a single prevalent

architecture, the instruction set to this architecture becomes widely known and

10

implemented. While this is necessary and beneficial for software development,

it creates a vector for cyber attacks. Knowing the fundamental building blocks

of a processor allows an attacker to manipulate the processor in unexpected and

potentially malicious ways. These malicious manipulations of any device can be

considered a cybersecurity threat.

Cybersecurity Threats

Hand in hand with the rise in computer systems is the rise in cyber-crimes.

Starting in 1988 with the release of the Morris Worm [9], cyber-crimes have become

more sophisticated, malicious and far more numerous. In 2007 a study was conducted

at the University of Maryland that found four exposed Linux systems were attacked

every 39 seconds on average, with an average daily total of 2,244 attacks [18]. More

recently, the Common Vulnerabilities and Exposures (CVE) system, a database

of publicly known information-security vulnerabilities, reported 16,555 reported

vulnerabilities in 2018 alone [16]. Since 1999 the CVE system has a total 111,684

reported vulnerabilities [16].

These reported vulnerabilities can be broadly categorized into three main

categories. Configuration attacks, technology attacks and trust attacks [21]. While

some of these categories see net benefits in terms of a monoculture environment,

others do not.

Configuration attacks are any exploit that targets the configuration of a

machine. This can be either from configurations performed by users or, more

likely, configurations provided by the vendor. Exploits targeted towards machine

configurations are numerous. Even to the extent that a number of websites, such as

routerpasswords.com, provide default login information to a large number of varying

computer systems.

11

Technology attacks are exploits that target the technology of the target system,

such as the programming or the hardware vulnerabilities. These attack types are

also often called hardware targeted software vulnerabilities, meaning that software

can be leveraged to exploit hardware flaws. This susceptibility is a known risk

of deploying a monoculture environment. In the past there have been a plethora

of attempts at artificially diversifying homogeneous systems to prevent against this

inherent risk. These include methods such as padding the runtime stack by random

amounts, rearranging basic blocks and code within basic blocks, randomly changing

the name of system calls, instruction set randomization and random heap memory

allocation. Some of these, such as instruction set randomization, have been more

successful than others.

Finally, trust attacks are exploits that occur when a command comes from

a trusted source. This commonly occurs on enterprise networks. Once a single

computer is compromised in a network, every computer in the network is potentially

compromised. As such, this is a common method for worms to spread.

While configuration attacks and trust attacks are a serious concern, a further

exploration of them is outside the scope of this thesis project. However, an overview

of many of these attacks can be found in a literature review performed by Goyal et

al. [6].

Technology Attacks

As mentioned previously, technology attacks are any exploit that target the

technology of the system, rather than the systems configuration or trust amongst

other machines.

12

Spectre

A recent form of a technology attack can be seen in the Spectre exploit

demonstrated by Kocher et al [10]. Spectre utilizes predictive branching to access and

leak sensitive information on a target computer through a side channel. Predictive

branching is a technique utilized in high speed processors that allow the processor to

prematurely calculate likely future execution paths. If the calculated path is correct

then the processor commits that pre-calculated path and continues to run, otherwise

it discards the execution.

To exploit conditional branches, the branch predictor needs to be trained to

direct to a desired branch. An example of this exploit can be seen here [10]:

if (x < array1_size)

y = array2[array1[x]*256];

The if statement will compile to a branch instruction that checks if the value

of x is within a desired range. While this value is calculated the processor will

calculate speculated execution paths. By running this several times with a value that

is correctly defined and within the defined bounds the branch predictor will begin to

predict that the execution will be returned true.

After having trained the branch predictor, if the code is run with an x that

is larger than the defined value, and array1 size is uncached, the predictor will

speculatively perform the read. This value will then be stored to a location that

can be read by the attacker. By changing the value of x, the location being read may

also be adjusted to read the target’s entire memory.

13

Figure 2.5: Breakdown of the Spectre attack. Arrows 1 and 2 indicate the repeated
runs of the correct values. Arrow 3 demonstrates the effect that has on the branch
predictor. Arrows 4 and 5 display the results of an attack after training [26].

Meltdown

Similar to Spectre is the Meltdown exploit. Operating system security has long

worked under the assumption that that an application being run by a user cannot

access memory in the kernel space. However, the operating system and kernel rely

on the processor to enforce this separation. In 2018 it was discovered that not all

processors do this.

Meltdown utilizes out of order execution to leak kernel information to a user

defined space long enough for a side cache to capture the desired information [12].

For example, if the following three steps were performed:

1. Invalidate the cache for a defined user space AttackBuffer

2. Read a byte of information from kernel space KernelByte

3. Read from AttackBuffer at the offset of KernelByte

14

If the steps were executed in order than stage 2 would result in a segmentation

fault. However, to speed up processing times, the processor assumes that at some

point stage 3 will need to be executed and so begins to execute that in parallel to

stage 2. This triggers a race between when stage 2 will finish executing and return a

fault, and when stage 3 will finish.

Even though the fault will remove the processor’s results from any code that was

executed out of order, it doesn’t change any cache effects. This leaves the information

open to a side-channel attack.

Buffer Overflow

There is a particular subset of attacks that make up a large portion of all

vulnerabilities. Hardware+Software Vulnerabilities made up 43% of the CVE and

DoD vulnerability entries reported for 2015 [20]. These vulnerabilities consist of

software attacks directed at hardware, things such as buffer errors, numeric errors,

crypto errors and code injection, information leakage, resource management and

permission, privileges and access vulnerabilities. The breakdown of these attacks

can be seen in Figure 2.6.

Figure 2.6: Breakdown of reported vulnerabilities in 2015 [20]

As shown in Figure 2.6 a large portion of the hardware directed software

15

vulnerabilities are buffer overflow vulnerabilities. Though a buffer overflow attack

can be be very complex, at its core it’s a simple vulnerability. By storing a value that

exceeds the size of a destination buffer it’s possible to inject information in adjacent

memory locations. A simple example can be seen below:

#define BUFSIZE 256

int main(int argc, char **argv) {

char *buf;

buf = (char *)malloc(sizeof(char)*BUFSIZE);

strcpy(buf, argv[1]);

}

In the above example the buffer is allocated a fixed size of heap memory, however

there is no limitation placed on the length of the string in argv[1] [15]. An inserted

string that exceeds the length of the allocated heap size will have the extra values

placed in adjacent memory. Done correctly, malicious code can be encoded in the

string and stored in the adjacent memory. If the opcodes of a targeted architecture

are known, its possible to insert opcodes into the adjacent memory and redirect to

the processor to execute those malicious instructions.

This method of attack has been increasingly prevalent as time progresses. The

CVE database system has 2,492 reported overflow attacks reported in 2018, making up

15% off all vulnerabilities reported that year. One proven method of defeating buffer

overflow, or more broadly, code-injection attacks, is instruction set randomization.

Instruction Set Randomization

The idea of instruction set randomization has been around for nearly two

decades, first being introduced in 2003 concurrently by both Barrantes et al., and

16

Kc et al. [2, 3, 8]. Conceptually, instruction set randomization is the randomization

of the underlying instruction set architecture of a processor. This gives the system

the impression that each program runs its own set of instructions codes that are

incompatible with any other program. For example, one program may utilize 0xAC

as the ADD instruction while another may utilize 0xCD or any other viable opcode

value.

K.C. et al. used the idea of creating an independent execution environment

for every created process. This was used to create individual opcode encryption

environments. If learned instructions from one execution environment were used in a

separate environment the decryption would fail, resulting in an illegal opcode. The

fundamental idea can be seen in Figure 2.7.

Figure 2.7: Early implementation of instruction set randomization [8]

This method was implemented using the bochs-x86 Pentium emulator, an open

source emulator of the x86 architecture, and a modified Linux kernel. While the

implementation tested successfully against several types of buffer overflow attacks, it

was not successful against any attack that only modified the contents of the stack or

heap variables that cause changes to program flow or logical operation. Additionally

17

this was only validated in an emulator.

Concurrent development by Barrantes et al. demonstrated a very similar concept

with the exception of implementation being achieved using the randomized instruction

set emulator (RISE), based on the open-source Valgrind x86-to-x86 binary translator.

The RISE system is also emulator-based and relies on insertion between a supported

processor architecture and the execution environment.

Both of these original methods of instruction set randomization utilized an

emulation method where the code was encrypted at the binary level and then

decrypted in memory prior to execution. While this works as a proof of concept, it

doesn’t actually randomize or modify the instruction set for any architecture. They

also both relied on simplistic XOR encryption that is easily broken and not viable for

defending against modern attacks.

Hardware Implementations

After the initial concept was demonstrated it was another decade before a

successful implementation in hardware. In 2013, Antonis et al. first proposed a

hardware supported ISR architecture they called ASIST [17]. Implementation was

performed with a modified Leon3 SPARC V8 processor on a Xilinx XUPV5 ML509

FPGA.

The ASIST architecture worked by adding new registers that would supply

encryption keys usable by the kernel to encrypt and decrypt instructions.

Depending on the level of the running process, one of two keys are selected using

a supervisor bit to decode the instructions. Either the user key (usrkey) for user-level

running processes, or the operating system key (oskey). These two keys are used to

decrypt all instructions before reaching the instruction cache using an XOR.

18

Figure 2.8: ASIST hardware support for run-time instruction decryption. Demon-
strating the 32-bit key selected for either user space (usrkey register) or OS space
(oskey register). Every instruction is decoded before reaching the instruction cache
[17].

ASIST sidestepped many of the problems prevalent in the original implementa-

tions of instruction set randomization, such as the lack of support for shared libraries

by providing this level of hardware support. This shifted the decryption to the

hardware instead of just keeping the keys in ELF files. However, the hardware support

was still only capable of supporting simple encryption such as XOR and transposition,

both of which are easily broken.

A few years later, the use of instruction set randomization was again revisited as

a method to defend against code-injection attacks as well as code-reuse attacks. Sinha

et al., developed a new randomization system named Polyglot [24]. Polyglot utilized

much stronger encryption in the form of AES. Additionally Polyglot encrypts at the

page level, allowing for use throughout the entire software stack, from boot-loader to

user applications.

While Polyglot is able to prove the effectiveness of instruction set randomization

in both code-injection and code-reuse attacks, it takes a large amount of FPGA

fabric. Similar to the implementation performed with ASIST, Polyglot used the

Leon3 SPARC processor implemented on an FPGA. Polyglot used a Xilinx Virtex5-

based XUPV5-LX110T FPGA. After the processor modifications were made the LUT

19

Figure 2.9: High level view of Polyglot [24]

usage increased from 13,986 to 49,724, a 356% increase.

What’s Next

While multiple attempts have been made at utilizing instruction set random-

ization in hardware, they all still attempt to utilize the same methods as the

past. Rather than randomizing the instruction sets in the processor hardware, the

instruction stream is encrypted. At best this can be considered instruction set

masking. Additionally, the process of encrypting adds a large amount of overhead,

both in terms of fabric space and timing.

In the past, its been difficult to find a solution to these problems using existing

processors. However, today it’s possible to address these concerns, while still defend-

ing against code-injection attacks, by implementing instruction set randomization

in hardware. The ability to do this is due to the progress made in FPGA fabric

20

design. Current Stratix-10 FPGAs from Intel are capable of operating at 10 TFLOPS

compared to Intels Skylake processors 1-2 TFLOPS [13, 14]. With the increase in

speed provided in modern FPGA’s, there exists the option of creating a softprocessor

inherently protected against code-injection attacks at the hardware level.

This thesis outlines the solution as a new system that utilizes three independent

randomized instruction sets in three functionally identical parallel cores. Each core’s

output is monitored in relation to each other core through an attack voter system. If

a core is detected to have a compromised instruction set then the attack voter will flag

the rest of the system and trigger a system halt to prevent execution of maliciously

injected code.

21

MONTANA STATE UNIVERSITY CONTRIBUTIONS

Existing Lab Research

The team at Montana State University - Bozeman has done extensive research

into triple modular redundant computing on a range of different FPGA’s using both

the LEON3 soft-core processor and Xilinx’s MicroBlaze soft-core processor as part of

an attempt to create reliable aerospace avionics. Prior systems utilize nine MicroBlaze

processors in the fabric of the FPGA, keeping three of them active at any time,

with six held in reserve. A voter system is used to detect if a processor is operating

erroneously. In the case of processor failure, a reserve processor is brought online while

the faulted processor is taken offline for reconfiguration. After reconfiguration the

faulted processor is marked available in the event another processor faults. Allowing

for the constant cycling of processors in the event of continual faulting.

Figure 3.1: Prior implementation of triple modular redundancy [7]

While the current triple modular redundant computing demonstrates the ability

to determine which system has faulted it falls short regarding cyber-security research.

22

For one, the only triplicated system is the MicroBlaze processor itself, the memory

component is not triplicated and would be susceptible to an attack. Additionally, the

MicroBlaze is a proprietary system, therefore access to the internal workings of the

processor is restricted, preventing modifications to opcodes.

Other previous MSU research examined the use of the LEON3 soft-core processor

as a potential open-source replacement for the MicroBlaze. A previous effort was

able to implement a four core LEON3 system with similar capabilities to the nine-tile

MicroBlaze system [27]. However, it required a much larger amount of FPGA fabric

space to implement only four cores compared to nine.

Unlike the MicroBlaze, the LEON3 is an open source system and is therefore

able to be modified. However, the ability to program the processor relies on the

ability to program a single set of opcodes. If multiple versions of opcodes are desired

then multiple systems with multiple I/O’s are required rather than a single system

with heterogeneous opcodes.

Figure 3.2: LEON3 Processor [27]

23

Through previous efforts it can be seen that real-time reconfiguration of soft-core

processors is practical. It’s also demonstrated that the expansion of such real-time

modifications set the stage nicely for a heterogeneous architecture. My contribution is

additive to this body of work. Utilizing the existing ideas it’s possible to demonstrate

a proof of concept using instruction set randomization in a triplicated processor

architecture. The idea is to take a single core system, and add two more cores with

independent memory and instruction sets. The underlying instruction set architecture

will be maintained, allowing for the same program to be executed simultaneously on

all three cores, all while running independently generated opcodes. This ideal can be

seen throughout my system design and testing process.

24

SYSTEM DESIGN

The overall goal of this project is to actualize a computer architecture that is

inherently resilient to code-injection attacks. A proof of concept of this can be realized

using the soft-core processor architecture developed as part of the EELE 367 course

at Montana State University. Before anything else, testing of this processor was done

to verify the bare bones functionality of this framework.

Processor Foundation

The foundation of the soft-core processor developed throughout this thesis

project was created as part of Montana State University’s Logic Design course (EELE

367). This foundation included the following:

• Control Unit with 10 Instructions

– LDA IMM - LDB IMM

– LDA DIR - LDB DIR

– STA DIR - STB DIR

– BRA - BEQ - ADD - SUB

• Data Path

– ’A’ Register

– ’B’ Register

– Buses 1 and 2

– ALU

• 128 Bytes of Program Memory

• 96 Bytes of RAM

• 16 Input Ports

• 16 Output Ports

25

It’s worth noting that during initial testing and implementation most of the

existing instructions were removed for the sake of simplicity. After modifications, the

processor only had LDA IMM, LDA DIR, STA DIR, and BRA.

A top level view of the processor foundation can be seen in Figure 4.1.

Demonstrating the number of available GPIO available and the bus widths for the

communication between the CPU and memory components.

The following is the top level block diagram for our 8-bit computer system example.

Example: Top Level Block Diagram for the 8-Bit Computer System

write

data_in

data_out

address

write

to_memory

from_memory

address

port_out_00

cpu.vhd memory.vhd

computer.vhd

port_out_01

port_out_02

port_out_03

port_out_04

port_out_05

port_out_06

port_out_07

port_out_08

port_out_09

port_out_10

port_out_11

port_out_12

port_out_13

port_out_14

port_out_15

port_out_00

port_out_01

port_out_02

port_out_03

port_out_04

port_out_05

port_out_06

port_out_07

port_out_08

port_out_09

port_out_10

port_out_11

port_out_12

port_out_13

port_out_14

port_out_15

port_in_00

port_in_01

port_in_02

port_in_03

port_in_04

port_in_05

port_in_06

port_in_07

port_in_08

port_in_09

port_in_10

port_in_11

port_in_12

port_in_13

port_in_14

port_in_15

port_in_00

port_in_01

port_in_02

port_in_03

port_in_04

port_in_05

port_in_06

port_in_07

port_in_08

port_in_09

port_in_10

port_in_11

port_in_12

port_in_13

port_in_14

port_in_15

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

clock

reset

 clock

reset

 clock

reset

Figure 4.1: Top level view of the processor developed as part of Montana State
University’s EELE 367 course [11]

26

The memory component consisted of the program memory space, R/W memory,

and I/O ports. Each section of memory is defined as its own component.

Implementation of each memory component is performed through port maps in the

memory component. When accessing a desired memory location, the address is used

to enable the desired location. Program memory consists of the address range 0-127,

R/W memory is 128-223, and the I/0 address space is 224-255. A block diagram of

the memory component can be seen in Figure 4.2.

The following is the block diagram for the memory system of our 8-bit computer system

example.

Example: Memory System Block Diagram for the 8-Bit Computer System

write

data_in

data_out

address

rom_128x8_sync.vhd

 clock

data_outaddress

rw_96x8_sync.vhd

 clock

data_outaddress

data_in

write

memory.vhd

16 Output Ports

 clock

port_out_xxaddress

“data_in”

write

reset

16 Input Ports

(16x, 8-bit
 output ports)

port_in_xx

port_out_xx

(16x, 8-bit
 input ports)

clock

reset

(processes)

8

8

16x8

16x8

8

Figure 4.2: Memory block diagram [11]

The CPU component displayed in the top level view consists of three sub-

components and a variety of signals. The control unit is the component that holds

the state machine driving the instruction set. Any additions to the instructions set or

27

modifications regarding any aspect of system control are reflected in this component.

Interfaced with the control unit is the data path. As the name implies, the data

path is utilized to handle data. This is where core CPU registers are located such

as the program counter, instruction register, memory address register and the two

data registers A and B. The signals connecting the control unit to the data path

are used to manipulate these registers. Housed inside of the data path is the ALU

component. The ALU is responsible for the arithmetic and logic operations requested

by the control unit. Depending on the results of the ALU, the CCR register will be

updated which is used in branching statements. The full block diagram can be seen

in Figure 4.3.

(FSM)

write to_memoryfrom_memory

address

IR

MAR

PC

A

B

CCR

BUS1BUS2

write

IR_Load

MAR_Load

PC_Load

PC_Inc

A_Load

B_Load

ALU_Sel

CCR_Result

CCR_Load

Bus2_Sel

Bus1_Sel

IR

control_unit.vhd data_path.vhd

00

01

10

00

01

10

The following is the block diagram for the CPU of our 8-bit computer system example.

Example: CPU Block Diagram for the 8-Bit Computer System

clock

reset

cpu.vhd

8

8 8

3

 clock

reset
 clock

reset

4

ALU
Result

4

A B

alu.vhd

NZVC

ALU

8
8

8

8

8

8

8

8

8

8

8

8 8

2

2

Figure 4.3: CPU block diagram [11]

28

This foundation was tested using a simple load and store program manually

coded into the program memory. The processor would load A with xAA, store that

value to xE0 (the first output register), then load the A register with xBB and again

store to xE0. After the final store of xBB to xE0 the program branches back to the

start of program memory and repeats.

Triplication

After verifying functionality of the processor foundation, the first step was to

triplicate the existing architecture. Each core needed to be instantiated entirely

independent from the others. Therefore everything seen in Figure 4.1 needed to

be triplicated as well as the components internal to both the cpu and memory

components.

• CPU Components

– Control Unit

– Data Path

– ALU

• Memory Components

– ROM (Program Memory)

– RW Memory

Once each core had been created, a wrapper needed to be generated. One capable

of handling the I/O for each core. At this stage every core shares the same input and

output lines as seen in Figure 4.4.

Since every core is instantiated separate from the others, they have no shared

memory. This requires each core to be programmed independently. During this stage

of the design each processor is hard coded with the same set of opcodes, creating a

homogeneous environment.

29

Figure 4.4: Processor triplication with shared inputs and outputs

Illegal Opcode Fault

With the basic triplication completed and tested, the next stage of the design

was to implement an illegal opcode fault and voting system that will determine which

processor faulted. The exception flag was created by adding a signal to the control

unit of each core. This signal is either asserted or de-asserted in each state to signify

if the core has received an illegal opcode.

To trigger the assertion of the exception flag a new state was created and

added to the control unit after the decoding state. Once the control unit loads

the instruction register with the waiting instruction the processor attempts to decode

the instruction. If it matches any known opcode than the next state corresponding

to the known opcode is selected and the processor continues. However, in the event

30

that the decoding state cannot interpret the value loaded into the instruction register,

the processor proceeds into the illegal opcode fault and asserts the exception signal.

Once the signal is asserted it’s passed through the CPU and processor core, out to

the CyberCore wrapper.

Figure 4.5: Processor triplication with exception and output voter system

During every clock cycle the CyberCore wrapper passes the newly received

exception flag to the voting system. If any core has an asserted exception flag then

an error code is passed back to the CyberCore wrapper, if no assertion is detected

then values are passed through the voter with no interference.

Opcode Packages and Assembler

With the addition of the voting component, the system was ready for each

core to instantiate different opcodes. The processor foundation utilized hard coded

31

opcodes in the ROM and control unit components. In order to lay the foundation

for randomization this was converted to individual packages. Each core included a

separate instruction code package that would replace the hard coded values. These

packages are referenced in both the program memory, a component generated through

the assembler, as well as the control unit of each processor. The use of instruction code

packages allowed for an easier implementation of randomized opcodes in the control

unit and prevented the need to generate a new control unit for every implementation.

An example of the final instruction set package can be seen in Appendix Figure A.

The example is complete with 27 instructions. Figure Figure 4.6 demonstrates a high

level view of the developed system.

Figure 4.6: Processor triplication with independent opcodes

32

To generate the individual packages used for the different cores, as well as to

program the controller, an assembler was built using Python. The assembler works

through several steps, first it reads an asm file that is created by the user. A simple

program may look like the following:

1 LDA_IMM -- Load A (Immediate Addressing)

2 x"AA" -- Operand (Value)

3 STA_DIR -- Store A (Direct Addressing)

4 x"E0" -- Operand (Memory Location)

5 LDA_IMM -- Load A (Immediate Addressing)

6 x"BB" -- Operand (Value)

7 STA_DIR -- Store A (Direct Addressing)

8 x"E0" -- Operand (Memory Location)

9 BRA -- Branch Always

10 x"00 -- Operand (Memory Location)

It should be noted that the comments are added for readability for this paper

and are not currently supported in the developed assembler. What the assembler

looks for are the mnemonic representations of the opcodes and the operands. These

values are read from the created asm file and parsed into a Python list structure.

Once the program list is created the createProgramMemory() function is run three

times, once for each core. This ensures that the same program is written for each

processor core using the instruction mnemonic instead of hard coded opcode values.

In addition to generating the program memory, the assembler also generates the

opcode packages mentioned previously. This stage is done using the createInstruc-

tionFile() function. By utilizing the python package ”random” it’s possible to create

pseudo-random values for the opcode definitions.

33

To ensure that there is no overlap between the opcodes, ie. no two opcodes have

the same value, the values are created using the random.sample(range(16,225)27)

function call. This creates a list of 27 random values between 16 and 225. After

creating the values it’s necessary to translate them into a hex value that can be used

to easily generate a vhdl package. The built-in python package ”hex” allows for easy

conversion between the randomly generated decimal value, and a hex value. From

there, list manipulation is leveraged to put the opcode values into the desired format.

The full assembler program can be seen in Appendix Figure B.

Preliminary Testing

At this stage it was prudent to test the developed architecture to verify initial

functionality with the limited instruction set currently implemented. Before testing

the system under attack it was necessary to ensure normal system functionality. To

do this, a program was written that would load alternating values into A and store

them into a desired memory location. The initial testing can be seen in Figure 4.7.

Demonstrated is the ability for the three functionally identical processor cores to

function using independent sets of instruction codes.

After verifying the ability to run while not under attack, an attack was manually

inserted into the system to verify attack response. Testing can be seen in Figure 4.8.

As soon as the manually injected code attempts to execute, the system halts two of

the cores and prevents the output from being modified.

34

Figure 4.7: Initial testing of system. This figure demonstrates operation in the
absence of attack.

35

Figure 4.8: Initial testing of system. This figure demonstrates operation while under
attack.

36

Processor Expansion

After testing the preliminary proof of concept it was necessary to prove that the

system would work in a more robust system with an injected attack. Consideration

was given to multiple different processors including the Xilinx Picoblaze, the Leon3

and the OpenRisc 1200.

First examined was the Leon3 processor from Cobham Gaisler. The Leon3

processor was designed by the European Space agency and has full Linux functionality.

However, while the processor’s opcodes can be seen in its packaged sparc.vhd file it

became an issue of fabric space. For most purposes the Leon3 allows for multi-core

functionality to be generated using its built in tools. Using this method, it’s only

possible to create a triple core processor with a single set of instructions, rather than

a triple core processor with triplicated instruction sets. To triplicate the processor,

with entirely independent memory and periphals, would exceed the fabric space limit

on the desired development board.

Having ruled out the use of the Leon3 processor due to space limitations, it was

decided to examine the Picoblaze softprocessor developed by Xilinx. The Picoblaze is

a simple 8 bit microcontroller designed to take up very little space in fabric, as little

as 26 slices depending on device family.

Figure 4.9: Picoblaze block diagram [28]

37

While the Picoblaze would easily fit into the FPGA fabric, it became apparent

that there was no suitable way to modify the instruction decoder. Without being

able to modify the instruction decoder it wasn’t possible to implement three different

sets of instructions that are required for the project. Every implementation of the

Picoblaze would be forced to interpret every instruction set the same.

Figure 4.10: Block diagram of OpenRISC 1200 processor [5]

The last open source processor examined was ruled out early on in evaluation.

OpenRisc 1200 is written in Verilog. My ability to use Verilog is much less than my

ability to use VHDL. While the processor itself may fit well for the rest of the project,

the difficulty associated with integrating a new language into the project precluded

selection of this processor. However, it can be seen in Figure 4.10 that the layout of

the processor is very similar to that of the Leon3 processor. Noticeably different is

the use of the Wishbone I/F rather than the AMBA AHB interfaces.

After ruling out the existing available architectures, it was decided to flesh

out the existing implementation to demonstrate product viability. Examining the

block diagram of the Picoblaze, seen in Figure 4.9, shows that the foundation 367

processor is missing only a couple components to be considered as a viable processor.

38

Predominantly the following.

• Stack

• PUSH/PULL

• Expanded instruction set

• Interrupts

By adding these components to the foundation processor it would be possible to

demonstrate viability.

Stack

Implementing a stack into the system is relatively straightforward. The concept

of a stack is a memory structure that is considered to be first in last out (FILO).

Meaning that whatever is added the the stack first is going to be the last thing that

can be removed.

First, a new VHDL component was created mimicking the current R/W memory

structure. The two memory structures are very similar, the stack will also need to

have the capability to both read from and write to. To account for this additional

memory structure within the available memory space, 256 bytes total, the two other

memory components were shrunk. Program memory was decreased from 128 bytes to

96 bytes, R/W memory was reduced from 96 bytes to 72, leaving 56 bytes of address

space available for the stack.

Now that the memory structure of the stack was built, the next step was to build

the stack pointer register in the data path component. To enable communication

and control between the control unit and the data path, three signals were created.

SP Enable, SP Inc, and SP Dec. SP Enable allows for interaction with the stack and

the stack pointer. SP Inc and SP Dec are used to increment and decrement the stack

pointer. The full stack pointer control system implemented in the data path can be

39

seen in the following code.

STACK_POINTER : process (clock, reset)

begin

if (reset = '1') then

SP_uns <= x"C8";

elsif(clock'event and clock = '1') then

if (SP_Enable = '1') then

if(SP_Inc = '1') then

SP_uns <= SP_uns +1;

elsif(SP_Dec = '1') then

SP_uns <= SP_uns -1;

end if;

end if;

end if;

end process;

SP <= std_logic_vector(SP_uns);

On the rising edge of every clock cycle the control system checks to verify if

the stack pointer is enabled. If it is then it checks to see if the value needs to be

incremented or decremented and performs the corresponding adjustment. For ease

of implementation, the stack pointer value is created as an unsigned type and then

assigned to SP.

Push/Pull

To test the stack implementation six new instructions were added to processor.

The first three are designed to push values from core registers to the stack memory

while the last three will recover data from the stack and place into the core registers.

40

• PUSH A

• PUSH B

• PUSH PC

• PULL A

• PULL B

• PULL PC

These instructions were selected both for the ability to test the stack, and the fact

the fact the functionality was required for interrupts.

Push

The first instruction implemented was PUSH A which simply pushes the value

of the A register to the stack. Implementation of a push instruction required two

additional states. In this case S PSH A 4 and S PSH A 5. The two states can be

seen in Figure 4.11.

Figure 4.11: PSH A State Diagram

41

The first added state is used to load the value of the stack pointer into the

memory address register (MAR). To do so the MAR Load signal is asserted, and

SP Enable is asserted. With the stack pointer address loaded into the memory

address, a store is ready to occur. Bus1 Sel is loaded with 01 to indicate that we

are storing the value in register A, and the write bit is asserted. Now that the value

is stored into the stack the final thing to do is to increment the stack pointer to

prepare for the next write. Asserting both SP Inc and SP Enable at the same time

fulfills this requirement.

��������	
��������������
�

�	
������������
�����	��	
�

����
�����	
���

������������	
���	
�����
�	
������

������	
��
�������������������
�����

 ���	
����!��	
������
�
�����	
��

Figure 4.12: Push A simulation

Verification of the push instruction was conducted using Vivado’s built in

simulation tool. Results can be seen in Figure 4.12. It can be seen that the value

in A, x11, is stored into memory location 200 (xC8 as seen in the SP) at the end

of the S PSH A 5 state. At this same time the stack pointer is incremented from

xC8 to xC9 in preparation for the next interaction. This demonstrates that the stack

memory is functional as well as the ability to push the contents of A to the stack.

After verifying that the functionality is there for A, functionality needed to be

added to push both register B, and the contents of the program counter (PC) to the

42

stack. Doing so is very similar to pushing A to the stack with one small change. To

push B, Bus1 Sel needs to be loaded with 10 and to push the program counter to the

stack, Bus1 Sel needs to be loaded with 00.

��������	
��������������
�

�	
������������
�����	��	
�

����
�����	
���

������������	
���	
�����
�	
��������

����	
��
������� �����������
�����!��

�	
����"��	
���� �
�
�����	
��

Figure 4.13: Push B Simulation

��������	
��������������
�

�	
������������
�����	��	
�

����
�����	
���

������������	
���	
�����
�	
������

������	
��
������� �����������
�����

!���	
����"��	
���� �
�
�����	
��

Figure 4.14: Push PC Simulation

Verification of these instructions was done in the same fashion as PSH A, and

can be seen in Figure 4.13 and Figure 4.14. In the B simulation it can be clearly seen

that the value held in the B register, x11, is loaded into memory location 200 pointed

43

to by the stack pointer. The same can be seen in the PC simulation where x03 is

pushed into the stack.

Pull

With the ability to push to the stack implemented, I moved onto adding the

functionality to pull from the stack. Similar to the pushing functionality, multiple

states needed to be added to the control unit to implement this functionality.

However, unlike pushing where only two additional states per register were required,

pulling required four additional states per register. Seen in Figure 4.15 are the four

added states to add PLL A; S PLL A 4, S PLL A 5, S PLL A 6, and S PLL A 7.

First, the stack pointer is decremented to point to the first location in the stack that

holds a value. This is done by asserting both the SP Enable and SP Dec signals. The

next state loads the memory address register with the new stack pointer value. This is

done using the same combination of signals as when pushing a value to the stack. Our

third state ”chews up a clock cycle” to ensure that all values are appropriately latched

and the final state loads the value into register A. The final state is accomplished by

asserting the load signal for the desired destination register and loading Bus2 Sel with

10 to indicate that the value is coming from the memory. In this case the desired

destination register is A so A Load is asserted. The full state configuration for these

four states is as follows:

44

Figure 4.15: PLL A State Diagram

45

Verification of the instruction functionality was performed via simulation.

PLL A simulation can be seen in Figure 4.16. The functionality described above

can be seen in the provided figure. At the end of the first pull state the stack pointer

is decremented from xC9 to xC8.

��������	
��������������
��	
������

�
��
�
��
���������������	
�������

���������	�������������
�

����������������	
��������	��	
�

�
�� ��
��
�
��
��������
����

��
��������������������

�������!������
�
���	
���
�������

" ����������	
�����
��������

Figure 4.16: Pull A Simulation

After the second state the memory address register is loaded with the newly

decremented stack pointer. Nothing is modified during the third pull state and finally

during the fourth pull state it can be seen that the value stored in xC8 is loaded into

the A register as desired.

Once the instruction was implemented for pulling from the stack to the A

register, it was necessary to implement the same instruction format for both B and the

program counter. Four additional states were required each to allow for instruction

implementation. The only differences between these states and the states described

above for pulling to the A register is what load signal is asserted. To pull to the B

register, B Load is asserted and to load to the program counter PC Load is asserted.

Simulation of these two instructions can be seen verified in Figure 4.17 and Figure

4.18 respectively.

46

��������	
��������������
��	
������

�
��
�
��
���������������	
�������

���������	�������������
�

����������������	
����� ��	��	
�

�
 �!��
��
�
��
��������
����

��
��������������������

�������"������
�
���	
���
�������

#!����������	
�����
��������

Figure 4.17: Pull B Simulation

��������	
��������������
��	
������

�
��
�
��
���������������	
�������

���������	�������������
�

����������������	
����� ��	��	
�

�
 �!��
��
�
��
��������
����

��
��������������������

�������"������
�
���	
���
�������

#!����������	
�����
��������

Figure 4.18: Pull PC Simulation

Interrupts and Faults

Having added a stack and the ability to push and pull to and from said stack,

the next step was to create an interrupt system. Before anything else, an interrupt

system requires a method to tell the control unit that an interrupt is being requested.

In this case an interrupt register was created. The created interrupt register is 4 bits

wide to allow for the addition of future interrupt vectors. With this in mind, only

a single interrupt vector is created with full functionality while a second is included

in the data path to test proof of concept. Additionally a fault detection system

was implemented to account for any internal faults and fault handling that may be

47

required for future implementations.

With the interrupt signal being created a system to handle it needed to be

instantiated. To do so, a total of 18 states were created to handle the start of interrupt

and return from interrupt procedures. During every S Fetch 0 state, a check is made

to see if either the interrupt flag or the fault flags are asserted. In the event the

interrupt signal is asserted, the processor is prevented from going to S Fetch 1 instead

routing to S STI 4 which is the first state in the ”Start of Interrupt” procedure chain.

States S STI 4 through S STI 9 are used to save the processor state to the stack.

Processor state is preserved by pushing the PC, register B and register A to the

stack, in that order. After preserving the processor state, the state machine in the

control unit transitions to S LD INT VEC 4. This state is used to decode the desired

interrupt.

48

Figure 4.19: STI State Diagram

49

Interrupt decoding was achieved by adding a fourth option to the Bus2 Sel

multiplexer system. If Bus2 Sel is loaded with 11 it informs the data path that

an interrupt is being triggered and to decode the desired vector memory location.

The vector decoding process can be seen in the following code:

INTERRUPT_VECTOR0 : process (interrupt)

begin

case (interrupt) is

when "0001" => Interrupt_Vector <= x"78";

when "0010" => Interrupt_Vector <= x"52";

when others => Interrupt_Vector <= x"00";

end case;

end process;

The interrupt value is an input that traces all the way to the top level module

while the Interrupt Vector is a signal internal to the data path. As soon as an

external interrupt is triggered, the data path will decode the interrupt and load the

Interrupt Vector signal with the memory location of where the interrupt subroutine

resides. However, it isn’t until the control unit signals that it’s ready to load this

value into the program counter that the value is passed along. This can be seen in

the Bus2 multiplexer located in the data path component seen in the following code

segment.

50

MUX_BUS2 : process (Bus2_Sel, ALU_Result, Bus1, from_memory)

begin

case (Bus2_Sel) is

when "00" => Bus2 <= ALU_Result;

when "01" => Bus2 <= Bus1;

when "10" => Bus2 <= from_memory;

when "11" =>

if(illegal_op = '1') then

Bus2 <= Fault_Vector;

else

Bus2 <= Interrupt_Vector;

end if;

when others => Bus2 <= x"00";

end case;

end process;

Once the memory location is loaded into the program counter, the interrupt

subroutine is ready to be executed. It should be noted that currently the only way

to handle a fault is through the use of the internal illegal op flag. The rest of the

fault handling system was temporarily disabled to prove that the processors will halt

when an illegal opcode is detected. By uncommenting a few sections of the control

unit state machine it’s possible to enable fault handling that will recover from an

illegal op code. However, this will only work with a single core as a synchronization

method needs to be implemented to stall the other two cores until the fault handling

is complete.

The next state, S LD INT VEC 5, is the last state in the chain that initiates

an interrupt. This state is utilized to clear the interrupt flag. An intterupt clr signal

51

is asserted that is sent to the component that triggered the interrupt to begin with.

Upon receiving this signal the interrupt vector is reset to 0000 to indicate that the

interrupt has been acknowledged. Acknowledging the interrupt is the last step needed

to prevent the control unit from infinitely triggering interrupts.

In another version of this processor a secondary flag called ”internal interrupt”

is asserted that allows for the control unit to internally acknowledge the interrupt

without externally clearing the flag. To clear the interrupt flag in this version of the

processor, a CLI instruction was required. This method prevented the ability to stack

interrupts and was thus removed in the final iteration of the processor.

Returning from the interrupt is achieved through an RTI instruction. When RTI

is loaded into the instruction register it begins a 12 state chain. This chain restores

the previous processor state from the stack. Since the processor state is stored in the

order of PC, B, A, the processor state is restored in the order A, B, PC.

52

Figure 4.20: RTI State Diagram

53

Testing the use of the STI and RTI state chains was performed through

simulation. An internal counter was built 6 bits wide, allowing for a maximum value of

63. When the counter register is full, the interrupt flag is triggered. After assertion of

the interrupt flag it’s necessary to wait for the current instruction to finish executing

before checking for the interrupt in S Fetch 0. This prevents any operation from

being halted before completion. After arriving at S Fetch 0 the interrupt is detected

and the state machine is routed to the STI state chain.

��������	�	
���	�	������	���

��������������	�����������

����	���	��	����	���

�����������	
���	�	������

	�����������������	�����

�����	���	��	����	����

����	�����	
���	�	������	���

��������������	�����

�����	���	��	����	����

����������	
���	�	������	������������

��	�����	�	�����	�����	����	���������

	������
�	��	���������	�����	�����

����������	�����	�����	������

Figure 4.21: STI state chain simulation.

As shown, when the STI chain is initiated, the processor state is preserved by

pushing the program counter, register B, and register A to the stack, in that order. If

nothing else is held on the stack, the final stack pointer value should hold xCB as the

next available location. Once the processor state is preserved, the interrupt vector

is decoded and the program counter is loaded with the vector location. In this case

the vector is located in memory location x42 as seen after executing the last state in

orange.

54

After execution of the interrupt subroutine, the processor needs to return to the

previous program counter location to continue executing. Testing of the RTI system

can be seen in Figure 4.22.

��������	��
����	�	���
��	���

��������������	�����

�����	���
���
��	����	����

�������
����
����	�	���
��

	�����������������	�����

�����	���
���
��	����	����

����	������
����	�	���
��	���

��������������	������
���
��

	����	����

Figure 4.22: RTI state chain simulation.

Displayed is the recovery of the saved processor state from the stack. First, the

value in register A is recovered, then the value from register B and finally the program

counter is restored. As each value is recovered from the stack, the stack pointer is

decremented to indicate the newly available top location of the stack. When the

entire process is finished the stack pointer is returned to the initial starting value of

xC8. After the state chain is fully completed, the process is restarted at S Fetch 0 to

begin loading in the original program starting from where the program counter left

off at interrupt.

UART

With the completion of an interrupt capable system, a method of triggering the

interrupt needed to be added. While something such as a timing interrupt may have

been easier to implement, it was decided to implement a UART interrupt to allow for

code to be injected over serial.

55

UART communication was added by creating two separate components. One

for receiving and one for transmitting. Both components have been instantiated

and tested through simulation, however, only one side of the communication system

is actually used in the final product. Since the project scope is to demonstrate the

response to a code injection attack, the receive system is the side of the communication

that is fully actualized and utilized in the final product. It should be noted that the

transmit component is still instantiated in the final product and would only need a

correct port map to be fully usable.

Serial communication settings can be seen in Figure 4.23. The standard baudrate

is set to 115200 but can be modified through the use of generics in the UART

component. A combination of the value assigned to the generics and the speed of

the clock will determine the baudrate that is required.

Figure 4.23: Serial communications settings for processor

Baudrate can be calculated using the following equation.

Clks per bit = ClockFrequency/Baudrate

for example, using a 10 MHz clock and a desired baudrate of 115200 we see:

Clks per bit = 10MHz/115200 = 87

56

Therefore, in the test cases done, the UART component was instantiated at 10

MHz, the baudrate as seen in Figure 4.23 is set to 115200 and the instantiation of

the component sets the generic value to 87 as shown in the following code snippet.

uart_receive : uart_rx

generic map (

clks_per_bit => 87

)

port map (

clk => uart_clk,

rx_serial => Rx,

rx_dv => rx_dv_sig,

rx_byte => rx_byte_val

);

Simulation of the UART system demonstrated a usable peripheral by implement-

ing a loop-back communication system. The system receives a simulated transmission

of a value which is then immediately transmitted back out, if the same value is

transmitted that was received then the test was considered to be a success. However,

final testing was done by adding a circular serial buffer.

Serial Buffer

The serial buffer allows for 8 bytes of data to be stored before the pointer is

reassigned to the beginning of the buffer. This is achieved by using a case statement

that handles a buffer memory pointer as well as signaling when the buffer is full. A

buff ready signal is used to inform the top level component that the buffer is ready,

which in turn triggers an interrupt.

57

The buffer process is sensitive to the falling edge of the UART receive dv signal.

Rx dv sig is a signal component of the UART receive component that is asserted when

data is being received and de-asserted after the stop bit. As soon as the flag is cleared

the received byte is stored into the buffer and the buffer address is incremented. An

empty buffer can be seen in Figure 4.24.

Figure 4.24: Empty serial buffer

As the values are sent across to the processor, the buffer begins to fill up as seen

in Figure 4.25. In this figure it can be seen that the value held in buff1 has changed

to x30. Additionally the address out value has been incremented to 1, indicating that

the first buffer address has been filled.

This process will repeat until the buffer is full. As soon as the buffer is full a

signal is asserted to indicate that the buffer is ready to be read from. Implementation

of the full buffer can be seen in Figure 4.26. Once the value in buff7 has been stored

the buff ready flag is asserted. In turn, on the rising edge of buff ready, the interrupt

is triggered.

Final single-core testing utilized the entire buffer as a method of code injection.

To inject the code, the interrupt vector was assigned the value of x78 which is

configured as the bottom 8 bytes of GPIO input. Addresses x78-x7F are now

58

connected to the serial buffer in parallel, allowing for 8 bytes of code to be injected

into the processor. Injected code can be seen in Figure 4.26

Figure 4.25: Serial buffer holding first value

Figure 4.26: Full serial buffer triggering injection

Triplication of Extended Processor

Implementation of a UART serial buffer was the last required component for

the expansion of the foundational processor. Single core testing via serial buffer code

injection demonstrated the functionality of the system. The final stage of the project

required triplicating the processor. Triplication involved the same process that was

done for the first triplication step. Each processor core required its own entirely

59

independent system. The only components that were not triplicated were the UART,

display driver, char decoder, attack voter and clock dividers. Everything else was

triplicated for use in three independent yet functionally identical processor cores.

60

RESULTS

After triplicating the processor cores, final system testing was performed. A

new set of opcodes were generated for three processors that would run a simple load

and increment program. The A register would be loaded with the value x65, then

incremented twice resulting in a final value of x67. Finally the program would branch

back to memory location x00 and start over. The relevant generated opcodes can be

seen in Figure 5.1.

For testing purposes, the instruction set for Core 1 was changed to reflect ASCII

characters. This allowed for instructions to be injected via serial communication, ie.

LDA IMM is ASCII 0, INC A is 8, and BRA is D.

Demonstrated is the functionality of the entire system as a whole. When each

processor is supplied the correct instruction set they are able to operate synchronously.

This is shown in the continued operation of the state machine as well as the contents

being held in the A register.

Testing the attack system was done through the use of an internal logic analyzer

(ILA). An ILA allows for the monitoring of desired signals during actual operation

after the bitstream is generated and loaded into the FPGA. Using this method allows

for the attack vector to be seen occurring in real time and is demonstrated in Figure

5.1 and Figure 5.2.

61

Figure 5.1: Triplicated processor, normal operation

62

Figure 5.2: Triplicated processor, serial code-injection

63

The injected attack depicted in Figure 5.2 demonstrates the response when the

opcodes are known for a single core and used maliciously. A small program is injected

via serial communication, knowing that when the buffer is full the values in the serial

buffer are executed. In this demonstration, the injected program attempts to load

a value into A, increment it multiple times, and store the value to an output. An

example of the full code can be seen in Figure 5.2 and a break down of the known

opcodes being utilized can be seen in Table 5.1.

Known Opcode Function

x30 Load A Immediate

x34 Store A Direct

x38 Increment A

x55 Return from Interrupt

Table 5.1: Known attack opcodes

Since these known opcodes are only viable for Core 1, as soon as the interrupt

is triggered and the first opcode is executed the other two cores halt. It can be seen

that even though Core 1 continues to operate normally, Cores 2 and 3 halt entirely

while waiting for a resolution to the illegal opcode. It’s also demonstrated that as

soon as the attack is detected the fault exception flags are asserted. Shortly after the

flags are asserted the attack voter outputs a value informing the user of an attack. In

this case the pre-programmed value is 0b10101010 which can be represented in hex

as xAA.

To verify complete functionality of the system, another test was done using a

new Vivado project generated through the assembler. Again, for testing purposes,

one of the instruction sets was replaced with ASCII friendly opcodes. This secondary

64

test program consisted of a simple load and store program. The hex value of x65 is

loaded into register A and then stored directly to register x8F. Normal operation can

be seen in Figure 5.3.

The loaded value is demonstrated to be a constant value that is never changed

as the LDA IMM instruction is perpetually repeated. Similar to the program tested

in the first ILA test, it can be seen that the opcodes are different for each core, except

for Core 1, which is using the same instruction set as the first ILA test.

65

Figure 5.3: Triplicated processor, normal operation. Load and store program

66

Figure 5.4: Triplicated processor, under attack. Load and store program

67

After multiple tests demonstrating the functionality of the system, I have

concluded that this expanded processor is capable of defending against code-injection

attacks. Whether injected directly in program memory as seen in Figure 4.8 or

injected through a serial buffer redirect as shown in Figure 5.2 and Figure 5.4.

It’s also demonstrated that each implementation of the processor is capable

of running with pseudo-randomly generated opcodes. The first ILA test performed

using the load and increment program used entirely different instruction sets from

the ILA test performed using the load and store program. Even using the same

source assembly file, when the memory and instruction sets are generated using the

assembler, no two implementations will result in the same sets of instructions. This

provides a source of constantly changing instruction sets that preclude attackers from

attacking even two implementations of the same program. As a result, a program can

be written using standard homogeneous software engineering methods while being

deployed in heterogeneous clusters.

Overhead

In terms of overhead, the developed system results in a minimal increase in

time and space overhead. There is no overhead increase due to the instruction set

randomization as these components are included and required in the design regardless.

The only component that provided any additional overhead to the design was the

attack voter. While the attack voter system had a minor effect on the setup time,

roughly 130 ps, there was not a significant enough change in the utilization percentage

as the Vivado tool chain reported the same percentage both with and without the

attack voter. However, while the setup timing was affected, both cases are still able

to operate at a clock rate of 100 MHz.

It should also be noted that the triplication of the processor does increase the

68

FPGA fabric space required, as expected. A single core implementation of this

processor architecture takes up 371 LUTs total as seen in Figure 5.5

Figure 5.5: Single core utilization report

Also displayed is the low utilization seen in the other FPGA resources. When

the system is triplicated the resulting system size is roughly 268% the size of the

single core architecture, as seen in Figure 5.6

Figure 5.6: Triple core utilization report

Noteworthy is the fact that while the components increase relative to the number

of cores implemented, the power increase between a single core system and a triple

core system with an attack voter is only 8 mW, for a total of 200 mW. This translates

to a 4% increase in power between a single core system and a triplicated injection

hardened implementation.

69

This means that the entire system architecture space overhead is still less then

the overhead seen in the PolyGlot architecture. However, further system expansion

and analysis needs to be done to compare the total security of the respective systems.

70

FUTURE RESEARCH

While this thesis project demonstrates the viability and serves as a proof of

concept for a hardware based instruction set randomization defense, further expansion

is necessary. For this system to be implemented in industry, several further steps

should be be researched, including:

• Further instruction set expansion

• 32 or 64 bit expansion

• Partial reconfiguration

• Compiler

• Linux

Instruction Set Expansion

At this stage in development, the processor can interpret and execute 27 separate

instructions. This demonstrates a proof of concept, but falls short of most industry

instruction sets. As seen in Figure 2.3, there exists a large number of opcodes in even

a small 8-bit microcontroller.

One opcode is particularly desirable, a JSR. JSR is a jump to subroutine

instruction and provides the backbone for allowing multiple subroutines to exist inside

a single program. Since the ability to handle interrupts already exists in the current

architecture, adding this instruction shouldn’t pose a problem in future development

as it is functionally the same as an interrupt on demand.

Processor Size Expansion

Currently, the developed processor is 8-bit, designed to function similarly to the

Picoblaze. However, for wide-spread implementation a larger processor is necessary.

Through expanding the processor size to 32 or 64 bits, it would be possible to utilize

71

existing standards. Additionally, the larger processor size would allow for a drastic

increase in available memory. At this point the processor is limited to 256 bytes of

memory, which is small compared to any modern processor system. By expanding the

MAR register in conjunction with the processor it would be possible to expand the

amount of memory available to the system which could easily be allocated and spread

across the three current memory systems; program memory, read/write memory, and

stack memory.

Component Randomization

In addition to randomizing the instruction set, other components of the device

could be randomized. For example, the ALU instruction vector could be randomized

for different operations. At this junction the ALU instructions are predefined

and hardcoded during the assembler process as seen in A. Similar to the opcode

randomization, these values could also be randomized.

Even beyond the randomization of ALU instructions, address space layout could

be randomized as well. Right now the address space of the system is linearly defined.

Low level registers are defined as program memory, followed by R/W memory and

finally followed by the stack and I/0. However, it would be possible to interweave these

memory locations per core during the assembler process, preventing any attackers

from knowing the locations of protected memory space.

Partial Reconfiguration

The system currently halts when an attack is detected. This works as a proof of

concept but is not viable in an actual system. In the event that an attack is detected,

it should be mitigated and then the processor should move on to the next instruction.

To mitigate attacks, one solution is to enable partial reconfiguration. In the event

that an attack is detected, the compromised core can be taken offline while a new

72

core is brought online. A system such as this is similar to the 9-tile microblaze system

seen previously.

Potentially this style of system could be used in conjunction with a hardware

based pseudo-random number component that would constantly cycle which processor

cores are online. Doing so would not only maintain the current functionality of

defending against injection attacks, in the case that an opcode set is known, but also

prevent knowledge of which core is active at any given time. This would assist in the

ability to prevent attacks from deciphering any given instruction set.

Compiler

Beyond the expansion of the processor hardware, a more robust compiler system

will need to be implemented. By using either LLVM, gcc or ANTLR the possibility

to program the device using a higher language, such as C, will become a possibility.

It’s important to note that the compiler process would need to be slightly

modified. For example, if generating a compiler for C, the compiler would need to stop

shy of actually generating the machine code (opcodes) and instead just generate the

mnemonics of the program. Since the opcodes will be randomized for each core it’s

not feasible to restructure the compiler every time a new bitstream is created. This

will also prevent potential attackers from learning the opcodes of each processor as the

final stage will only present users with commonly implemented opcode mnemonics.

Linux

Perhaps the final expansion for the future would be to create a Linux kernel

capable of running on the newly developed processor. This could be considered the

final stage since all the previous future research topics would need to be completed for

this to be feasible. The processor would need to have a larger instruction set capable

required by most Linux kernels, for the system to be practical the processor size itself

73

would need to be expanded to account for a larger address space and a compatible

compiler would be required to compile the necessary programs.

Future Use Implementations

A potential use for this would be to replace homogeneous data center configu-

rations. A large data center could be built with the replacement of general purpose

processors with FPGAs. Each FPGA would have an independent bitstream generated

for it, which would then be pushed out sequentially to each machine in the data

center. The initial configuration of each machine could be compared to the imaging

process currently used in deploying configurations to large system networks. Once the

processor has been scaled to the point of being Linux compatible, any software updates

could be deployed in the same fashion used by current systems with new bitstreams,

containing newly randomized instruction sets, to each machine on a desired basis. The

instruction set deployment could be performed either through generating entirely new

bitstreams for each component or by simply regenerating the portion of the existing

bitstream that contains instruction set information.

Ultimately, these steps will allow for the broad expansion of this device leading

to implementation for a variety of applications. A further exploration of this system

could potentially provide a multitude of solutions to a variety of modern cybersecurity

threats.

74

REFERENCES CITED

75

[1] M. Barr and A. Massa. Programming embedded systems: with C and GNU
development tools. ” O’Reilly Media, Inc.”, 2009.

[2] E. G. Barrantes, D. H. Ackley, S. Forrest, and D. Stefanović. Randomized
instruction set emulation. ACM Transactions on Information and System
Security, 8(1):3–40, feb 2005.

[3] E. G. Barrantes, D. H. Ackley, T. S. Palmer, D. Stefanovic, D. D. Zovi, and
D. D. Zovi. Randomized instruction set emulation to disrupt binary code
injection attacks. In Proceedings of the 10th ACM conference on Computer and
communication security - CCS ’03, page 281, New York, New York, USA, 2003.
ACM Press.

[4] Cpubenchmark.com. PassMark CPU Benchmarks - AMD vs Intel Market Share.

[5] Eric Brown. Linux 3.1 released with NFC support, 2011.

[6] P. Goyal, S. Batra, and A. Singh. A Literature Review of Security Attack in
Mobile Ad-hoc Networks. Technical Report 12, 2010.

[7] J. A. Hogan. Reliability analysis of radiation induced fault mitigation strategies
in field programmable gate arrays. pages 1–105, 2014.

[8] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering code-injection attacks
with instruction-set randomization. In Proceedings of the 10th ACM conference
on Computer and communications security, pages 272–280. ACM, 2003.

[9] C. Kelty. The morris worm. Limn, 1(1), 2011.

[10] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard,
T. Prescher, M. Schwarz, and Y. Yarom. Spectre Attacks: Exploiting Speculative
Execution. Technical report, 2018.

[11] B. J. LaMeres. Introduction to Logic Circuits & Logic Design with VHDL.
Springer, 2016.

[12] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard, P. Kocher,
D. Genkin, Y. Yarom, and M. Hamburg. Meltdown. Technical report, 2018.

[13] D. McNamara. Intel’s Stratix 10 FPGA: Supporting the Smart and Connected
Revolution — Intel Newsroom, 2016.

[14] Microway. Detailed Specifications of the ”Skylake-SP” Intel Xeon Processor
Scalable Family CPUs — Microway, 2017.

[15] Mitre Corporation. CWE - CWE-122: Heap-based Buffer Overflow (3.2).

76

[16] S. Ozkan. CVE security vulnerability database. Security vulnerabilities, exploits,
references and more.

[17] A. Papadogiannakis, L. Loutsis, V. Papaefstathiou, S. Ioannidis, A. Papadogian-
nakis, L. Loutsis, V. Papaefstathiou, and S. Ioannidis. ASIST. In Proceedings
of the 2013 ACM SIGSAC conference on Computer & communications security
- CCS ’13, pages 981–992, New York, New York, USA, 2013. ACM Press.

[18] D. Ramsbrock, R. Berthier, and M. Cukier. Profiling attacker behavior following
ssh compromises. In 37th Annual IEEE/IFIP international conference on
dependable systems and networks (DSN’07), pages 119–124. IEEE, 2007.

[19] Raspberry Pi Trading. Raspberry Pi 3 Model B+. Technical report.

[20] L. Salmon. System Security Integrated Through Hardware and Firmware
(SSITH) Proposers Day Overview. Technical report, 2017.

[21] F. B. Schneider and K. P. Birman. IT Monoculture 14. Technical report, 2009.

[22] S. Segars. Enabling Mass IoT connectivity as Arm partners ship 100 billion chips
- IoT blog - Internet of Things - Arm Community.

[23] F. Semiconductor. Freescale Semiconductor Addendum Addendum for New QFN
Package Migration. Technical report.

[24] K. Sinha, V. P. Kemerlis, and S. Sethumadhavan. Reviving Instruction Set
Randomization.

[25] Statista. Desktop OS market share 2013-2018 — Statista.

[26] C. Stevens, N. Poggi, T. Desrosiers, and R. Xin. Meltdown and Spectre: Exploits
and Mitigation Strategies - The Databricks Blog, 2018.

[27] D. L. D. Turner. Implementation of a radiation-tolerant computer based on a
LEON3 architecture. pages 1–90, 2015.

[28] Xilinx and Inc. PicoBlaze 8-bit Embedded Microcontroller User Guide for
Extended Spartan ®-3 and Virtex ®-5 FPGAs Introducing PicoBlaze for
Spartan-6, Virtex-6, and 7 Series FPGAs. Technical report.

77

APPENDICES

78

APPENDIX A

INSTRUCTION PACKAGE EXAMPLE

79

package instructions_core_3 is

constant LDA_IMM : std_logic_vector (7 downto 0) :=x"99";

constant LDB_IMM : std_logic_vector (7 downto 0) :=x"8a";

constant LDA_DIR : std_logic_vector (7 downto 0) :=x"4e";

constant LDB_DIR : std_logic_vector (7 downto 0) :=x"b6";

constant STA_DIR : std_logic_vector (7 downto 0) :=x"78";

constant STB_DIR : std_logic_vector (7 downto 0) :=x"c3";

constant ADD_AB : std_logic_vector (7 downto 0) :=x"c1";

constant SUB_AB : std_logic_vector (7 downto 0) :=x"66";

constant INC_A : std_logic_vector (7 downto 0) :=x"6a";

constant DEC_A : std_logic_vector (7 downto 0) :=x"b9";

constant INC_B : std_logic_vector (7 downto 0) :=x"13";

constant DEC_B : std_logic_vector (7 downto 0) :=x"b2";

constant AND_AB : std_logic_vector (7 downto 0) :=x"85";

constant ORR_AB : std_logic_vector (7 downto 0) :=x"77";

constant BRA : std_logic_vector (7 downto 0) :=x"ac";

constant BMI : std_logic_vector (7 downto 0) :=x"d3";

constant BEQ : std_logic_vector (7 downto 0) :=x"a2";

constant BCS : std_logic_vector (7 downto 0) :=x"69";

constant BVS : std_logic_vector (7 downto 0) :=x"2a";

constant PSH_A : std_logic_vector (7 downto 0) :=x"c8";

constant PSH_B : std_logic_vector (7 downto 0) :=x"15";

constant PSH_PC : std_logic_vector (7 downto 0) :=x"2c";

constant PLL_A : std_logic_vector (7 downto 0) :=x"a5";

constant PLL_B : std_logic_vector (7 downto 0) :=x"59";

constant PLL_PC : std_logic_vector (7 downto 0) :=x"72";

constant RTI : std_logic_vector (7 downto 0) :=x"24";

constant STI : std_logic_vector (7 downto 0) :=x"d2";

constant add : std_logic_vector (7 downto 0) :="000";

constant sub : std_logic_vector (7 downto 0) :="001";

constant andab : std_logic_vector (7 downto 0) :="010";

constant orrab : std_logic_vector (7 downto 0) :="011";

constant inca : std_logic_vector (7 downto 0) :="100";

constant deca : std_logic_vector (7 downto 0) :="101";

constant incb : std_logic_vector (7 downto 0) :="110";

constant decb : std_logic_vector (7 downto 0) :="111";

end package instructions_core_3;

80

APPENDIX B

ASSEMBLER

81

import random

import os

import shutil

import errno

programCode = []

def createProgramMemory(filename, programList, core):

with open(filename,'w') as file:

fileStart = """

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

library xil_defaultlib;

"""

instructionFile = "use

xil_defaultlib.instructions_core_%s.all;" %core↪→

entityName = "entity rom_128x8_sync_core_%s is" %core

entityBlock = """

port (address : in std_logic_vector (7 downto 0);

clock : in std_logic;

data_out : out std_logic_vector (7 downto 0));

end entity;"""

architectureName = "architecture rom_128x8_sync_arch of

rom_128x8_sync_core_%s is" %core↪→

architectureBlock = """

signal EN: std_logic;

type rom_type is array (0 to 95) of std_logic_vector(7 downto 0);

constant ROM : rom_type := ("""

fileEnd = """

others => x"00");

begin

--enables ROM and port_outs

enable: process(address)

begin

if ((to_integer(unsigned(address)) >=0) and

(to_integer(unsigned(address)) <=95)) then

EN <='1';

82

else

EN <='0';

end if;

end process;

memory: process(clock)

begin

if (clock'event and clock='1') then

if (EN='1') then

data_out <= ROM(to_integer(unsigned(address)));

end if;

end if;

end process;

end architecture;

"""

file.write("%s" %(fileStart))

file.write("%s \n" %(instructionFile))

file.write("%s \n" %(entityName))

file.write("%s \n" %(entityBlock))

file.write("%s \n" %(architectureName))

file.write("%s \n" %(architectureBlock))

for item in programCode:

file.write(" %s\n" % item)

file.write("%s" %(fileEnd))

def createProgramList(filename):

lines = [line.rstrip('\n') for line in open(filename)]

for x in range(len(lines)):

instruction = '%i => %s,' %(x,lines[x])

programCode.append(instruction)

def createInstructionFile(filename,core):

with open(filename, 'w') as file:

opcodes = random.sample(range(16,225),27)

for x in range(len(opcodes)):

opcodes[x] = hex(opcodes[x])

opcodes[x] = opcodes[x][-2:]

print(opcodes)

LDA_IMM = opcodes[0]

LDB_IMM = opcodes[1]

LDA_DIR = opcodes[2]

83

LDB_DIR = opcodes[3]

STA_DIR = opcodes[4]

STB_DIR = opcodes[5]

ADD_AB = opcodes[6]

SUB_AB = opcodes[7]

INC_A = opcodes[8]

DEC_A = opcodes[9]

INC_B = opcodes[10]

DEC_B = opcodes[11]

AND_AB = opcodes[12]

ORR_AB = opcodes[13]

BRA = opcodes[14]

BMI = opcodes[15]

BEQ = opcodes[16]

BCS = opcodes[17]

BVS = opcodes[18]

PSH_A = opcodes[19]

PSH_B = opcodes[20]

PSH_PC = opcodes[21]

PLL_A = opcodes[22]

PLL_B = opcodes[23]

PLL_PC = opcodes[24]

RTI = opcodes[25]

STI = opcodes[26]

header = """library IEEE;

use IEEE.STD_LOGIC_1164.ALL;"""

line1 = "package instructions_core_%s is" %core

line2 = "constant LDA_IMM : std_logic_vector (7 downto 0)

:=x\"%s\";" %LDA_IMM↪→

line3 = "constant LDB_IMM : std_logic_vector (7 downto 0)

:=x\"%s\";" %LDB_IMM↪→

line4 = "constant LDA_DIR : std_logic_vector (7 downto 0)

:=x\"%s\";" %LDA_DIR↪→

line5 = "constant LDB_DIR : std_logic_vector (7 downto 0)

:=x\"%s\";" %LDB_DIR↪→

line6 = "constant STA_DIR : std_logic_vector (7 downto 0)

:=x\"%s\";" %STA_DIR↪→

line7 = "constant STB_DIR : std_logic_vector (7 downto 0)

:=x\"%s\";" %STB_DIR↪→

line8 = "constant ADD_AB : std_logic_vector (7 downto 0)

:=x\"%s\";" %ADD_AB↪→

84

line9 = "constant SUB_AB : std_logic_vector (7 downto 0)

:=x\"%s\";" %SUB_AB↪→

line10 = "constant INC_A : std_logic_vector (7 downto 0)

:=x\"%s\";" %INC_A↪→

line11 = "constant DEC_A : std_logic_vector (7 downto 0)

:=x\"%s\";" %DEC_A↪→

line12 = "constant INC_B : std_logic_vector (7 downto 0)

:=x\"%s\";" %INC_B↪→

line13 = "constant DEC_B : std_logic_vector (7 downto 0)

:=x\"%s\";" %DEC_B↪→

line14 = "constant AND_AB : std_logic_vector (7 downto 0)

:=x\"%s\";" %AND_AB↪→

line15 = "constant ORR_AB : std_logic_vector (7 downto 0)

:=x\"%s\";" %ORR_AB↪→

line16 = "constant BRA : std_logic_vector (7 downto 0)

:=x\"%s\";" %BRA↪→

line17 = "constant BMI : std_logic_vector (7 downto 0)

:=x\"%s\";" %BMI↪→

line18 = "constant BEQ : std_logic_vector (7 downto 0)

:=x\"%s\";" %BEQ↪→

line19 = "constant BCS : std_logic_vector (7 downto 0)

:=x\"%s\";" %BCS↪→

line20 = "constant BVS : std_logic_vector (7 downto 0)

:=x\"%s\";" %BVS↪→

line21 = "constant PSH_A : std_logic_vector (7 downto 0)

:=x\"%s\";" %PSH_A↪→

line22 = "constant PSH_B : std_logic_vector (7 downto 0)

:=x\"%s\";" %PSH_B↪→

line23 = "constant PSH_PC : std_logic_vector (7 downto 0)

:=x\"%s\";" %PSH_PC↪→

line24 = "constant PLL_A : std_logic_vector (7 downto 0)

:=x\"%s\";" %PLL_A↪→

line25 = "constant PLL_B : std_logic_vector (7 downto 0)

:=x\"%s\";" %PLL_B↪→

line26 = "constant PLL_PC : std_logic_vector (7 downto 0)

:=x\"%s\";" %PLL_PC↪→

line27 = "constant RTI : std_logic_vector (7 downto 0)

:=x\"%s\";" %RTI↪→

line28 = "constant STI : std_logic_vector (7 downto 0)

:=x\"%s\";" %STI↪→

line29 = "constant add : std_logic_vector (2 downto 0)

:=\"000\";"↪→

85

line30 = "constant sub : std_logic_vector (2 downto 0)

:=\"001\";"↪→

line31 = "constant andab : std_logic_vector (2 downto 0)

:=\"010\";"↪→

line32 = "constant orrab : std_logic_vector (2 downto 0)

:=\"011\";"↪→

line33 = "constant inca : std_logic_vector (2 downto 0)

:=\"100\";"↪→

line34 = "constant deca : std_logic_vector (2 downto 0)

:=\"101\";"↪→

line35 = "constant incb : std_logic_vector (2 downto 0)

:=\"110\";"↪→

line36 = "constant decb : std_logic_vector (2 downto 0)

:=\"111\";"↪→

line37 = "end package instructions_core_%s;" %core

file.write('%s \n' %(header))

file.write("%s \n %s \n %s \n %s \n %s \n %s \n %s \n %s \n %s

\n %s \n %s \n %s \n %s \n %s \n %s \n %s \n %s \n %s \n

%s \n %s \n %s \n %s \n %s \n %s \n %s \n %s \n %s \n %s

\n %s \n %s \n %s \n %s \n %s \n %s \n %s \n %s \n %s"

%(line1, line2, line3, line4, line5, line6, line7, line8,

line9, line10, line11, line12, line13, line14, line15,

line16, line17, line18, line19, line20, line21, line22,

line23, line24, line25, line26, line27, line28, line29,

line30, line31, line32, line33, line34, line35, line36,

line37))

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

def copy(src, dest):

try:

shutil.copytree(src, dest)

except OSError as e:

If the error was caused because the source wasn't a

directory↪→

if e.errno == errno.ENOTDIR:

shutil.copy(src, dest)

else:

print('Directory not copied. Error: %s' % e)

def projectGen(source,destination):

if not os.path.exists(destination):

os.makedirs(destination)

86

src_files = os.listdir(source)

for file_name in src_files:

full_file_name = os.path.join(source, file_name)

if (os.path.isfile(full_file_name)):

shutil.copy(full_file_name, destination)

source = 'CyberCore Sources'

destination = input('Enter Project Name: ')

copy(source,destination)

file1 = '%s/instructions_core_1.vhd' %destination

file2 = '%s/instructions_core_2.vhd' %destination

file3 = '%s/instructions_core_3.vhd' %destination

program = 'program.asm'

mem1 = '%s/rom_128x8_sync_core_1.vhd' %destination

mem2 = '%s/rom_128x8_sync_core_2.vhd' %destination

mem3 = '%s/rom_128x8_sync_core_3.vhd' %destination

#projectGen(source,destination)

createInstructionFile(file1,'1')

createInstructionFile(file2,'2')

createInstructionFile(file3,'3')

createProgramList(program)

createProgramMemory(mem1,programCode,'1')

createProgramMemory(mem2,programCode,'2')

createProgramMemory(mem3,programCode,'3')

	Titlepage
	Copyright
	Acknowledgements

	Table of Contents
	List of Tables
	List of Figures
	List of Algorithms
	Abstract
	Chapter 1 — Introduction
	Introduction

	Chapter 2 — Background and Motivation
	Monoculture Environment
	Opcodes and Instruction Sets
	Cybersecurity Threats
	Technology Attacks
	Instruction Set Randomization
	Hardware Implementations
	What's Next

	Chapter 3 — Montana State University Contributions
	Existing Lab Research

	Chapter 4 — System Design
	Processor Foundation
	Triplication
	Illegal Opcode Fault
	Opcode Packages and Assembler
	Preliminary Testing
	Processor Expansion
	Triplication of Extended Processor

	Chapter 5 — Results
	Overhead

	Chapter 6 — Future Research
	References Cited
	APPENDICES
	APPENDIX A: Instruction Package Example
	APPENDIX B: Assembler

