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ABSTRACT

Today’s cyber landscape is as dangerous as ever, stemming from an ever
increasing number of cybersecurity threats. A component of this danger comes
from the execution of code-injection attacks that are hard to combat due to the
monoculture environment fostered in today’s society. One solution presented in the
past, instruction set randomization, shows promise but requires large overhead both in
timing and physical device space. To address this issue, a new processor architecture
was developed to move instruction set randomization from software implementations
to hardware. This new architecture consists of three functionally identical soft-
core processors operating in parallel while utilizing individually generated random
instruction sets.  Successful hardware implementation and testing, using field
programmable gate arrays, demonstrates the viability of the new architecture in small
scale systems while also showing potential for expansion to larger systems.
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INTRODUCTION

Introduction

Today’s society is driven by computers. Everything from shopping to filing
taxes have become online processes. It’s commonly believed that the majority of
computer systems produced are used for general computing devices such as laptops
and desktops. However, of the over 6 billion microprocessors manufactured in 2008
only 2% were used for general computing devices [1]. The rest were used in embedded
systems in devices ranging from kitchen equipment to automotives. Embedded
systems are such a fundamental part of today’s society that as of 2017 over 100
billion ARM processors were shipped [22]. All of these devices are susceptible to
interference from malicious sources. Cyber attacks such as these generally fall into
one of three categories; configuration attacks, technology attacks, and trust attacks.

Configuration attacks are any attack that targets configuration exploits. A
lot of these are geared towards default manufacturer configurations such as default
passwords. Trust attacks are any attacks that target the trust between different
systems. Commonly these are network level attacks that are geared towards spreading
viruses to increase an attackers available computing power. Configuration attacks and
trust attacks are largely outside the scope of this project but will be briefly covered.

Technology attacks are any attacks that target the technology of the victim
machine. A system’s ”technology” can be considered the underlying architecture and
operating system. Of these attacks, there are again two main categories, software
based attacks and hardware based attacks. A large number of attacks utilize software

to attack other software, these are commonly attacks that target passwords and
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remote access to a variety of internet connected systems.

Beyond software attacks are hardware attacks. However, there is some overlap
between the two as many such attacks target computer hardware through software
manipulation. Of these software based hardware attacks, code-injection attacks have
been particularly devastating. This method of attack was even utilized as part of
the Morris Worm’s devastating propagation in 1988 [9]. While code-injection attacks
have been around for decades, they still make up a large portion of today’s cyber
exploits.

As the number of cyber-based attacks increased, a new field of research was
developed to combat the criminal application of technology. The field of cybersecurity
is focused on finding methods to mitigate any malicious action targeting technology
based systems, both hardware and software. In the event a software flaw is discovered,
a fix can be readily supplied through a patch and updated software release. These can
be quickly implemented and rapidly released in the case of day one bugs. Examples
of this can be seen in the updates pushed out through the Windows Update service.
Windows Update is utilized to constantly release patches and code-fixes to the large
number of machines running the Windows operating system.

If a hardware flaw is discovered, and exploited as an attack vector, the solution
is not as quickly distributed. Currently fixing a hardware flaw can cost millions
of dollars and take years to implement. This massive time delay between exploit
detection and patch release is caused by the requirement to manufacture an entirely
new product. In some rare cases, microcode, machine code that is used for processor
configuration, can be used to patch hardware flaws, but only in compatible devices.
Examples of this can be seen in the recent Spectre and Meltdown attacks. These two
attacks focused on hardware exploits targeted towards reading privileged memory

locations.
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Ideally it would be possible to deploy hardware patches as quickly and efficiently
as software patches. The ability to make these rolling releases for hardware
patches exists through implementing soft core processors in the fabric of a field
programmable gate array (FPGA). An FPGA is a semiconductor device made of
custom programmable logic components with programmable interconnects, allowing
for custom digital logic to be developed and implemented. Devices such as these
are commonly used in a variety of industries ranging from aerospace to medical to
automotive and audio. Custom configurations are developed through a hardware
description language such as VHDL or Verilog. Configurations are then synthesized
and implemented in hardware through generated bitstreams, informing the device
which logic components are required and how they are connected.

Montana State University (MSU) has extensive history in the application of
FPGA’s to a multitude of engineering problems. As part of a new focus on
cybersecurity MSU has begun to leverage this expertise as a method to solve the
prevalence of technology attacks in today’s cyber landscape. To this effect, this
thesis provides a solution to a common form of cyberattacks, code-injection, through
the implementation of triplicated instruction set randomization using a triple core
softprocessor on an FPGA. Each core provides identical functionality through the
implementation of individual instruction sets. Testing is performed using a custom
built softcore processor implemented on a Xilinx Artix-7 FPGA. Multiple test
programs were written using a standard assembly language that is then run through
a basic assembler to generate the processor memory. Additionally, this assembler also
generates three pseudo-random sets of instruction sets, one for each core. An attack
voter system is used to detect if a core has been compromised and halts the system

if an attack is detected.
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Successful testing was performed through serial code injection. This demon-
strates the functionality of such a system. An added benefit to a method such as this,
hardware implementation using a FPGA, is the ability for future hardware patches to
be released through an updated bitstream that can be rapidly deployed without the
need for new hardware to be manufactured. While future expansion is necessary for
industrial usage, this thesis serves as a proof of concept in hardware based instruction

set randomization without the need for secondary encryption.
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BACKGROUND AND MOTIVATION

At the advent of the computer age there were a large number of computer
manufacturers. Companies such as Apple, Commodore, Tandy, Radio Shack, IBM,
Atari and Sinclair, were all manufacturing their own custom computer systems. As
the market was still new, all of these companies were competing for dominance in
the marketplace. This heterogeneous environment for computing was defined by the
broad selection of devices produced by manufacturers. Today, this is no longer the
case. While there may be a plethora of computer brands such as Dell, HP, and
Lenovo, the components that power them and the software they run are dominated
by just a few companies. This can be seen in today’s homogeneous, or monoculture,

environment.

Monoculture Environment

There are predominantly three major operating systems in use today; Windows,
Mac, and Linux. Windows clearly demonstrates market dominance at over 70% of
the market share [25]. Distantly following Windows is Mac at approximately 12%
with the remaining market shares consisting of Linux, ChromeOS and miscellaneous
or unknown. This can be seen graphically in Figure Figure 2.1.

While there are multiple operating systems available, the architecture that runs
them is a different story. Two major processor manufacturers produce the majority
of the hardware utilized in the ever growing number of technology systems; Intel and
AMD. As of April 2019, Intel owns a lions share of the market at approximately
77% of the market share while AMD controls the other 23% [4]. This can be seen in
Figure 2.2. It’s worth noting that this market share reflects only the x86 processor

architecture. X86 is the architecture required to run most desktop level operating
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Figure 2.1: Operating system market share from 2013 to 2019 [25]

systems, such as Windows and Mac. Other manufacturers such as ARM have separate
architectures that are utilized in a variety of different microprocessor systems, such
as the Raspberry Pi family [19]. These alternative architectures are more likely to be
compatible with Linux and the assorted other operating systems.

While Figure Figure 2.2 displays an alternative to Intel, the underlying
instruction set architecture is the same between AMD and Intel. While certain
technological aspects are different between the two processor manufactures, their
instruction sets are the same, resulting in an overwhelming number of general
computing devices using the same instruction set.

The homogeneous nature of the computer market comes with both pros and
cons. Today’s data centers, driving the ever expanding computational cloud, are
made up of these monoculture environments. Due to the monoculture nature of these
server farms, configuration can be easily automated. With a networked configuration

of identical systems comes the ability to deploy configurations simultaneously across
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Figure 2.2: AMD vs Intel market share (Q1 2019) [4]

the entire network. Creating a datacenter in this fashion ensures that each individual
system operates in the same fashion. Having every system utilize the same
architecture and operating system also cuts down on the training cost of employees
by reducing time spent teaching multiple systems.

What drives the ability to construct these monolithic data centers is the
versatility of the processor driving every individual component of the system. This
versatility comes from the opcodes and instruction set architectures configured in

each processor.

Opcodes and Instruction Sets

Understanding a computers ability to execute software is crucial in understand-
ing the way in which instruction set randomization can mitigate monoculture risks.

At it’s core, a computer is simply a piece of hardware capable of executing strings



8

of instructions. These strings of instructions, crafted into very specific sequences,
become the software used to execute desired tasks. At a lower level, these instructions
are called a systems ”instruction set”, which is comprised of a set of "opcodes”. An
opcode is a type of machine code that specifies what operation is desired. They
commonly include the type of data, called the operand, they will be processing as
well as the operation. Opcodes, as well as the format of the expected operands, are
created during the processor’s design cycle. When finished, these instruction sets can
be very large, allowing for a wide variety of potential uses, or very small in the case of
a processor geared towards a specific purpose. An example of a device geared towards
a wide range of uses can be seen in the instruction set of the HCS08 microcontroller,

seen in Figure 2.3.

Bit-Manipulati Branch Read-odify-Write Control i y
00 510 5 |20 3 |30 5[40 1[50 1 |80 5 70 480 9 (20 3 |AD_ 2 |BO 3 |Co 4[bo 4 |E0 3 |FO 3
BRSETO | BSETO BRA NEG NEGA NEGX NEG NEG RTI BGE SuB SuUB SuB suB sSuUB sSuB
3 DR|2 DIR|2 REL|2 DIR[1 INH|1 INH |2 X1 |1 |1 mNH|2 REL|2 MM |2 DR |3 EXT |3 2|z b |1 1%
01 5 |11 5 |21 EIEL BE 4 |51 3 |61 5 |71 BE 5 |91 3 | Al z |Bi 3 |Ci 4 |D1 4 |ET 3 |F1 3
BRCLRO| BCLRO BRN CBEQ | CBEQA | CBEQX | CBEQ CBEQ RTS BLT CMP CMP CMP CMP CMP CMP
3 DR|2 DIR|2 REL|3 DIR|3 MM |3 MM |3 X1+ |2 IX+|1 INH|2 REL|2 MM |2 DIR|3 EXT|3 x2|z x4 1%
0z 5|12 5 |22 3|3z 5 42 5 |52 6 |62 172 EEAES 3 |Az_ 2 B2 3 |c2 4|bz 4 |E2_ 3 |F2 3
BRSET1 | BSET1 BHI LDHX MUL Div NSA DAA BGND BGT SBC SBC SBC SBC SBC SBC
3 DR|2 DIR|2 REL|3 EXT|1 INH|1 INH|1 INH|1 INH|1 INH|2 REL|2 MM |2z DIR|3 EXT|3 2|z 1 [d 1%
03 5 |18 5 |23 3|33 BE 153 1|63 5 |73 48z 11|98 3 |A3_ 2 B3 3 |Ca 4|D3 4 |E3 3 |F3 3
BRCLR1| BCLR1 BLS com COMA | COMX COM coMm Swi BLE CPX CPX CPX CPX CPX CPX
3 DIR|2 DIR|2 REL|2 DIR[1 INH|1 INH |2 IX1 |1 X[1 INH|2 REL|2 MM |2 DR |3 EXT |3 2|z 1|1 1%
04 5 |14 5 |24 3|34 5|44 1 (54 1 |64 5 |74 4 |84 1 (94 2 |Ad 2 |B4 3 |C4 4 |D4 4 |E4 3 |F4 3
BRSET2| BSET2 BCC LSR LSRA LSRX LSR LSR TAP TXS AND AND AND AND AND AND
3 DR|2 DIR|2 REL|2 DIR[1 INH|1 INH |2 X1 |1 X[1 INH|1 INH |2 MM |2 DIR |3 EXT |3 2|z 1|1 1%
05 5 |15 5 |25 335 425 3 |55 2|65 3|75 5 |85 195 2 |[A5 2 |B5 3 |C5 4|D5 _ 4|E5 3 |F5 3
BRCLR2 | BCLR2 BCS STHX LDHX LDHX CPHX CPHX TPA TSX BIT BIT BIT BIT BIT BIT
3 DR|? DR|2 REL|? DIR[3 MM|2 DIR|3 IMM|?2 DR|1 INH|[1 INH|2 IMM|2z DIR|3 ExT|3 ez x4 [
06 5 |16 5 |26 BES 5 |26 156 1|66 5 |76 488 3 (96 5 |AB 2 BB 3 |C6 4|D6 4 |E6 3 |F6 3
BRSET3 | BSET3 BNE ROR RORA RORX ROR ROR PULA STHX LDA LDA LDA LDA LDA LDA
3 DR|2 DIR|2 REL|2 DIR[1 INH|1 INH |2 X1 |1 X[1 mNH|3 EXxT|2 MM |2 DIR|3 EXT |3 2|z |1 1%
o7 5 |17 5 |27 3 a7 5 |47 157 1|67 5|77 487 2 o7 T|A7 2 |B7 3 |CT 4|b7T 4 |ET__ 3 |FT H
BRCLR3| BCLR3 BEQ ASR ASRA ASRX ASR ASR PSHA TAX AlIS STA STA STA STA STA
3 DR|2 DIR|2 REL|2 DIR[1 INH|1 INH |2 1%t |1 X[1 INH|1 INH |2 MM |2 DR |3 EXT |3 2|z |1 1%
08 5|18 5 |28 3|38 5 |48 158 1|68 5|78 R ET] 3|98 T|A8__ 2 |B8 3 |C8 4 (DB 4 |EB 3 |F8 3
BRSET4 | BSET4 BHCC LSL LSLA LSLX LSL LSL PULX CLC EOR ECR EOR EOR EOR EOR
3 DR|2 DIR|2 REL|2 DIR[1 INH|1 INH |2 X1 |1 X[1 INH|1  INH |2 MM |2 DIR[3  EXT |3 2|z x4 1%
09 5|19 5 |29 3 |39 B 159 1|69 5 |79 R EE] 2 |99 EREE 3 |Ca 4|09 4|E9 3 |F9 3
BRCLR4 | BCLR4 | BHCS ROL ROLA ROLX ROL ROL PSHX SEC ADC ADC ADC ADC ADC ADC
3 DIR|2 DIR|2 REL|2 DIR[1 INH|1 INH |2 X1 |1 X[1 INH|1  INH |2 MM |2 DIR |3 EXT |3 2|z 1|1 1%
0A 5 (1A & |2A 3[3A 5 |4A 1[5A 1]6A & |7A 4[8A 3 |9A 1|AA 2 |BA 3 |CA 4 |DA 4 |EA 3 |FA 8
BRSET5 | BSETS BPL DEC DECA DECX DEC DEC PULH CLI ORA ORA ORA ORA ORA ORA
3 DR|2 DIR|2 REL|2 DIR[1 INH|1 INH |2 Ix1 |1 X[1 INH|1 T INH |2 MM |2 DR |3 EXT |3 2|z 1|1 1%
085|185 |28 3 |38 7 |2B 2(58  4|eB 7|78 5 |88 2 |98 T|AB 2 |BB __3|CB 4 |DB 4 |EB 3 [FB 3
BRCLR5 | BCLR5 BMI DBNZ | DBNZA | DBNZX | DBNZ DBNZ PSHH SEI ADD ADD ADD ADD ADD ADD
3 DR|? DR|2 REL|3 DR|2 INH|2z INH|3  IX1|2 X[1 NH|1 INH |2 MM |2 DR |3 EXT |3 2|z b |1 [
oC 5 (1C__ 5 |2C 3[3aC__ 5|4C 1 |5C T]6C__ 5 |7C 4lac__ 1]oc__ 1 BC 3 |CC___ 4 |DC_ 4 |EC 3 [FC 3
BRSET6 | BSET6 BMC INC INCA INCX INC INC GCLRH RSP JMP JMP JMP JMP JMP
3 DR|2 DIR|2 REL|2 DIR|[1 INH|1 INH |2 11 |1 X [1 INH |1 INH 2 DR|[3 EXxT|3 2|z 4 1%
oD 51D 5 |2D (3D 4|4D 15D 116D 4 |7D 3 0 1|AD &5|BD 5|CD 6|DD  G|ED 5 |FD &
BRCLR6| BCLR6 BMS TST TSTA TSTX TST TST NOP BSR JSR JSR JSR JSR JSR
3 DR|2 DIR|2 REL|2 DIR[1 INH|1 INH |2 1%t |1 X 1 INH|2 REL|2 DIR|3 EXT |3 xz2|z 11 1%
OE 5 [1E & |2E 3 |3E 6 |4E 5|5E &5 |6E 4 |7E 5[8E 2+ |9E AE 2 |BE 3 |CE 4 |DE 4 |EE 3 |[FE 3
BRSET7 | BSET7? BIL CPHX MOV MoV MOV MOV STOP Page 2 LDX LDX LDX LDX LDX LDX
3 DR|2 DR|2 REL|3 EXT|3 DD|2 DX+ |3 IMD|2 IX+D |1 INH 2 MM |2 DIR |3 EXT |3 xz|z 11 1%
OF 5 |1F 5 |2F 3 |aF 5 |4F 1[5F 1 |6F 5 |7F 4|8F 2+ |9F T|AF 2 |BF 3 |CF___ 4 |DF & |EF 3 |FF__ 2
BRCLR7 | BCLR7 BIH CLR CLRA CLRX CLR CLR WAIT TXA AlX STX STX STX STX STX
3 DIR|2 DIR|2 REL|2 DIR[1 INH|1 INH |2 X1 |1 X[1 INH|1 INH |2 MM |2 DR |3 EXT |3 2|z 1|1 1%

Figure 2.3: HCSO08 instruction set opcode table [23]



9

An opcode table representation of an instruction set, as seen in Figure 2.3,
contains a lot of information important to the proper use of a system. Each square
contains the mnemonic representation of the opcode, the opcode value in hex, the byte
size of the instruction, the number of clock cycles required to execute the instruction,
and the addressing mode for the specified instruction. A breakout of the index mode

subtraction opcode can be seen in Figure 2.4.

Opcode in
Hexadecimal | FO 3 |HCS08 Cycles
SUB Instruction Mnemonic

Number of Bytes | 1 X |Addressing Mode

Figure 2.4: Elaboration on information contained in an opcode [23]

In a broader sense, these opcodes can be generally separated into three
categories. Arithmetic/logic, data movement, and flow control. Arithmetic opcodes
are operations that perform some sort of arithmetical function such as adding,
subtracting, multiplying or dividing. Logical operations are anything that performs
a logical manipulation on a set of data, these include operations such as "and”, "or”,
and "exclusive or”. Data movement refers to any operation that pertaining to the
movement of data from one register to another, these include instructions such as
load, move and store. The final primary category, flow control, consists of operations
that allow for movement throughout the program. These generally include branch and
jump instructions that allow for code execution dependent on a variety of different
flags being manipulated in the processor. Depending on the processor, there is a fifth
category, the special instructions. For example, the CPUID instruction for Intel’s x86
architecture returns information about the processor to the software that called it.

When a monoculture environment is fostered, leading to a single prevalent

architecture, the instruction set to this architecture becomes widely known and
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implemented. While this is necessary and beneficial for software development,
it creates a vector for cyber attacks. Knowing the fundamental building blocks
of a processor allows an attacker to manipulate the processor in unexpected and
potentially malicious ways. These malicious manipulations of any device can be

considered a cybersecurity threat.

Cybersecurity Threats

Hand in hand with the rise in computer systems is the rise in cyber-crimes.
Starting in 1988 with the release of the Morris Worm [9], cyber-crimes have become
more sophisticated, malicious and far more numerous. In 2007 a study was conducted
at the University of Maryland that found four exposed Linux systems were attacked
every 39 seconds on average, with an average daily total of 2,244 attacks [18]. More
recently, the Common Vulnerabilities and Exposures (CVE) system, a database
of publicly known information-security vulnerabilities, reported 16,555 reported
vulnerabilities in 2018 alone [16]. Since 1999 the CVE system has a total 111,684
reported vulnerabilities [16].

These reported vulnerabilities can be broadly categorized into three main
categories. Configuration attacks, technology attacks and trust attacks [21]. While
some of these categories see net benefits in terms of a monoculture environment,
others do not.

Configuration attacks are any exploit that targets the configuration of a
machine. This can be either from configurations performed by users or, more
likely, configurations provided by the vendor. Exploits targeted towards machine
configurations are numerous. Even to the extent that a number of websites, such as
routerpasswords.com, provide default login information to a large number of varying

computer systems.
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Technology attacks are exploits that target the technology of the target system,
such as the programming or the hardware vulnerabilities. These attack types are
also often called hardware targeted software vulnerabilities, meaning that software
can be leveraged to exploit hardware flaws. This susceptibility is a known risk
of deploying a monoculture environment. In the past there have been a plethora
of attempts at artificially diversifying homogeneous systems to prevent against this
inherent risk. These include methods such as padding the runtime stack by random
amounts, rearranging basic blocks and code within basic blocks, randomly changing
the name of system calls, instruction set randomization and random heap memory
allocation. Some of these, such as instruction set randomization, have been more
successful than others.

Finally, trust attacks are exploits that occur when a command comes from
a trusted source. This commonly occurs on enterprise networks. Once a single
computer is compromised in a network, every computer in the network is potentially
compromised. As such, this is a common method for worms to spread.

While configuration attacks and trust attacks are a serious concern, a further
exploration of them is outside the scope of this thesis project. However, an overview
of many of these attacks can be found in a literature review performed by Goyal et

al. [6].

Technology Attacks

As mentioned previously, technology attacks are any exploit that target the
technology of the system, rather than the systems configuration or trust amongst

other machines.
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Spectre

A recent form of a technology attack can be seen in the Spectre exploit
demonstrated by Kocher et al [10]. Spectre utilizes predictive branching to access and
leak sensitive information on a target computer through a side channel. Predictive
branching is a technique utilized in high speed processors that allow the processor to
prematurely calculate likely future execution paths. If the calculated path is correct
then the processor commits that pre-calculated path and continues to run, otherwise
it discards the execution.

To exploit conditional branches, the branch predictor needs to be trained to

direct to a desired branch. An example of this exploit can be seen here [10]:

if (x < arrayl_size)

y = array2larrayl[x]*256];

The if statement will compile to a branch instruction that checks if the value
of x is within a desired range. While this value is calculated the processor will
calculate speculated execution paths. By running this several times with a value that
is correctly defined and within the defined bounds the branch predictor will begin to
predict that the execution will be returned true.

After having trained the branch predictor, if the code is run with an x that
is larger than the defined value, and arrayl size is uncached, the predictor will
speculatively perform the read. This value will then be stored to a location that
can be read by the attacker. By changing the value of x, the location being read may

also be adjusted to read the target’s entire memory.
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Spectre Bounds Check Bypass

Attacker Victim
Process Process

Sensitive Data
Branch Predictor 5

Primer 1 Intended Array
(good array indices) \ Access 2
Vulnerable Bounds
Bounds Check Check
4

Bypass :
(bya% array index) Speculative Array
Access

Figure 2.5: Breakdown of the Spectre attack. Arrows 1 and 2 indicate the repeated
runs of the correct values. Arrow 3 demonstrates the effect that has on the branch
predictor. Arrows 4 and 5 display the results of an attack after training [26].

Meltdown

Similar to Spectre is the Meltdown exploit. Operating system security has long
worked under the assumption that that an application being run by a user cannot
access memory in the kernel space. However, the operating system and kernel rely
on the processor to enforce this separation. In 2018 it was discovered that not all
processors do this.

Meltdown utilizes out of order execution to leak kernel information to a user
defined space long enough for a side cache to capture the desired information [12].

For example, if the following three steps were performed:

1. Invalidate the cache for a defined user space AttackBuffer
2. Read a byte of information from kernel space KernelByte

3. Read from AttackBuffer at the offset of KernelByte
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If the steps were executed in order than stage 2 would result in a segmentation
fault. However, to speed up processing times, the processor assumes that at some
point stage 3 will need to be executed and so begins to execute that in parallel to
stage 2. This triggers a race between when stage 2 will finish executing and return a
fault, and when stage 3 will finish.

Even though the fault will remove the processor’s results from any code that was
executed out of order, it doesn’t change any cache effects. This leaves the information

open to a side-channel attack.

Buffer Overflow

There is a particular subset of attacks that make up a large portion of all
vulnerabilities. Hardware+Software Vulnerabilities made up 43% of the CVE and
DoD vulnerability entries reported for 2015 [20]. These vulnerabilities consist of
software attacks directed at hardware, things such as buffer errors, numeric errors,
crypto errors and code injection, information leakage, resource management and
permission, privileges and access vulnerabilities. The breakdown of these attacks

can be seen in Figure 2.6.

Electronic System Vulnerabilities Hardware+ Software Vulnerabilities

Permission,
Privileges,
and Access
(PPAC)

Buffer Errors

—

Numeric Errors

C E
Code Injection

Resource
Management

Information

Data from MITRE/NIST CVE website Leakage

Figure 2.6: Breakdown of reported vulnerabilities in 2015 [20]

As shown in Figure 2.6 a large portion of the hardware directed software
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vulnerabilities are buffer overflow vulnerabilities. Though a buffer overflow attack
can be be very complex, at its core it’s a simple vulnerability. By storing a value that
exceeds the size of a destination buffer it’s possible to inject information in adjacent

memory locations. A simple example can be seen below:

#define BUFSIZE 256

int main(int argc, char **argv) {

char *buf;

buf = (char *)malloc(sizeof (char)*BUFSIZE);
strcpy (buf, argv[1]);

}

In the above example the buffer is allocated a fixed size of heap memory, however
there is no limitation placed on the length of the string in argv[l] [15]. An inserted
string that exceeds the length of the allocated heap size will have the extra values
placed in adjacent memory. Done correctly, malicious code can be encoded in the
string and stored in the adjacent memory. If the opcodes of a targeted architecture
are known, its possible to insert opcodes into the adjacent memory and redirect to
the processor to execute those malicious instructions.

This method of attack has been increasingly prevalent as time progresses. The
CVE database system has 2,492 reported overflow attacks reported in 2018, making up
15% off all vulnerabilities reported that year. One proven method of defeating buffer

overflow, or more broadly, code-injection attacks, is instruction set randomization.

Instruction Set Randomization

The idea of instruction set randomization has been around for nearly two

decades, first being introduced in 2003 concurrently by both Barrantes et al., and
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Kec et al. [2,3,8]. Conceptually, instruction set randomization is the randomization
of the underlying instruction set architecture of a processor. This gives the system
the impression that each program runs its own set of instructions codes that are
incompatible with any other program. For example, one program may utilize 0xAC
as the ADD instruction while another may utilize 0xCD or any other viable opcode
value.

K.C. et al. used the idea of creating an independent execution environment
for every created process. This was used to create individual opcode encryption
environments. If learned instructions from one execution environment were used in a
separate environment the decryption would fail, resulting in an illegal opcode. The

fundamental idea can be seen in Figure 2.7.

EMCODING KEY

L
ENCODED
INSTRUCTION {} PROCESSOR
STREAM
XOR

Figure 2.7: Early implementation of instruction set randomization [8]

This method was implemented using the bochs-x86 Pentium emulator, an open
source emulator of the x86 architecture, and a modified Linux kernel. While the
implementation tested successfully against several types of buffer overflow attacks, it
was not successful against any attack that only modified the contents of the stack or

heap variables that cause changes to program flow or logical operation. Additionally
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this was only validated in an emulator.

Concurrent development by Barrantes et al. demonstrated a very similar concept
with the exception of implementation being achieved using the randomized instruction
set emulator (RISE), based on the open-source Valgrind x86-to-x86 binary translator.
The RISE system is also emulator-based and relies on insertion between a supported
processor architecture and the execution environment.

Both of these original methods of instruction set randomization utilized an
emulation method where the code was encrypted at the binary level and then
decrypted in memory prior to execution. While this works as a proof of concept, it
doesn’t actually randomize or modify the instruction set for any architecture. They
also both relied on simplistic XOR encryption that is easily broken and not viable for

defending against modern attacks.

Hardware Implementations

After the initial concept was demonstrated it was another decade before a
successful implementation in hardware. In 2013, Antonis et al. first proposed a
hardware supported ISR architecture they called ASIST [17]. Implementation was
performed with a modified Leon3 SPARC V8 processor on a Xilinx XUPV5 ML509
FPGA.

The ASIST architecture worked by adding new registers that would supply
encryption keys usable by the kernel to encrypt and decrypt instructions.

Depending on the level of the running process, one of two keys are selected using
a supervisor bit to decode the instructions. Either the user key (usrkey) for user-level
running processes, or the operating system key (oskey). These two keys are used to

decrypt all instructions before reaching the instruction cache using an XOR.
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key s b i
Verkey Supervisor : ” ” ” : 4, Address
register| 7:
>g|E 32/ = Unenerypted % : ; T s
ASI = instruction 04 1 2 Oftset
oskey ‘ | [ e Instruction
register|
EN
A
Offset [ I I I ]

Feich
- [ I I I [} cacheline

Si
Main 3¢
Memory MMU 32, Address Unencrypted instructions

Figure 2.8: ASIST hardware support for run-time instruction decryption. Demon-
strating the 32-bit key selected for either user space (usrkey register) or OS space
(oskey register). Every instruction is decoded before reaching the instruction cache
[17].

Encrypted
instruction

ASIST sidestepped many of the problems prevalent in the original implementa-
tions of instruction set randomization, such as the lack of support for shared libraries
by providing this level of hardware support. This shifted the decryption to the
hardware instead of just keeping the keys in ELF files. However, the hardware support
was still only capable of supporting simple encryption such as XOR and transposition,
both of which are easily broken.

A few years later, the use of instruction set randomization was again revisited as
a method to defend against code-injection attacks as well as code-reuse attacks. Sinha
et al., developed a new randomization system named Polyglot [24]. Polyglot utilized
much stronger encryption in the form of AES. Additionally Polyglot encrypts at the
page level, allowing for use throughout the entire software stack, from boot-loader to
user applications.

While Polyglot is able to prove the effectiveness of instruction set randomization
in both code-injection and code-reuse attacks, it takes a large amount of FPGA
fabric. Similar to the implementation performed with ASIST, Polyglot used the
Leon3 SPARC processor implemented on an FPGA. Polyglot used a Xilinx Virtex5-
based XUPV5-LX110T FPGA. After the processor modifications were made the LUT
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Figure 2.9: High level view of Polyglot [24]

usage increased from 13,986 to 49,724, a 356% increase.

What’s Next

While multiple attempts have been made at utilizing instruction set random-
ization in hardware, they all still attempt to utilize the same methods as the
past. Rather than randomizing the instruction sets in the processor hardware, the
instruction stream is encrypted. At best this can be considered instruction set
masking. Additionally, the process of encrypting adds a large amount of overhead,
both in terms of fabric space and timing.

In the past, its been difficult to find a solution to these problems using existing
processors. However, today it’s possible to address these concerns, while still defend-
ing against code-injection attacks, by implementing instruction set randomization

in hardware. The ability to do this is due to the progress made in FPGA fabric
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design. Current Stratix-10 FPGAs from Intel are capable of operating at 10 TFLOPS
compared to Intels Skylake processors 1-2 TFLOPS [13,14]. With the increase in
speed provided in modern FPGA’s, there exists the option of creating a softprocessor
inherently protected against code-injection attacks at the hardware level.

This thesis outlines the solution as a new system that utilizes three independent
randomized instruction sets in three functionally identical parallel cores. Each core’s
output is monitored in relation to each other core through an attack voter system. If
a core is detected to have a compromised instruction set then the attack voter will flag
the rest of the system and trigger a system halt to prevent execution of maliciously

injected code.
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MONTANA STATE UNIVERSITY CONTRIBUTIONS

Existing Lab Research

The team at Montana State University - Bozeman has done extensive research
into triple modular redundant computing on a range of different FPGA’s using both
the LEONS soft-core processor and Xilinx’s MicroBlaze soft-core processor as part of
an attempt to create reliable aerospace avionics. Prior systems utilize nine MicroBlaze
processors in the fabric of the FPGA, keeping three of them active at any time,
with six held in reserve. A voter system is used to detect if a processor is operating
erroneously. In the case of processor failure, a reserve processor is brought online while
the faulted processor is taken offline for reconfiguration. After reconfiguration the

faulted processor is marked available in the event another processor faults. Allowing

for the constant cycling of processors in the event of continual faulting.

Partial Reconfiguration Repair | | Readback Scrubbing Repair

-

=

5

MULTIPLEXER

MAJORITY
VOTER

Figure 3.1: Prior implementation of triple modular redundancy [7]

While the current triple modular redundant computing demonstrates the ability

to determine which system has faulted it falls short regarding cyber-security research.
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For one, the only triplicated system is the MicroBlaze processor itself, the memory
component is not triplicated and would be susceptible to an attack. Additionally, the
MicroBlaze is a proprietary system, therefore access to the internal workings of the
processor is restricted, preventing modifications to opcodes.

Other previous MSU research examined the use of the LEON3 soft-core processor
as a potential open-source replacement for the MicroBlaze. A previous effort was
able to implement a four core LEON3 system with similar capabilities to the nine-tile
MicroBlaze system [27]. However, it required a much larger amount of FPGA fabric
space to implement only four cores compared to nine.

Unlike the MicroBlaze, the LEON3 is an open source system and is therefore
able to be modified. However, the ability to program the processor relies on the
ability to program a single set of opcodes. If multiple versions of opcodes are desired
then multiple systems with multiple I/O’s are required rather than a single system

with heterogeneous opcodes.

LEON3

3-Port Register File

IEEE 754

Floating-Point
7-Stage oa Unngit oin
Integer Pipeline

Co-Processor

I'n ] In |
Instruction Data Debug
Cache Cache Interface

Debug
F

l- ' |
mq' Interrupt | Memory Management Power Trace
15 Control Unit Down Buffer

] optional Blocks

32 O co-Processors

Figure 3.2: LEON3 Processor [27]
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Through previous efforts it can be seen that real-time reconfiguration of soft-core
processors is practical. It’s also demonstrated that the expansion of such real-time
modifications set the stage nicely for a heterogeneous architecture. My contribution is
additive to this body of work. Utilizing the existing ideas it’s possible to demonstrate
a proof of concept using instruction set randomization in a triplicated processor
architecture. The idea is to take a single core system, and add two more cores with
independent memory and instruction sets. The underlying instruction set architecture
will be maintained, allowing for the same program to be executed simultaneously on
all three cores, all while running independently generated opcodes. This ideal can be

seen throughout my system design and testing process.
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SYSTEM DESIGN

The overall goal of this project is to actualize a computer architecture that is
inherently resilient to code-injection attacks. A proof of concept of this can be realized
using the soft-core processor architecture developed as part of the EELE 367 course
at Montana State University. Before anything else, testing of this processor was done

to verify the bare bones functionality of this framework.

Processor Foundation

The foundation of the soft-core processor developed throughout this thesis
project was created as part of Montana State University’s Logic Design course (EELE
367). This foundation included the following:

e Control Unit with 10 Instructions
— LDA_IMM - LDB_IMM
— LDA_DIR - LDB_DIR
— STA_DIR - STB_DIR
— BRA - BEQ - ADD - SUB
Data Path

— A’ Register

— "B’ Register

Buses 1 and 2
— ALU

128 Bytes of Program Memory

96 Bytes of RAM

16 Input Ports

16 Output Ports



25

It’s worth noting that during initial testing and implementation most of the

existing instructions were removed for the sake of simplicity. After modifications, the

processor only had LDA_IMM, LDA_DIR, STA_DIR, and BRA.

A top level view of the processor foundation can be seen in Figure 4.1.

Demonstrating the number of available GPIO available and the bus widths for the

communication between the CPU and memory components.

computer.vhd

Example: Top Level Block Diagram for the 8-Bit Computer System

port_in_00 —#4

port_in_01 —*

port_in_02 —4

port_in_03 —4

port_in_04 —4

port_in_05 =4

port_in_06 =4

port_in_07 =~

port_in_08 —4

port_in_09 —#~

port_in_10 =4

port_in_11 =4

port_in_12 —

port_in_13 =

port_in_14 —

8

port_in_15 =

clock —
reset ——P

cpu.vhd memory.vhd
address /8 address
write write
to_memory ,'8 data_in
from_memory /8 data_out
clock
reset
port_in_00 port_out_00 <)
port_in_01 port_out_01 WL
port_in_02 port_out_02 LA
port_in_03 port_out 03 LA
port_in_04 port_out_04 LN
port_in_05 port_out_05 /8 >
port_in_06 port_out_06 /8 »
port_in_07 port_out_07 LN
port_in_08 port_out_08 A
port_in_09 port_out_09 /8 >
port_in_10 port_out_10 A
port_in_11 port_out_11 LI
port_in_12 port_out_12 LI
port_in_13 port_out_13 /8 >
port_in_14 port_out_14 LN
port_in_15 port_out_15—12° )
—)| clock
—( reset

The following is the top level block diagram for our 8-bit computer system example.

port_out_00
port_out_01
port_out_02
port_out_03
port_out_04
port_out_05
port_out_06
port_out_07
port_out_08
port_out_09
port_out_10
port_out_11
port_out_12
port_out_13
port_out_14
port_out_15

Figure 4.1: Top level view of the processor developed as part of Montana
University’s EELE 367 course [11]

State
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The memory component consisted of the program memory space, R/W memory,
and I/O ports. Each section of memory is defined as its own component.
Implementation of each memory component is performed through port maps in the
memory component. When accessing a desired memory location, the address is used
to enable the desired location. Program memory consists of the address range 0-127,
R/W memory is 128-223, and the 1/0 address space is 224-255. A block diagram of

the memory component can be seen in Figure 4.2.

Example: Memory System Block Diagram for the 8-Bit Computer System
The following is the block diagram for the memory system of our 8-bit computer system

example. memory.vhd
rom_128x8_sync.vhd
address ,’8; address data_out
— clock
rw_96x8_sync.vhd
8 address data_out
data_in —4=p data_in
write ) write
—f clock
(16x, 8-bit
16 Output Ports output ports)
16x8
address port_out_xx 4 port_out_xx
“data_in”
write
—P: clock
(16x, 8-bit ‘;;Cet
input ports) —O (processes)
16x8
port_in_xx ~A—p—
1 I 16 Input Ports
data_out 4711—
clock —)
reset ——j

Figure 4.2: Memory block diagram [11]

The CPU component displayed in the top level view consists of three sub-
components and a variety of signals. The control unit is the component that holds

the state machine driving the instruction set. Any additions to the instructions set or



modifications regarding any aspect of system control are reflected in this component.
Interfaced with the control unit is the data path. As the name implies, the data
path is utilized to handle data. This is where core CPU registers are located such
as the program counter, instruction register, memory address register and the two
data registers A and B. The signals connecting the control unit to the data path
are used to manipulate these registers. Housed inside of the data path is the ALU
component. The ALU is responsible for the arithmetic and logic operations requested
by the control unit. Depending on the results of the ALU, the CCR register will be

updated which is used in branching statements. The full block diagram can be seen

in Figure 4.3.
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address
8

Example: CPU Block Diagram for the 8-Bit Computer System
The following is the block diagram for the CPU of our 8-bit computer system example.
cpu.vhd control_unit.vhd data_path.vhd
(FSM) BUS2 BUST
PN PN
8
8
IR_Load - IR 74
IR
8
MAR_Load » MAR o
8
PC_Load > PC
PC_Inc >
8 00 g
01 —,L>
A _Load > A 0
8 A
8
B_Load s B
8 8
Y aluvhd__Y
NV
ALU_Sel "™\ ALU
ALU
NZV
4 8
4
CCR_Result |«
CCR_Load :l CCR
194 ; L
Bus2_Sel ;i 2
Bus1_Sel
clock clock
reset reset
clock —m write
reset —m|
A s 3 ¢
write from_memory to_memory

Figure 4.3: CPU block diagram [11]




28

This foundation was tested using a simple load and store program manually
coded into the program memory. The processor would load A with xAA, store that
value to xEQ (the first output register), then load the A register with xBB and again
store to xEQ. After the final store of xBB to xEO the program branches back to the

start of program memory and repeats.

Triplication

After verifying functionality of the processor foundation, the first step was to
triplicate the existing architecture. Each core needed to be instantiated entirely
independent from the others. Therefore everything seen in Figure 4.1 needed to
be triplicated as well as the components internal to both the cpu and memory
components.

e CPU Components
— Control Unit
— Data Path
— ALU
e Memory Components
— ROM (Program Memory)
— RW Memory

Once each core had been created, a wrapper needed to be generated. One capable
of handling the I/O for each core. At this stage every core shares the same input and
output lines as seen in Figure 4.4.

Since every core is instantiated separate from the others, they have no shared
memory. This requires each core to be programmed independently. During this stage
of the design each processor is hard coded with the same set of opcodes, creating a

homogeneous environment.
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CyberCore

CLK >
Reset ~| Core_1

Input (16x8) .

> Core_2

Core_3

Output (16x8)

Figure 4.4: Processor triplication with shared inputs and outputs

Illegal Opcode Fault

With the basic triplication completed and tested, the next stage of the design
was to implement an illegal opcode fault and voting system that will determine which
processor faulted. The exception flag was created by adding a signal to the control
unit of each core. This signal is either asserted or de-asserted in each state to signify
if the core has received an illegal opcode.

To trigger the assertion of the exception flag a new state was created and
added to the control unit after the decoding state. Once the control unit loads
the instruction register with the waiting instruction the processor attempts to decode
the instruction. If it matches any known opcode than the next state corresponding

to the known opcode is selected and the processor continues. However, in the event
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that the decoding state cannot interpret the value loaded into the instruction register,
the processor proceeds into the illegal opcode fault and asserts the exception signal.
Once the signal is asserted it’s passed through the CPU and processor core, out to

the CyberCore wrapper.

CyberCore
CLK l[
Reset : Core_l
Input (16x8)

Output (16x8)
Exception 7

,t— 7 Core 2 <
Output (16x8) 19r
Exception =
Output (16x8)

Core_3 >
E ti
xception Output (16x8)

Figure 4.5: Processor triplication with exception and output voter system

During every clock cycle the CyberCore wrapper passes the newly received
exception flag to the voting system. If any core has an asserted exception flag then
an error code is passed back to the CyberCore wrapper, if no assertion is detected

then values are passed through the voter with no interference.

Opcode Packages and Assembler

With the addition of the voting component, the system was ready for each

core to instantiate different opcodes. The processor foundation utilized hard coded
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opcodes in the ROM and control unit components. In order to lay the foundation
for randomization this was converted to individual packages. Each core included a
separate instruction code package that would replace the hard coded values. These
packages are referenced in both the program memory, a component generated through
the assembler, as well as the control unit of each processor. The use of instruction code
packages allowed for an easier implementation of randomized opcodes in the control
unit and prevented the need to generate a new control unit for every implementation.
An example of the final instruction set package can be seen in Appendix Figure A.
The example is complete with 27 instructions. Figure Figure 4.6 demonstrates a high

level view of the developed system.

CyberCore

ok *. | Core_1

Input (16x8)

Instruction Output (16x8)
Set One o

Exception

Core_2

Yy

Output (16x8)

1910/

Exception

Instruction
Set Two
Output (16x8)

Core_3 |

Exception

Output (16x8)

Instruction
Set Three

Figure 4.6: Processor triplication with independent opcodes
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To generate the individual packages used for the different cores, as well as to
program the controller, an assembler was built using Python. The assembler works
through several steps, first it reads an asm file that is created by the user. A simple

program may look like the following:

LDA_IMM -- Load A (Immediate Addressing)
x"AA"  -- Operand (Value)

STA_DIR -- Store A (Direct Addressing)
x"EO"  -- Operand (Memory Location)
LDA_IMM -- Load A (Immediate Addressing)
x"BB"  -- Operand (Value)

STA_DIR -- Store A (Direct Addressing)

x"EO"  -- Operand (Memory Location)
BRA -- Branch Always
x"00 —-— Operand (Memory Location)

It should be noted that the comments are added for readability for this paper
and are not currently supported in the developed assembler. What the assembler
looks for are the mnemonic representations of the opcodes and the operands. These
values are read from the created asm file and parsed into a Python list structure.
Once the program list is created the createProgramMemory() function is run three
times, once for each core. This ensures that the same program is written for each
processor core using the instruction mnemonic instead of hard coded opcode values.

In addition to generating the program memory, the assembler also generates the
opcode packages mentioned previously. This stage is done using the createlnstruc-
tionFile() function. By utilizing the python package "random” it’s possible to create

pseudo-random values for the opcode definitions.
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To ensure that there is no overlap between the opcodes, ie. no two opcodes have
the same value, the values are created using the random.sample(range(16,225)27)
function call. This creates a list of 27 random values between 16 and 225. After
creating the values it’s necessary to translate them into a hex value that can be used
to easily generate a vhdl package. The built-in python package "hex” allows for easy
conversion between the randomly generated decimal value, and a hex value. From
there, list manipulation is leveraged to put the opcode values into the desired format.

The full assembler program can be seen in Appendix Figure B.

Preliminary Testing

At this stage it was prudent to test the developed architecture to verify initial
functionality with the limited instruction set currently implemented. Before testing
the system under attack it was necessary to ensure normal system functionality. To
do this, a program was written that would load alternating values into A and store
them into a desired memory location. The initial testing can be seen in Figure 4.7.
Demonstrated is the ability for the three functionally identical processor cores to
function using independent sets of instruction codes.

After verifying the ability to run while not under attack, an attack was manually
inserted into the system to verify attack response. Testing can be seen in Figure 4.8.
As soon as the manually injected code attempts to execute, the system halts two of

the cores and prevents the output from being modified.
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Initial testing of system. This figure demonstrates operation in the

absence of attack.

Figure 4.7:
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Figure 4.8: Initial testing of system. This figure demonstrates operation while under

attack.
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Processor Expansion

After testing the preliminary proof of concept it was necessary to prove that the
system would work in a more robust system with an injected attack. Consideration
was given to multiple different processors including the Xilinx Picoblaze, the Leon3
and the OpenRisc 1200.

First examined was the Leon3 processor from Cobham Gaisler. The Leon3
processor was designed by the European Space agency and has full Linux functionality.
However, while the processor’s opcodes can be seen in its packaged sparc.vhd file it
became an issue of fabric space. For most purposes the Leon3 allows for multi-core
functionality to be generated using its built in tools. Using this method, it’s only
possible to create a triple core processor with a single set of instructions, rather than
a triple core processor with triplicated instruction sets. To triplicate the processor,
with entirely independent memory and periphals, would exceed the fabric space limit
on the desired development board.

Having ruled out the use of the Leon3 processor due to space limitations, it was
decided to examine the Picoblaze softprocessor developed by Xilinx. The Picoblaze is
a simple 8 bit microcontroller designed to take up very little space in fabric, as little

as 26 slices depending on device family.

1Kx18

Instruction

PROM

64-Byte | |—‘--POFI'T7ID
Scratchpad RAM
OUT_PORT

Flags
Zero
Carry

Stack

Program Counter
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INTERRUPT )

16 Byte-Wide Registers Operand 1
[ie ] Enatie s | si [ [ perand 1 | aLy
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’_‘ sC sD | sE sF

Operand 2

Figure 4.9: Picoblaze block diagram [2§]
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While the Picoblaze would easily fit into the FPGA fabric, it became apparent
that there was no suitable way to modify the instruction decoder. Without being
able to modify the instruction decoder it wasn’t possible to implement three different
sets of instructions that are required for the project. Every implementation of the

Picoblaze would be forced to interpret every instruction set the same.

ORI1200 CPU
Instr. Instr.
MMU Cache
Timer

.

Power a

Mgmt. §

a

Debug I/F || 3

Memory §+

Writeback Interrupts S
Data Data
MMU Cache

I:I Optional/Cenfigurable . Minimal configuration

Figure 4.10: Block diagram of OpenRISC 1200 processor [5]

The last open source processor examined was ruled out early on in evaluation.
OpenRisc 1200 is written in Verilog. My ability to use Verilog is much less than my
ability to use VHDL. While the processor itself may fit well for the rest of the project,
the difficulty associated with integrating a new language into the project precluded
selection of this processor. However, it can be seen in Figure 4.10 that the layout of
the processor is very similar to that of the Leon3 processor. Noticeably different is
the use of the Wishbone I/F rather than the AMBA AHB interfaces.

After ruling out the existing available architectures, it was decided to flesh
out the existing implementation to demonstrate product viability. Examining the
block diagram of the Picoblaze, seen in Figure 4.9, shows that the foundation 367

processor is missing only a couple components to be considered as a viable processor.
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Predominantly the following.
o Stack
e PUSH/PULL
e Expanded instruction set
e Interrupts
By adding these components to the foundation processor it would be possible to

demonstrate viability.

Stack

Implementing a stack into the system is relatively straightforward. The concept
of a stack is a memory structure that is considered to be first in last out (FILO).
Meaning that whatever is added the the stack first is going to be the last thing that
can be removed.

First, a new VHDL component was created mimicking the current R/W memory
structure. The two memory structures are very similar, the stack will also need to
have the capability to both read from and write to. To account for this additional
memory structure within the available memory space, 256 bytes total, the two other
memory components were shrunk. Program memory was decreased from 128 bytes to
96 bytes, R/W memory was reduced from 96 bytes to 72, leaving 56 bytes of address
space available for the stack.

Now that the memory structure of the stack was built, the next step was to build
the stack pointer register in the data path component. To enable communication
and control between the control unit and the data path, three signals were created.
SP_Enable, SP_Inc, and SP_Dec. SP_Enable allows for interaction with the stack and
the stack pointer. SP_Inc and SP_Dec are used to increment and decrement the stack

pointer. The full stack pointer control system implemented in the data path can be
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seen in the following code.

STACK_POINTER : process (clock, reset)
begin
if (reset = '1') then
SP_uns <= x"C8";
elsif(clock'event and clock = '1') then

if (SP_Enable

'1') then
if(SP_Inc = '1') then
SP_uns <= SP_uns +1;
elsif (SP_Dec = '1') then
SP_uns <= SP_uns -1;
end if;
end if;
end if;
end process;

SP <= std_logic_vector(SP_uns);

On the rising edge of every clock cycle the control system checks to verify if
the stack pointer is enabled. If it is then it checks to see if the value needs to be
incremented or decremented and performs the corresponding adjustment. For ease
of implementation, the stack pointer value is created as an unsigned type and then

assigned to SP.

Push/Pull
To test the stack implementation six new instructions were added to processor.
The first three are designed to push values from core registers to the stack memory

while the last three will recover data from the stack and place into the core registers.
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PUSH_A

PUSH_B

PUSH_PC

PULL_A

e PULL B
e PULL_PC
These instructions were selected both for the ability to test the stack, and the fact

the fact the functionality was required for interrupts.

Push

The first instruction implemented was PUSH_A which simply pushes the value
of the A register to the stack. Implementation of a push instruction required two

additional states. In this case S.PSH_A 4 and S.PSH_A_5. The two states can be

seen in Figure 4.11.

Example: State Diagram PSH_A

The following is the state diagram for PSH_A. This instruction will move information from
register A into stack memory.

T FETCH 6, )

»  Busisel=rC

. Bus2_Sel=Bus1
“.. MAR_Load .~

5 FETCH 17
PC_Inc

The same fetch/decode states are
l >’ executed on every instruction

8 FETCH 2™,

{ Bus2_Sel=from_memory }
; IR_Load :

8 DECODE_ 4.

T
If (IR=PSH_A) to other instructions. ...

S_PSH_A 4
Bus2 = from_mem
MAR_Load
SP_Enable

First the stack pointer is loaded into the MAR to
prepare for data storage

Once the SP is latched into the MAR, the value in
register A is pushed into the stack by asserting Write
This state is also responsible for increment the stack
pointer in preparation for the next value

S PSH A 5
Busi=A
Wit
SP_Enable
SP_inc

Figure 4.11: PSH_A State Diagram
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The first added state is used to load the value of the stack pointer into the
memory address register (MAR). To do so the MAR _Load signal is asserted, and
SP_Enable is asserted. With the stack pointer address loaded into the memory
address, a store is ready to occur. Busl_Sel is loaded with 01 to indicate that we
are storing the value in register A, and the write bit is asserted. Now that the value
is stored into the stack the final thing to do is to increment the stack pointer to
prepare for the next write. Asserting both SP_Inc and SP_Enable at the same time

fulfills this requirement.

i Valve . plons, 220ms R30S, 2400 2500ns, PSORS, |
Wcurrent state  [SBRA4 | n | 5_PSH A _4 S_PSH A 5 5_FETCH_[1 )
B pC7:01 04 03
" A[7:0] 11 / AN ] 1|
& B[7:0] 00 \ / 00
% MAR[T:0] 03 iz __— 1 N\ /<2 i
% SP(7:0] 9 el B AN / b I s 1
% [200](7:0] 11 u \%I ]

During the S_PSH_A_4 state S_PSH_A_5 pushes the value held in
the MAR is loaded with the A to the memory location pointed to
value in the SP. by the MAR, then increments the SP

Figure 4.12: Push_A simulation

Verification of the push instruction was conducted using Vivado’s built in
simulation tool. Results can be seen in Figure 4.12. It can be seen that the value
in A, x11, is stored into memory location 200 (xC8 as seen in the SP) at the end
of the S PSH_A 5 state. At this same time the stack pointer is incremented from
xC8 to xC9 in preparation for the next interaction. This demonstrates that the stack
memory is functional as well as the ability to push the contents of A to the stack.

After verifying that the functionality is there for A, functionality needed to be

added to push both register B, and the contents of the program counter (PC) to the
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stack. Doing so is very similar to pushing A to the stack with one small change. To

push B, Busl_Sel needs to be loaded with 10 and to push the program counter to the

stack, Busl_Sel needs to be loaded with 00.

Name Value . |2|1|D| ns |2|2|D| ns 2|3|D| ns |2|4|D| ns |2|5|D| ns |260 ns |
'Lﬂ| current_state | S _DECODE. 5 _PSH B 4 5 _PSH B 5 K §_FETCH 0
I pC[7:0] 03 / 03
% A[7:0] 00 \ 00
% B[7:0] 11 \ | 1a]
% MAR[7:0] 02 0z _— | AN <8 |
# SP[7:0] ca ce 1\ o9 |
1 [200]7:0] 11 Uy 11 |
During the S_PSH_B_4 state S_PSH_B_5 pushes the value held in B
the MAR is loaded with the to the memory location pointed to by
value in the SP. the MAR, then increments the SP
Figure 4.13: Push_B Simulation
Name Value L |2.1.D. ns |2.2.D. ns |2.3.D. ns ‘2.4.0. ns |2.5.D. ns |2.EfD. ns |
lﬂ‘current_state |S_DECODE_ E>( 5 _PSH PC_4 N §_PSH PC 5 K §_FETCH 0
¥l pPC[7:0] 03 \ 0= ]
B A[7:0] 00 \ 0o
% B[7:0] 11 N\ 11
I MAR[7:0] 02 02 ,/y] \‘ \ o8 [i
B4 SP(7:0] ca _— | s | \ |\ j| 9 |
W(0007:0] 03 o \|_I m ]
During the S_PSH_PC_4 state S_PSH_PC_5 pushes the value held in
the MAR is loaded with the PC to the memory location pointed to
value in the SP. by the MAR, then increments the SP

Figure 4.14: Push_PC Simulation

Verification of these instructions was done in the same fashion as PSH_A, and
can be seen in Figure 4.13 and Figure 4.14. In the B simulation it can be clearly seen

that the value held in the B register, x11, is loaded into memory location 200 pointed
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to by the stack pointer. The same can be seen in the PC simulation where x03 is

pushed into the stack.

Pull

With the ability to push to the stack implemented, I moved onto adding the
functionality to pull from the stack. Similar to the pushing functionality, multiple
states needed to be added to the control unit to implement this functionality.
However, unlike pushing where only two additional states per register were required,
pulling required four additional states per register. Seen in Figure 4.15 are the four
added states to add PLL_A; S PLL_A 4, S PLL_.A5, S_PLL_A6, and S_.PLL_A_7.
First, the stack pointer is decremented to point to the first location in the stack that
holds a value. This is done by asserting both the SP_Enable and SP_Dec signals. The
next state loads the memory address register with the new stack pointer value. This is
done using the same combination of signals as when pushing a value to the stack. Our
third state ”chews up a clock cycle” to ensure that all values are appropriately latched
and the final state loads the value into register A. The final state is accomplished by
asserting the load signal for the desired destination register and loading Bus2_Sel with
10 to indicate that the value is coming from the memory. In this case the desired
destination register is A so A_Load is asserted. The full state configuration for these

four states is as follows:
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Example: State Diagram PLL_A
The following is the state diagram for PLL_A. This instruction will move information from
stack memory into register A.

................

Busl Ssl=FC %
BusZ_Sel = Busl /
MAR_Load .~

.....

FETCH_1 ",

- %
PC_Inc t

~8_FETCH_2 ™,

IR_Load

.+~ DECODE 3™,

y

The same fetch/decode states are
executed on every instruction.

Y If{(IR=PLL_A) to other instructions....

5 PLL_A 4
5P_Enable
SP_Dec

S PLL_A 5
Bus2_Sel=from_memany
MAR_Load
SP_Enable

5 PLL AT
Bus2_Sel=from_memory
A_Load

Before pulling a value off of the stack, the stack pointer
needs to be decremented to point to the first available
value.

This state loads the MAR with the stack pointer and
prepares to load the contents onto the bus.

It will take 1 clock cycle for the memory to provide the
contents at the address on MAR. This state simply

gives the memory system time to respond.

Mow that the value is available on the bus, this state
loads the value into A

Figure 4.15: PLL_A State Diagram
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Verification of the instruction functionality was performed via simulation.
PLL_A simulation can be seen in Figure 4.16. The functionality described above
can be seen in the provided figure. At the end of the first pull state the stack pointer

is decremented from xC9 to xC8.

S Velde L ps 40ns, @803 90ns 00ns SM0ne, {20 ©30ns (S ns (507 j60s
Weurrent state  SLDAIM! s prcong 3 5 PLL A 4 [ semras | serzs I sewan §_FETCH 0
B PC[T0] 04 / \ 06
1 A[T0] 11 / \ 15 ' 1 |
¥ B[7.0] 00 / \ 0 |
¥ MAR[T0] 04 , / 05 \ [ o [ ]
¥ SP[7:0] @ / [ ] \ 1 = [
B [200)7:0] 11  —— |
During the S_PLL_A_4 state the SP is S_PLL_A_5 loads the MAR with the .
= o e fl ) - == . S_PLL_A_7 completes the operation
decremented to point to the first newly decremented SP value in . .
. ! . . by loading the value into A.
location holding a value. preparation of pulling.

Figure 4.16: Pull_A Simulation

After the second state the memory address register is loaded with the newly
decremented stack pointer. Nothing is modified during the third pull state and finally
during the fourth pull state it can be seen that the value stored in xC8 is loaded into
the A register as desired.

Once the instruction was implemented for pulling from the stack to the A
register, it was necessary to implement the same instruction format for both B and the
program counter. Four additional states were required each to allow for instruction
implementation. The only differences between these states and the states described
above for pulling to the A register is what load signal is asserted. To pull to the B
register, B_Load is asserted and to load to the program counter PC_Load is asserted.
Simulation of these two instructions can be seen verified in Figure 4.17 and Figure

4.18 respectively.
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. Vel | pe0ps  @0ns  @80ns  @90ns  S00ns  S10ns  S20ns  30ns  Sdlns  SSns  ELns
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During the S_PLL_B_4 state the SP is S_PLL_B_5 loads the MAR with the S PLL B 7 completes the operation
decremented to point to the first newly decremented SP value in - b_ I;adin t':\e value int':) B
location holding a value. preparation of pulling. Y e .
Figure 4.17: Pull_B Simulation

i Vel | pedns, 0ns, 80ne 490 s 00ns  [Wns, @20ms  [30as 840ns  [SS0ns G6)rs |
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A7) 00 / \ 00 ]
HR[7.0] 7 / \ 15 |
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During the S_PLL_PC_4 state the SP is S_PLL_PC_5 loads the MAR with the S PLL PC 7 completes the operation
decremented to point to the first newly decremented SP value in = b_ Ioa_din thpe value intopPC
location holding a value. preparation of pulling. t 8 .

Figure 4.18: Pull PC Simulation

Interrupts and Faults

Having added a stack and the ability to push and pull to and from said stack,
the next step was to create an interrupt system. Before anything else, an interrupt
system requires a method to tell the control unit that an interrupt is being requested.
In this case an interrupt register was created. The created interrupt register is 4 bits
wide to allow for the addition of future interrupt vectors. With this in mind, only
a single interrupt vector is created with full functionality while a second is included
in the data path to test proof of concept. Additionally a fault detection system

was implemented to account for any internal faults and fault handling that may be
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required for future implementations.

With the interrupt signal being created a system to handle it needed to be
instantiated. To do so, a total of 18 states were created to handle the start of interrupt
and return from interrupt procedures. During every S_Fetch_0 state, a check is made
to see if either the interrupt flag or the fault flags are asserted. In the event the
interrupt signal is asserted, the processor is prevented from going to S_Fetch_1 instead
routing to S_STI 4 which is the first state in the ”Start of Interrupt” procedure chain.
States S_STI 4 through S_STI9 are used to save the processor state to the stack.
Processor state is preserved by pushing the PC, register B and register A to the
stack, in that order. After preserving the processor state, the state machine in the
control unit transitions to S_.LD_INT_VEC_4. This state is used to decode the desired

interrupt.
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Example: State Diagram STI

The following is the state diagram for STI. STl is a state chain entered when an interrupt is

detected and is used to preserve the processor state before executing an interrupt.

'S _FETCH_0 ™.

% Bus1_Sel=PC

P Bus2_Sel=Busl |
e _MAR Load

-

If (Interrupt = 0000}

s.aTI 4

Bus2 = from_mem
. . MAR_Load
e 5P Ename
PC_Inc i -
.I,." ....... Pusn PC
- S_STI 5
i Bus1 =PC
; Write
. S_FETCH_2 ™. 5P_Enable i
{ Bus2_Sel=from_memory } Tl SPINE
S, IR_Load ¢
............ rogaaaearnt "-.-‘_ S_ST| 6 .
_____ l Bus2 = from_mem
= MAR_Load
S DECODE 3 . -. SP Enable f
L — Push B
T S_STI ?
l § Bus1 =
Wnle
. . ", SP_Enable A
To regular instructions - P
| 8 8T8 T,
- {  Bus2 =from_mem
MAR_Load
. 5P_ Ename
Push A
LD INT VEC 4
Bus2 = Vector
PC_Load
Decode
Interrupt
~TD_ INT VEC 5 Vector
Interrupt_clr

Figure 4.19: STT State Diagram
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Interrupt decoding was achieved by adding a fourth option to the Bus2_Sel
multiplexer system. If Bus2_Sel is loaded with 11 it informs the data path that
an interrupt is being triggered and to decode the desired vector memory location.

The vector decoding process can be seen in the following code:

INTERRUPT_VECTORO : process (interrupt)
begin
case (interrupt) is
when "0001" => Interrupt_Vector <= x"78";
when "0010" => Interrupt_Vector <= x"52";
when others => Interrupt_Vector <= x"00";
end case;

end process;

The interrupt value is an input that traces all the way to the top level module
while the Interrupt_Vector is a signal internal to the data path. As soon as an
external interrupt is triggered, the data path will decode the interrupt and load the
Interrupt_Vector signal with the memory location of where the interrupt subroutine
resides. However, it isn’t until the control unit signals that it’s ready to load this
value into the program counter that the value is passed along. This can be seen in
the Bus2 multiplexer located in the data path component seen in the following code

segment.
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MUX_BUS2 : process (Bus2_Sel, ALU_Result, Busl, from_memory)
begin
case (Bus2_Sel) is
when "00" => Bus2 <= ALU_Result;
when "O01" => Bus2 <= Busl;
when "10" => Bus2 <= from_memory;
when "11" =>
if(illegal_op = '1') then
Bus2 <= Fault_Vector;
else
Bus2 <= Interrupt_Vector;
end if;
when others => Bus2 <= x"00";
end case;

end process;

Once the memory location is loaded into the program counter, the interrupt
subroutine is ready to be executed. It should be noted that currently the only way
to handle a fault is through the use of the internal illegal op flag. The rest of the
fault handling system was temporarily disabled to prove that the processors will halt
when an illegal opcode is detected. By uncommenting a few sections of the control
unit state machine it’s possible to enable fault handling that will recover from an
illegal op code. However, this will only work with a single core as a synchronization
method needs to be implemented to stall the other two cores until the fault handling
is complete.

The next state, S_.LD_ INT_VEC_5, is the last state in the chain that initiates

an interrupt. This state is utilized to clear the interrupt flag. An intterupt_clr signal
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is asserted that is sent to the component that triggered the interrupt to begin with.
Upon receiving this signal the interrupt vector is reset to 0000 to indicate that the
interrupt has been acknowledged. Acknowledging the interrupt is the last step needed
to prevent the control unit from infinitely triggering interrupts.

In another version of this processor a secondary flag called ”internal_interrupt”
is asserted that allows for the control unit to internally acknowledge the interrupt
without externally clearing the flag. To clear the interrupt flag in this version of the
processor, a CLI instruction was required. This method prevented the ability to stack
interrupts and was thus removed in the final iteration of the processor.

Returning from the interrupt is achieved through an RTT instruction. When RTT
is loaded into the instruction register it begins a 12 state chain. This chain restores
the previous processor state from the stack. Since the processor state is stored in the

order of PC, B, A, the processor state is restored in the order A, B, PC.
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Example: State Diagram RTI

The following is the state diagram for RTI. This instruction restores the processor to a pre-
interrupt state. Registers A and B are recovered from the stack followed by the program

counter. SR
~S_FETCH_0 ™~
) Bus1_Sel = PC ;
Bus2_Sel = Bus1 |
MAR_Load .-

......... 5

~"'8_FETCH_1 ™
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The same fetch/decode states are
executed on every instruction.

H [ . .
,————ytootherinstructions. ...
. TS50

S_RTI_12
SP_Enable
SP_Dec

S RTL8
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SP_Dec

S_RTL13

S RTIS

S RTIL7
Bus2_Sel=from_memory
A_Load
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SP_Enable

S RTL9
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MAR_Load
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S RTL 15
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Figure 4.20:

RTT State Diagram
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Testing the use of the STI and RTI state chains was performed through
simulation. An internal counter was built 6 bits wide, allowing for a maximum value of
63. When the counter register is full, the interrupt flag is triggered. After assertion of
the interrupt flag it’s necessary to wait for the current instruction to finish executing
before checking for the interrupt in S_Fetch 0. This prevents any operation from
being halted before completion. After arriving at S_Fetch_0 the interrupt is detected

and the state machine is routed to the STI state chain.

Name Value ) 1,380 ns ‘I,QDDnS ‘I,QZDnE ‘1,44Dn5 ‘I,QEDns ‘1,48Dns P,snum ‘I,EZEIns ‘1,54Dn5 ‘I,EEDna P,sau
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The final two states of the STI chain
interpret the interrupt vector, load
the PC with the correct location,
and clear the interrupt flag.

The first two states of the || The second two states of || The third two states of the
STl chain push the program | the STI chain push the B STl chain push the A
counter to the stack register to the stack. register to the stack.

J

Figure 4.21: STI state chain simulation.

As shown, when the STI chain is initiated, the processor state is preserved by
pushing the program counter, register B, and register A to the stack, in that order. If
nothing else is held on the stack, the final stack pointer value should hold xCB as the
next available location. Once the processor state is preserved, the interrupt vector
is decoded and the program counter is loaded with the vector location. In this case
the vector is located in memory location x42 as seen after executing the last state in

orange.
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After execution of the interrupt subroutine, the processor needs to return to the
previous program counter location to continue executing. Testing of the RTT system

can be seen in Figure 4.22.

Narme Value ) [LO60ns 11,980 ns 2000 ns  p020us  2040ws  E060ms 2080 ms 2 A0ws  2120ws 2 M0ws @160 ns 180 ms 22

15 current_state SLDAIMM A s rr1 4 $ RTI § § RII & $ RTI 7 5 RTI § 5 RTI § SRIII0 A SRTT 11 [sRTI 12 4 SRTT 13 ) S RTI 14 A 5 BTI 15 |\ 5 FETO

HRC[70] 3 J / 47 J N o ]
B ATT] 1 £0 / ) T
HB[T0) 00 / [ o //'
HMAR[7:0) 3 1 ] e T I o
HSpIT0) I h ca | ) o/ o
W07 02 %'L 02 /
¥ [201](70] 00 / o /
W R0[70) 1t / 1 /

The first four states of the The second four states of The third four states of the

RTI chain pull the A the RTI chain pull the B RTI chain pull the PC off of
register off of the stack. register off of the stack. the stack.

Figure 4.22: RTT state chain simulation.

Displayed is the recovery of the saved processor state from the stack. First, the
value in register A is recovered, then the value from register B and finally the program
counter is restored. As each value is recovered from the stack, the stack pointer is
decremented to indicate the newly available top location of the stack. When the
entire process is finished the stack pointer is returned to the initial starting value of
xC8. After the state chain is fully completed, the process is restarted at S_Fetch_0 to
begin loading in the original program starting from where the program counter left

off at interrupt.

UART

With the completion of an interrupt capable system, a method of triggering the
interrupt needed to be added. While something such as a timing interrupt may have
been easier to implement, it was decided to implement a UART interrupt to allow for

code to be injected over serial.
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UART communication was added by creating two separate components. One
for receiving and one for transmitting. Both components have been instantiated
and tested through simulation, however, only one side of the communication system
is actually used in the final product. Since the project scope is to demonstrate the
response to a code injection attack, the receive system is the side of the communication
that is fully actualized and utilized in the final product. It should be noted that the
transmit component is still instantiated in the final product and would only need a
correct port map to be fully usable.

Serial communication settings can be seen in Figure 4.23. The standard baudrate
is set to 115200 but can be modified through the use of generics in the UART
component. A combination of the value assigned to the generics and the speed of

the clock will determine the baudrate that is required.

Configure the seral line

Speed (baud) 115200

Data bits 8

Stop bits 1

Parity MNone e
Flow control XON/¥OFF w

Figure 4.23: Serial communications settings for processor

Baudrate can be calculated using the following equation.

Clks_per_bit = ClockFrequency/Baudrate

for example, using a 10 MHz clock and a desired baudrate of 115200 we see:

Clks_per bit = 10M Hz /115200 = 87
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Therefore, in the test cases done, the UART component was instantiated at 10
MHz, the baudrate as seen in Figure 4.23 is set to 115200 and the instantiation of

the component sets the generic value to 87 as shown in the following code snippet.

uart_receive : uart_rx

generic map (
clks_per_bit => 87
)

port map (
clk => uart_clk,
rx_serial => Rx,
rx_dv => rx_dv_sig,
rx_byte => rx_byte_val

);

Simulation of the UART system demonstrated a usable peripheral by implement-
ing a loop-back communication system. The system receives a simulated transmission
of a value which is then immediately transmitted back out, if the same value is
transmitted that was received then the test was considered to be a success. However,

final testing was done by adding a circular serial buffer.

Serial Buffer

The serial buffer allows for 8 bytes of data to be stored before the pointer is
reassigned to the beginning of the buffer. This is achieved by using a case statement
that handles a buffer memory pointer as well as signaling when the buffer is full. A
buff ready signal is used to inform the top level component that the buffer is ready,

which in turn triggers an interrupt.
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The buffer process is sensitive to the falling edge of the UART receive dv signal.
Rx_dv_sig is a signal component of the UART receive component that is asserted when
data is being received and de-asserted after the stop bit. As soon as the flag is cleared
the received byte is stored into the buffer and the buffer address is incremented. An

empty buffer can be seen in Figure 4.24.

Name Value 0, 200 400 800 (800 1,000 1,200 1,400
& port_out_temp01[7:0] 00 . o0
1 address_out[2:0] 0 0
interrupt_1[3:0] 0 . 0
& buff1[7:0] 00 o0
" buff2[7:0] 00 : oo
& buff3[7:0] 00 fili]
B buffa[7:0] 00 : 0o
& buff5[7:0] 00 00
#lbuffo(7:0] ' ﬁ oo
1 buff7[7:0] 00 o0
5 buffs[7:0] 00 i}
Winterrupt_dlr_1 0
18 buff_ready 0
14 exception_flag_1 0

Figure 4.24: Empty serial buffer

As the values are sent across to the processor, the buffer begins to fill up as seen
in Figure 4.25. In this figure it can be seen that the value held in buffl has changed
to x30. Additionally the address_out value has been incremented to 1, indicating that
the first buffer address has been filled.

This process will repeat until the buffer is full. As soon as the buffer is full a
signal is asserted to indicate that the buffer is ready to be read from. Implementation
of the full buffer can be seen in Figure 4.26. Once the value in buff7 has been stored
the buff ready flag is asserted. In turn, on the rising edge of buff ready, the interrupt
is triggered.

Final single-core testing utilized the entire buffer as a method of code injection.
To inject the code, the interrupt vector was assigned the value of x78 which is

configured as the bottom 8 bytes of GPIO input. Addresses x78-x7F are now
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connected to the serial buffer in parallel, allowing for 8 bytes of code to be injected

into the processor. Injected code can be seen in Figure 4.26

Name Value 0

) [200 400 500 800 1,000 |1, 200, 1,400

> B port_out_temp01[7:0] 00 00
> B address_out[2:0] 1 1
> B interrupt_1[3:0] 0 4 0
> B buff1[7:0] 30 30
> B buff2[7:0] 00 i 00
> B buff3[7:0] 00 4 00
> B puffa[7:0] 00 K 00
> W buffs[7:0] 00 A 00
> woutterol | 00 a 0
> W buff7(7:0] 00 00
> B buff8[7:0] 00 d 00

18 interrupt_clr_1 0

14 buff_ready 0

18 exception_flag_1 0

Figure 4.25: Serial buffer holding first value

Name Value 2,010 2,020 2,030 2,040 2,050 2, 060 2,070 2,080
> B port_out_temp01[7:0] 38
> B address_out[2:0] 0 | 7 0 |
> Winterrupt_1[3:0] 0 /‘ 0 1
> B buff1[7:0] 30 ‘/' a0
i zEz:ﬁ:gg: :Z When the buffer-is fills:-d Contents of the buffer. | z:
- s the buff_ready signal is These_v?lues are used as i
asserted and the the injected code for
> ¥ buff5[7:0] 3 address rolls over to 0. testing. 28
> B buffe[7:0] 34 34
> B buff7[7:0] 60 60
> B buff8[7:0] 55 55
Winterrupt_clr_1 0 H
18 buff ready 1 L
Wlexception flag_1 | [0 |

Figure 4.26: Full serial buffer triggering injection

Triplication of Extended Processor

Implementation of a UART serial buffer was the last required component for
the expansion of the foundational processor. Single core testing via serial buffer code
injection demonstrated the functionality of the system. The final stage of the project
required triplicating the processor. Triplication involved the same process that was

done for the first triplication step. Each processor core required its own entirely
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independent system. The only components that were not triplicated were the UART,
display driver, char decoder, attack voter and clock dividers. Everything else was

triplicated for use in three independent yet functionally identical processor cores.
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RESULTS

After triplicating the processor cores, final system testing was performed. A
new set of opcodes were generated for three processors that would run a simple load
and increment program. The A register would be loaded with the value x65, then
incremented twice resulting in a final value of x67. Finally the program would branch
back to memory location x00 and start over. The relevant generated opcodes can be
seen in Figure 5.1.

For testing purposes, the instruction set for Core 1 was changed to reflect ASCII
characters. This allowed for instructions to be injected via serial communication, ie.
LDA_IMM is ASCII 0, INC_A is 8, and BRA is D.

Demonstrated is the functionality of the entire system as a whole. When each
processor is supplied the correct instruction set they are able to operate synchronously.
This is shown in the continued operation of the state machine as well as the contents
being held in the A register.

Testing the attack system was done through the use of an internal logic analyzer
(ILA). An ILA allows for the monitoring of desired signals during actual operation
after the bitstream is generated and loaded into the FPGA. Using this method allows
for the attack vector to be seen occurring in real time and is demonstrated in Figure

5.1 and Figure 5.2.
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Figure 5.1: Triplicated processor, normal operation
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Figure 5.2: Triplicated processor, serial code-injection
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The injected attack depicted in Figure 5.2 demonstrates the response when the
opcodes are known for a single core and used maliciously. A small program is injected
via serial communication, knowing that when the buffer is full the values in the serial
buffer are executed. In this demonstration, the injected program attempts to load
a value into A, increment it multiple times, and store the value to an output. An
example of the full code can be seen in Figure 5.2 and a break down of the known

opcodes being utilized can be seen in Table 5.1.

Known Opcode Function
x30 Load A Immediate
x34 Store A Direct
x38 Increment A
X959 Return from Interrupt

Table 5.1: Known attack opcodes

Since these known opcodes are only viable for Core 1, as soon as the interrupt
is triggered and the first opcode is executed the other two cores halt. It can be seen
that even though Core 1 continues to operate normally, Cores 2 and 3 halt entirely
while waiting for a resolution to the illegal opcode. It’s also demonstrated that as
soon as the attack is detected the fault exception flags are asserted. Shortly after the
flags are asserted the attack voter outputs a value informing the user of an attack. In
this case the pre-programmed value is 0b10101010 which can be represented in hex
as xAA.

To verify complete functionality of the system, another test was done using a
new Vivado project generated through the assembler. Again, for testing purposes,

one of the instruction sets was replaced with ASCII friendly opcodes. This secondary
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test program consisted of a simple load and store program. The hex value of x65 is
loaded into register A and then stored directly to register x8F. Normal operation can
be seen in Figure 5.3.

The loaded value is demonstrated to be a constant value that is never changed
as the LDA_IMM instruction is perpetually repeated. Similar to the program tested
in the first ILA test, it can be seen that the opcodes are different for each core, except

for Core 1, which is using the same instruction set as the first ILA test.
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Figure 5.3: Triplicated processor, normal operation. Load and store program
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After multiple tests demonstrating the functionality of the system, I have
concluded that this expanded processor is capable of defending against code-injection
attacks. Whether injected directly in program memory as seen in Figure 4.8 or
injected through a serial buffer redirect as shown in Figure 5.2 and Figure 5.4.

It’s also demonstrated that each implementation of the processor is capable
of running with pseudo-randomly generated opcodes. The first ILA test performed
using the load and increment program used entirely different instruction sets from
the ILA test performed using the load and store program. Even using the same
source assembly file, when the memory and instruction sets are generated using the
assembler, no two implementations will result in the same sets of instructions. This
provides a source of constantly changing instruction sets that preclude attackers from
attacking even two implementations of the same program. As a result, a program can
be written using standard homogeneous software engineering methods while being

deployed in heterogeneous clusters.

Overhead

In terms of overhead, the developed system results in a minimal increase in
time and space overhead. There is no overhead increase due to the instruction set
randomization as these components are included and required in the design regardless.
The only component that provided any additional overhead to the design was the
attack voter. While the attack voter system had a minor effect on the setup time,
roughly 130 ps, there was not a significant enough change in the utilization percentage
as the Vivado tool chain reported the same percentage both with and without the
attack voter. However, while the setup timing was affected, both cases are still able
to operate at a clock rate of 100 MHz.

It should also be noted that the triplication of the processor does increase the
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FPGA fabric space required, as expected. A single core implementation of this

processor architecture takes up 371 LUTs total as seen in Figure 5.5

Resource Utilization Ayailable Utilization %

LUT 371 20800 1.78
LUTRAM 8 9600 0.0a
FF 213 41600 0.51
BRAM 0.50 50 1.00
10 23 106 21.70
BUFG 4 32 1250
MIMCH 1 5 20.00

Figure 5.5: Single core utilization report

Also displayed is the low utilization seen in the other FPGA resources. When
the system is triplicated the resulting system size is roughly 268% the size of the

single core architecture, as seen in Figure 5.6

Resource Utilization Available Utilization %

LuUT 993 20800 477
LUTRAM 24 8500 0.25
FF 388 41600 0.493
BRAM 1.50 50 3.00
10 Ch 106 2025
BUFG 4 32 12.50
MMCH 1 5 20.00

Figure 5.6: Triple core utilization report

Noteworthy is the fact that while the components increase relative to the number
of cores implemented, the power increase between a single core system and a triple
core system with an attack voter is only 8 mW, for a total of 200 mW. This translates
to a 4% increase in power between a single core system and a triplicated injection

hardened implementation.
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This means that the entire system architecture space overhead is still less then
the overhead seen in the PolyGlot architecture. However, further system expansion

and analysis needs to be done to compare the total security of the respective systems.
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FUTURE RESEARCH

While this thesis project demonstrates the viability and serves as a proof of
concept for a hardware based instruction set randomization defense, further expansion
is necessary. For this system to be implemented in industry, several further steps
should be be researched, including;:

e Further instruction set expansion

32 or 64 bit expansion

Partial reconfiguration

Compiler

e Linux

Instruction Set Expansion

At this stage in development, the processor can interpret and execute 27 separate
instructions. This demonstrates a proof of concept, but falls short of most industry
instruction sets. As seen in Figure 2.3, there exists a large number of opcodes in even
a small 8-bit microcontroller.

One opcode is particularly desirable, a JSR. JSR is a jump to subroutine
instruction and provides the backbone for allowing multiple subroutines to exist inside
a single program. Since the ability to handle interrupts already exists in the current
architecture, adding this instruction shouldn’t pose a problem in future development

as it is functionally the same as an interrupt on demand.

Processor Size Expansion

Currently, the developed processor is 8-bit, designed to function similarly to the
Picoblaze. However, for wide-spread implementation a larger processor is necessary.

Through expanding the processor size to 32 or 64 bits, it would be possible to utilize
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existing standards. Additionally, the larger processor size would allow for a drastic
increase in available memory. At this point the processor is limited to 256 bytes of
memory, which is small compared to any modern processor system. By expanding the
MAR register in conjunction with the processor it would be possible to expand the
amount of memory available to the system which could easily be allocated and spread
across the three current memory systems; program memory, read /write memory, and

stack memory.

Component Randomization

In addition to randomizing the instruction set, other components of the device
could be randomized. For example, the ALU instruction vector could be randomized
for different operations. At this junction the ALU instructions are predefined
and hardcoded during the assembler process as seen in A. Similar to the opcode
randomization, these values could also be randomized.

Even beyond the randomization of ALU instructions, address space layout could
be randomized as well. Right now the address space of the system is linearly defined.
Low level registers are defined as program memory, followed by R/W memory and
finally followed by the stack and I/0. However, it would be possible to interweave these
memory locations per core during the assembler process, preventing any attackers

from knowing the locations of protected memory space.

Partial Reconfiguration

The system currently halts when an attack is detected. This works as a proof of
concept but is not viable in an actual system. In the event that an attack is detected,
it should be mitigated and then the processor should move on to the next instruction.
To mitigate attacks, one solution is to enable partial reconfiguration. In the event

that an attack is detected, the compromised core can be taken offline while a new
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core is brought online. A system such as this is similar to the 9-tile microblaze system
seen previously.

Potentially this style of system could be used in conjunction with a hardware
based pseudo-random number component that would constantly cycle which processor
cores are online. Doing so would not only maintain the current functionality of
defending against injection attacks, in the case that an opcode set is known, but also
prevent knowledge of which core is active at any given time. This would assist in the

ability to prevent attacks from deciphering any given instruction set.

Compiler

Beyond the expansion of the processor hardware, a more robust compiler system
will need to be implemented. By using either LLVM, gcc or ANTLR the possibility
to program the device using a higher language, such as C, will become a possibility.

It’s important to note that the compiler process would need to be slightly
modified. For example, if generating a compiler for C, the compiler would need to stop
shy of actually generating the machine code (opcodes) and instead just generate the
mnemonics of the program. Since the opcodes will be randomized for each core it’s
not feasible to restructure the compiler every time a new bitstream is created. This
will also prevent potential attackers from learning the opcodes of each processor as the

final stage will only present users with commonly implemented opcode mnemonics.

Linux

Perhaps the final expansion for the future would be to create a Linux kernel
capable of running on the newly developed processor. This could be considered the
final stage since all the previous future research topics would need to be completed for
this to be feasible. The processor would need to have a larger instruction set capable

required by most Linux kernels, for the system to be practical the processor size itself
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would need to be expanded to account for a larger address space and a compatible

compiler would be required to compile the necessary programs.

Future Use Implementations

A potential use for this would be to replace homogeneous data center configu-
rations. A large data center could be built with the replacement of general purpose
processors with FPGAs. Each FPGA would have an independent bitstream generated
for it, which would then be pushed out sequentially to each machine in the data
center. The initial configuration of each machine could be compared to the imaging
process currently used in deploying configurations to large system networks. Once the
processor has been scaled to the point of being Linux compatible, any software updates
could be deployed in the same fashion used by current systems with new bitstreams,
containing newly randomized instruction sets, to each machine on a desired basis. The
instruction set deployment could be performed either through generating entirely new
bitstreams for each component or by simply regenerating the portion of the existing
bitstream that contains instruction set information.

Ultimately, these steps will allow for the broad expansion of this device leading
to implementation for a variety of applications. A further exploration of this system
could potentially provide a multitude of solutions to a variety of modern cybersecurity

threats.
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APPENDIX A

INSTRUCTION PACKAGE EXAMPLE
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package instructions_core_3 is

constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant

LDA_IMM :
LDB_IMM :
LDA_DIR :
LDB_DIR :
STA_DIR :
STB_DIR :
: std_logic_vector
: std_logic_vector
: std_logic_vector
: std_logic_vector
: std_logic_vector
: std_logic_vector
: std_logic_vector
: std_logic_vector
: std_logic_vector
: std_logic_vector
: std_logic_vector
: std_logic_vector
: std_logic_vector
: std_logic_vector
: std_logic_vector
: std_logic_vector
: std_logic_vector
: std_logic_vector
: std_logic_vector
: std_logic_vector
: std_logic_vector
: std_logic_vector
: std_logic_vector
: std_logic_vector
: std_logic_vector
: std_logic_vector
: std_logic_vector
: std_logic_vector
: std_logic_vector

ADD_AB
SUB_AB
INC_A
DEC_A
INC_B
DEC_B
AND_AB
ORR_AB
BRA
BMI
BEQ
BCS
BVS
PSH_A
PSH_B
PSH_PC
PLL_A
PLL_B
PLL_PC
RTI
STI
add
sub
andab
orrab
inca
deca
incb
decb

std_logic_vector
std_logic_vector
std_logic_vector
std_logic_vector
std_logic_vector
std_logic_vector

end package instructions_core_3;

(7
(7
(7
(7
(7
(7
(7
(7
(7
(7
(7
(7
(7
(7
(7
(7
(7
(7
(7
(7
(7
(7
(7
(7
(7
(7
(7
(7
(7
(7
(7
(7
(7
(7
(7

downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto

0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)

:=x"99";
:=x"8a";
=x"4e";
=x"b6";
:=x"78";
=x"c3";
=x"cl";
=x"66";
=x"6a";
=x"Db9";
=x"13";
:=x"b2";
:=x"85";
=x"TT"
:=x"ac";
:=x"d3";
:=x"a2";
:=x"69";
=x"2a";
:=x"c8";
:=x"15";
=x"2c";
:=x"ab";
:=x"59";
=x"72";
=x"24";
=x"d2";
:="000";
:="001";
:="010";
:="011";
:="100";
:="101";
:="110";
="111"y
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APPENDIX B

ASSEMBLER
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import random
import os
import shutil
import errno

programCode = []

def createProgramMemory(filename, programList, core):
with open(filename, 'w') as file:

fileStart = """
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL,;
library xil_defaultlib;
nmn
instructionFile = "use
« xil_defaultlib.instructions_core_%s.all;" Y%core

entityName = "entity rom_128x8_sync_core_Js is" Jcore
entityBlock = """
port (address : in std_logic_vector (7 downto 0);
clock : in std_logic;
data_out : out std_logic_vector (7 downto 0));
end entity;"""
architectureName = "architecture rom_128x8_sync_arch of
— rom_128x8_sync_core_)s is" Jcore
architectureBlock = """
signal EN: std_logic;

type rom_type is array (0 to 95) of std_logic_vector(7 downto 0);
constant ROM : IOm_type c= (Illl||

fileEnd = """
others => x"00");
begin

--enables ROM and port_outs

enable: process(address)

begin

if ((to_integer (unsigned(address)) >=0) and
(to_integer(unsigned(address)) <=95)) then

EN <='1";
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else
EN <='0"';
end if;
end process;

memory: process(clock)
begin
if (clock'event and clock='1') then
if (EN='1') then
data_out <= ROM(to_integer(unsigned(address)));
end if;
end if;
end process;
end architecture;
file.write("%s" % (fileStart))
file.write("%s \n" %(instructionFile))
file.write("%s \n" %(entityName))
file.write("%s \n" %(entityBlock))
file.write("%s \n" % (architectureName))
file.write("%s \n" % (architectureBlock))
for item in programCode:
file.write(" %s\n" % item)
file.write("%s" % (fileEnd))

def createProgramlList(filename) :
lines = [line.rstrip('\n') for line in open(filename)]
for x in range(len(lines)):
instruction = 'Ji => Js,' %(x,lines[x])
programCode . append (instruction)

def createlnstructionFile(filename,core):
with open(filename, 'w') as file:

opcodes = random.sample(range(16,225),27)
for x in range(len(opcodes)):
opcodes[x] = hex(opcodes[x])
opcodes [x] = opcodes[x] [-2:]

print (opcodes)

LDA_IMM = opcodes[0]
LDB_IMM = opcodes[1]
LDA_DIR = opcodes[2]



LDB_DIR = opcodes [3]
STA_DIR = opcodes [4]
STB_DIR = opcodes[5]
ADD_AB = opcodes[6]
SUB_AB = opcodes[7]
INC_A = opcodes[8]
DEC_A = opcodes[9]
INC_B = opcodes[10]
DEC_B = opcodes[11]

AND_AB = opcodes[12]
ORR_AB = opcodes[13]

BRA = opcodes [14]
BMI = opcodes[15]
BEQ = opcodes[16]
BCS = opcodes[17]
BVS = opcodes [18]
PSH_A = opcodes[19]
PSH_.B = opcodes[20]
PSH_PC = opcodes[21]
PLL_A = opcodes[22]
PLL_B = opcodes[23]
PLL_PC = opcodes[24]
RTI = opcodes [25]
STI = opcodes [26]
header = """library IEEE;

use IEEE.STD_LOGIC_1164.ALL;"""

83

linel = "package instructions_core_Js is" %core
line2 = "constant LDA_IMM :

o =x\"7%s\";" JLDA_IMM

line3 = "constant LDB_IMM :

o =x\"%s\";" %LDB_IMM

lined4 = "constant LDA_DIR :

— =x\"7%s\";" JLDA_DIR

line5 = "constant LDB_DIR :

o =x\"%s\";" %LDB_DIR

line6 = "constant STA_DIR :

o =x\"7%s\";" JSTA_DIR

line7 = "constant STB_DIR :

o :=x\"%s\";" %STB_DIR
line8 = "constant ADD_AB
o =x\"%s\";" 7ADD_AB

std_logic_vector
std_logic_vector
std_logic_vector
std_logic_vector
std_logic_vector

std_logic_vector

: std_logic_vector

(7

(7

(7

(7

(7

(7

(7

downto

downto

downto

downto

downto

downto

downto

0)

0)

0)

0)

0)

0)

0)
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line9 = "constant SUB_AB
o =x\"%s\";" %SUB_AB
linelO0 = "constant INC_A
o =x\"%s\";" %INC_A
linell = "constant DEC_A
o =x\"%s\";" YDEC_A
linel2 = "constant INC_B
o =x\"%s\";" %INC_B
linel3 = "constant DEC_B
o =x\"%s\";" %DEC_B
linel4 = "constant AND_AB
< =x\"%s\";" %AND_AB
linelb = "constant ORR_AB
o =x\"7s\";" J0RR_AB
linel6 = "constant BRA

o =x\"%s\";" %BRA

: std_logic_vector (7 downto 0)
: std_logic_vector (7 downto 0)
: std_logic_vector (7 downto 0)
: std_logic_vector (7 downto 0)
: std_logic_vector (7 downto 0)
: std_logic_vector (7 downto 0)

(7 downto 0)

: std_logic_vector

: std_logic_vector (7 downto 0)

linel7 = "constant BMI : std_logic_vector (7 downto 0)
o o=x\"%s\";" JBMI
linel8 = "constant BEQ : std_logic_vector (7 downto 0)
o =x\"7%s\";" %BEQ
linel9 = "constant BCS : std_logic_vector (7 downto 0)

o =x\"%s\";" %BCS
1line20 = "constant BVS
o =x\"%s\";" %BVS
line21 = "constant PSH_A
o =x\"%s\";" Y%PSH_A
line22 = "constant PSH_B
o =x\"%s\";" Y%PSH_B
1line23 = "constant PSH_PC
o o=x\"7%s\";" JPSH_PC
line24 = "constant PLL_A
o =x\"%s\";" %PLL_A
line25 = "constant PLL_B
o :=x\"%s\";" %PLL_B
line26 = "constant PLL_PC
o =x\"%s\";" %PLL_PC
line27 = "constant RTI
o =x\"7%s\";" %RTI
1ine28 = "constant STI
o o=x\"7%s\";" %STI
line29 = "constant add
< :=\"000\";"

: std_logic_vector (7 downto 0)
: std_logic_vector (7 downto 0)
: std_logic_vector (7 downto 0)
: std_logic_vector (7 downto 0)
: std_logic_vector (7 downto 0)
: std_logic_vector (7 downto 0)
: std_logic_vector (7 downto 0)
: std_logic_vector (7 downto 0)

: std_logic_vector (7 downto 0)

: std_logic_vector (2 downto 0)
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1line30 = "constant sub : std_logic_vector (2 downto 0)
o :=\"001\";"

line31 = "constant andab : std_logic_vector (2 downto 0)
~ :=\"010\";"

1line32 = "constant orrab : std_logic_vector (2 downto 0)
o =\"011\";"

line33 = "constant inca : std_logic_vector (2 downto 0)
~ :=\"100\";"

line34 = "constant deca : std_logic_vector (2 downto 0)
o =\"101\";"

line35 = "constant incb : std_logic_vector (2 downto 0)
o :=\"110\";"

1line36 = "constant decb : std_logic_vector (2 downto 0)
o r=\"LL\;

1ine37 = "end package instructions_core_%s;" %core

file.write('%s \n' %(header))

file.write("%s \n %s \n %s \n %s \n %s \n %s \n %s \n %s \n %s

- \n%s \n %s \n %s \n % \n %s \n %s \n %s \n %s \n %s \n
% \n %s \n %s \n %s \n %s \n %s \n %s \n %s \n %s \n %s
\n %s \n %s \n %s \n %s \n %s \n %s \n %s \n %s \n %s"
%(1linel, line2, line3, line4, lineb5, line6, line7, line8,
line9, linel0, linell, 1linel2, linel3, linel4, 1linel5,
linel6, linel7, 1linel8, linel9, 1ine20, line21, line22,
line23, line24, 1line25, line26, line27, 1line28, line29,
1line30, 1ine31, 1line32, 1ine33, 1ine34, 1line35, 1ine36,
1ine37))

e

def copy(src, dest):
try:
shutil.copytree(src, dest)
except OSError as e:
# If the error was caused because the source wasn't a
- directory
if e.errno == errno.ENOTDIR:
shutil.copy(src, dest)
else:
print('Directory not copied. Error: %s' % e)

def projectGen(source,destination):
if not os.path.exists(destination):
os.makedirs(destination)
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src_files = os.listdir(source)
for file_name in src_files:

sourc

e

full_file_name = os.path.join(source, file_name)
if (os.path.isfile(full_file_name)):
shutil.copy(full_file_name, destination)

= 'CyberCore Sources'

destination = input('Enter Project Name: ')
copy (source,destination)

filel
file2
file3

program

mem1
mem?2
mem3

"Jis/instructions_core_1.vhd' Jdestination
"/is/instructions_core_2.vhd' Jdestination
"Jis/instructions_core_3.vhd' Jdestination
= 'program.asm'
"fis/rom_128x8_sync_core_1.vhd' Jdestination
"/is/rom_128x8_sync_core_2.vhd' Jdestination
"is/rom_128x8_sync_core_3.vhd' Jdestination

#projectGen(source,destination)
createInstructionFile(filel,'1"')
createlnstructionFile(file2,'2"')
createInstructionFile(file3, '3")
createProgramList (program)
createProgramMemory (meml,programCode, '1')
createProgramMemory (mem2,programCode, '2')
createProgramMemory (mem3, programCode, '3"')
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