
OPTIMIZATION OF ERROR CORRECTING CODES

IN FPGA FABRIC ONBOARD CUBE SATELLITES

by

Skylar Anthony Tamke

A thesis submitted in partial fulfillment
of the requirements for the degree

of

Master of Science

in

Electrical Engineering

MONTANA STATE UNIVERSITY
Bozeman, Montana

May 2019

©COPYRIGHT

by

Skylar Anthony Tamke

2019

All Rights Reserved

ii

DEDICATION

I dedicate this to all the people who have helped me along my path to finishing
my degree. I couldn’t have done it without my close friends and mentors along the
way.

iii

ACKNOWLEDGEMENTS

I would like acknowledge Montana Space Grant Consortium and the Electrical

and Computer Engineering department for funding my project through completion

of this degree.

iv

TABLE OF CONTENTS

1. INTRODUCTION ..1

2. MOTIVATION ...5

Space technology requirements ..5
Harmful radiation effects ...5
Common Radiation Mitigation Techniques ... 10

Shielding... 10
Material Hardening ... 11
Architectural Hardening .. 13

Existing Radiation Hardened Processors .. 14
Limitations ... 15

Using FPGAs in the Harsh Environment of Space .. 16
Functionality of FPGAs... 16
Radiation Effects on FPGAs .. 18

A Necessity for Fault Tolerant Computing.. 19

3. MONTANA STATES CONTRIBUTION.. 20

Montana State University’s approach ... 20
Technology Maturation ... 22
Prior Work... 27
Current Testing Phase .. 27

My Contribution ... 30

4. THEORY ... 32

Hamming Codes ... 33
Hamming Encoding ... 35
Hamming Decoding ... 37

BCH codes ... 39
BCH Encoding .. 41
BCH Decoding .. 43

Turbo codes ... 48
Turbo encoding ... 48
Turbo Decoding .. 50

Low-Density Parity codes .. 52
LDPC encoding... 53
LDPC decoding... 55

v

TABLE OF CONTENTS – CONTINUED

5. RESULTS AND EXPERIMENTS.. 58

Hamming code ... 58
Hamming encoding.. 58
Hamming decoding.. 59

BCH Code ... 60
BCH encoding... 60
BCH decoding... 61

Turbo Code.. 62
Low-Density Parity codes .. 63

LDPC encoding... 63
LDPC decoding... 63

Summation of resource usage... 64
Choosing an ECC method.. 69
Radsatu choice .. 72

6. CONCLUSION... 73

REFERENCES CITED.. 74

vi

LIST OF TABLES

Table Page

2.1 Energies of various particles [22]...8

3.1 The levels of NASA’s TRL [18] .. 22

5.1 Resource utilization of Hamming encoding.. 59

5.2 Resource utilization of Hamming decoding.. 60

5.3 Resource utilization of BCH encoding... 61

5.4 Resource utilization of BCH decoding... 62

5.5 Resource utilization of LDPC encoding... 63

5.6 Resource utilization of LDPC decoding... 64

5.7 Total resource usage, based on Xilinx synthesis tools.
Each of the resource’s fan in value is indicated by the
number following the resource. (Example: LUT4 =
4 input look up table). Clock rate for this table is 100MHz................ 65

5.8 Slice usage for each method, Each slice, for a 7-
Series Xilinx FPGA, contains 4 LUTs, 8 flip-flops,
1 arithmetic/carry chain, 128 bits of RAM, and 64
bits of shift registers [28] .. 66

5.9 Each of the listed FPGAs are of the Artix 7 Series
family, known for their high performance per watt 67

5.10 Each of the area entries shows the percentage of
slices used on a Artix-7 200T FPGA, this value is
based on only using this method with none of the
other slices being used for any other design....................................... 68

5.11 This table displays an approximation of the active
circuit being faulted by an ionizing strike to the
device (Artix 7 200T). This values is only for the
methods described in Table 5.10... 68

5.12 Figure of merit table, based on the values found in
development of this thesis. Clock rate for this table
was 100MHz ... 70

vii

LIST OF FIGURES

Figure Page

2.1 MOSFET cross-section showing radiation faults by
SEEs and TID [22] ...6

2.2 Van Allen belts ...9

2.3 Radiation belts and location of the South Atlantic
Anomaly [27] ... 10

2.4 Total dose as a function of aluminum shielding
thickness [25] ... 11

2.5 Conventional CMOS transistor compared to a silicon-
on-insulator device [22] ... 12

2.6 Radiation hardening by Design inverter using iso-
lated transistors with guard rings [14]... 13

2.7 Performance comparison of radiation hard proces-
sors and commercial processors in the last 50 years
[12] ... 15

2.8 A visualization of partial reconfiguration with par-
tial bitstreams [29] ... 18

2.9 Normal FPGA operation compared to operation
under SEE errors [22] ... 19

3.1 Breadboard prototype to eval boards –needs to be
updated to a better resolution image for final 23

3.2 TRL-4 form factor(left), Cyclotron mounting (right) 24

3.3 BOREALIS balloon(left) and the CSBF balloon (right) 25

3.4 Up Aerospace sounding rocket demonstration [3]............................... 26

3.5 Wallops sounding rocket(left), view from rocket in
orbit (right) .. 26

3.6 Fault Mitigation Flow diagram .. 28

3.7 Fault Mitigation Using TMR ... 29

3.8 Fault mitigation using the SEM controller .. 30

viii

LIST OF FIGURES – CONTINUED

Figure Page

3.9 Fault mitigation using Error correcting codes in memory 31

4.1 The top block is a non-systematic representation
of encoded data Hamming(12,8), Bottom block is
a systematic representation of the same data and
parity bits Hamming(12,8)... 33

4.2 Encoding process of the 1st parity bit from a byte of data 34

4.3 A non-systematic approach to generating Hamming
parity bits for a (12,8) method... 36

4.4 Example of checking parity bit... 39

4.5 Example generator matrix [8]... 40

4.6 Example parity check matrix, paired with 4.5 [8] 40

4.7 Encoding circuit for a (n,k) BCH code [8] .. 43

4.8 Syndrome computation circuit for m=4 [8] 46

4.9 Chien’s search circuit .. 47

4.10 Encoding structure for Turbo codes [10] .. 49

4.11 A high level visual of turbo decoding [10] .. 51

4.12 LDPC encoding method using a generator matrix 55

4.13 Block diagram of a LDPC decoder ... 57

5.1 Timing for Hamming encoding... 59

5.2 Timing for the decoding process with hamming codes........................ 60

5.3 Encoding timing for BCH codes(18ns) .. 61

5.4 Decode timing for BCH method (66ns)... 61

5.5 Encoding timing for the LDPC coding block..................................... 63

5.6 LDPC decoding Timing... 64

5.7 A gauge of merit for each of the viable methods,
using metrics detailed in Table 5.12 ... 70

ix

LIST OF FIGURES – CONTINUED

Figure Page

5.8 Memory Scheme on RTC ... 72

x

ABSTRACT

The harmful effects of radiation on electronics in space is a difficult problem
for the aerospace industry. Radiation can cause faults in electronics systems like
memory corruption or logic flips. One possible solution to combat these effects is to
use FPGAs with radiation mitigation techniques. The following Masters of Science
thesis details the design and testing of a radiation tolerant computing system at
MSU. The computer is implemented on a field programmable gate array (FPGA),
the reconfigurable nature of FPGAs allows for novel fault mitigation techniques on
commercial devices. Some common fault mitigation techniques involve triple modular
redundancy, memory scrubbing, and error correction codes which when paired with
the partial reconfiguration. Our radiation tolerant computer has been in development
for over a decade at MSU and is continuously being developed to expand its radiation
mitigation techniques. This thesis will discuss the benefits of adding error correcting
codes to the ever developing radiation tolerant computing system. Error correcting
codes have been around since the late 1940’s when Richard Hamming decided that
the Bell computers he did his work on could automate their own error correcting
capabilities. Since then a variety of error correcting codes have been developed for
use in different situations. This thesis will cover several popular error correcting
method for RF communication and look at using them in memory in our radiation
tolerant computing system.

1

INTRODUCTION

Many have looked up at the stars and wondered what is really out there. Now

humanity is beginning to push into an age of space exploration. Companies are

emerging around the globe in competition to make the first great strides to the vast

expanse of space. The need for ever more complex computing to run the technology

of these companies is continuously rising. As a rocket design gains the ability to

self stabilize/land/relaunch itself, the computing system on these vehicles need to

be evermore efficient and reliable. As Astronauts strap into their spacecraft the on-

board computers need to be able to transport their precious cargo safely. As a roving

space probes explore the boundaries of known space, their computers needs to be

able to withstand hazardous and extreme environments. Wherever space exploration

will take humanity there is one constant that can’t be denied, we need computers in

almost everything around us.

Being able to offload tasks to computer based automation and machine learning

will keep human-based errors from effecting crucial space missions. Building a

computer that can process faster is only a part of the battle for space exploration.

When a spacecraft leaves the protective atmosphere & magnetic field around the

Earth, the electronics on-board become susceptible to radiation from far off cosmic

sources.

As today’s rockets get more advanced, the computers that run their systems are

required to process large amounts of data quickly and reliably. The farther a space

vehicle gets from its control center on Earth, operators on Earth lose the ability to

manually control in real-time. This opens up the need to develop systems that can

2

operate on their own with no supervision and complete tasks autonomously.

When exploring the distant places of the great frontier the devices will need to

gather as much data as possible. In many cases the devices will need to be able to

make complex decisions to new and varied experiences in the process of mapping out

space. These capabilities will need further advances in computing past our current

state of the art edge technologies on the ground. Advances in machine learning and

artificial intelligence are proceeding at an astonishing rate, but having systems that

can support these fields in space is something that leave a bit to be desired still.

Mankind needs computing to scout out space ahead of human exploration and to

do this well, the systems will have to report all aspects of the new environments

they encounter, as well as reacting to varied and new conditions. This means that

computers will need to be able to self-diagnose when something is wrong, and be able

to correct or fix any problems that arise without supervision or control of an operator.

Current ground-based computers fail in space due to cosmic radiation. When

close to Earth, computers are protected by the Earth’s atmosphere and magnetic

field that surrounds Earth. Once an object get far enough away from the surface of

planet, there are no longer these protective shells. This allows cosmic radiation to

affect electronics in several different ways. Whether this is a bit flip in a digital device

or a build up of charge in the features of a component, computers will eventually fail.

This problem is one that NASA is greatly concerned about and is trying to motivate

researches to create new solutions.

There are a few methods existing to prevent these incidents but there are various

pitfalls to using them.

Engineers has employed a method called radiation hardening by process (RHBP)

in past and current space electronics to try and combat the effects of radiation. As

mentioned in the name, this method is implemented during the fabrication of the

3

device by altering the materials in a device to prevent ionic charge from building up

on these devices.

NASA is focusing on a radiation hardened by design (RHBD) method that

pushes the concept of building a radiation tolerant system by creating non-standard

geometries to make the transistors in a device.

Another method is triple modular redundancy (TMR), this method takes the

existing hardware and creates two identical copies of the system. All three system’s

output is fed through a voting system that will detect differences in their outputs and

assumes a fault. This method is considered to be an architectural approach to fault

mitigation.

MSU has been working a solution to combat the effect of radiation on electronics

for near a decade. This approach revolves around using reconfigurable devices

called field programmable gate array (FPGA) devices. These devices allow targeted

resetting of particular sections of the design. This has allowed MSU to design a

system that can reset their processing cores while maintaining existing data. The

design has redundant arrays of processing cores that are dynamically swapped out

when a fault is detected on one of the cores. The next step will be to take all critical

information and store it to memory, so when a processing core becomes faulted the

new processing core that replaces it will be able to continue where the last core left

off. This memory is susceptible to faulting, which makes this method of storing data

without any faulting mitigation techniques problematic for space bound electronics.

Thus a method that can detect errors that pop up in the memory and correct for

those errors is essential to the design.

This thesis will investigate common error correcting methods that exist in

telecommunication and memory devices and their application to protecting space-

based memory. Of primary interest is the speed that each of the methods takes

4

to complete and the amount of hardware resources each of the methods takes to

implement on a FPGA. This thesis’s research revolves around a softcore processing

system with its own unique memory system. The processing cores are repaired when

a fault is detected through several error detection processes implemented by current

and previous graduate research assistants. The memory will be isolated from these

error detection processes and have its own error correction system that will detect

when one of the memory cells is different from the other memory cells. Once detected

the error will be corrected to match the other memory cells.

This thesis will discuss the feasibility of using ECCs to improve reliability in

FPGA designs. Particularly the trade off between the error correction capability of the

ECC vs speed and hardware resources needed. Finding a optimized balance between

these is key to creating a design with high-speed processing capabilities. This trade

off is of particular interest to space computers because adding more sophisticated

ECC strategies can actually result in decreased reliability due to the increased area

on the FPGA that is susceptible to radiation. The following chapters specify the

motivation for this project and the need error correcting codes on the system. Future

demonstrations of concepts discussed in this thesis are also outlined. From this point

on the system will be referred to by the designation Radiation Tolerant Computing

System (RTCS).

5

MOTIVATION

Space technology requirements

The current cutting edge flight computers are outlined in TA 11 roadmap [19]

as mainly single radiation-hardened custom processors. These systems are shown

to have 35-400 million instructions per second (MIPS), 10-200 million floating point

operations per second (MOPS), power requirements of 20W-30W, and power efficiency

of 20 MIPS/W. Flight computers will need to move towards a goal of 1000+ MIPS,

1000+ MOPS, consume low power (< 5W), and achieve power efficiencies of less

than 20MIPS/W. The current designs of single radiation-hardened custom processors

is prompting support for moving away from these design, primarily due to high cost.

This movement pushes further technology development to commercial over the shelf

(COTS) for future radiation tolerant computing systems.

Harmful radiation effects

Total ionizing dose (TID) and single event effects (SEEs) are two types radiation

events that cause failures on electronic devices. [3] When ionizing radiation strikes

an electronic devices, it creates electrical/hole pairs in the device. The electron/hole

pair causes temporary excess charge in the device. Most failures from TID happen

when this excess charge gets stuck in insulation material layers within a device [23]

When a electron hole pair gets stuck in the gate oxide of an transistor a channel can

open, pushing the transistor into an permanently active state. [3] A TID can occur

between transistor devices, while this doesn’t affect the transistor directly it can lead

to leakage current between devices. Leading to increase in power-usage and will lead

to failure over time. [2]

6

Failures in devices caused from total ionizing dose (TID) are caused by low

energy protons and electrons (< 30MeV/AMU). [13] A visual of this effect on a MOS

device is shown the right side of Figure 2.1. [22]

Figure 2.1: MOSFET cross-section showing radiation faults by SEEs and TID [22]

Single event effects (SEEs) occur when a high-energy particle strikes the diffusion

region of a device. As the particle travels through the material it leaves behind a

electron-hole pairs in its path. This incident happens so quickly that most of the

electron hole pairs recombine with no effects on the material, but if this path crosses

through certain parts of the circuit unwanted logic level transitions could be induced.

Unlike TID, SEEs do not cause permanent damage to a device, the device may just

experience a bitflip. While no damage to the device is good, erroneous data or

unwanted operations can be triggered by an SEE. Possibly even a full system failure

depending on what part of the device was struck. When a SEE causes induces a

voltage bias on a circuit, possibly causing current flow, this is called a single event

transient (SET). When a SET occurs and upsets a latched value in a flip-flop or

some other memory element, this is called a single event upset (SEU). These are

usually considered to be a ”bit-flip” on the element that they occur. SEUs can affect

both bipolar junction transistors (BJTs) and metal-oxide-semiconductor field-effect

transistors (MOSFET). [7] If a SEU is detected and the device is reset then there is no

7

permanent damage to the device. However, if a SEU strike causes memory corruption

or permeates a logic shift through multiple levels this is classified as another event

called a single event functional interrupt (SEFI). SEFIs can create cascading behavior

problems as well as a drop in power efficiency on the device. SEFIs are more difficult

to recover from, requiring a full system power cycle or re-configuration. There is

also a single event latchup (SEL) that can be caused by SEU. A SEL occurs when

two transistors are stuck in states that short power to ground, causing excessive

current draw and permanently damaging the device. [3] Figure 2.1 shows the different

incidents that can happen for the range of SEEs.

High energy ionizing radiation is detrimental to electronics. Ionizing radiation

has sufficient energy to break electrons free from their electron shell on their

prospective atoms and molecules. [3] Generally the concern about radiation revolves

around the concept that radioactive particles travel at relativistic speeds. Alpha

and Beta particles traveling at this rate are capable of causing soft errors but can be

deterred by adding shielding to a device. Gamma radiation can pass through shielding

but with level of energy in the range of a few hundred keV, not having sufficient

energy to affect digital electronics. Radiation damage usually comes from galactic

cosmic rays (GCR), these cosmic rays are created outside of our galaxy and provide a

continuous radiation environment that permeates interplanetary space. [7] [24] GCRs

are made up of 85% protons, 14% alpha particles, and 1% heavier nuclei. [3] These

particles contain levels of energy up to 1 GeV and are highly charged, making them

densely ionizing. Table 2.1 shows the energy levels of various radioactive particles.

High energy ionizing particles have large amounts of kinetic energy, which can be

transferred into a device as the particle collides with the substrate. If this energy

exceeds the materials band gap energy an electron could be excited from the valence

band to the conduction band, creating an electron-hole pair. [1]

8

Particle Type Energy Range

Trapped protons and electrons ≤ 100 MeV

Alpha particles 5 MeV

Solar protons ≤ 1 GeV

Cosmic rays ≥ 1 GeV

Table 2.1: Energies of various particles [22]

The earth is encapsulated in magnetic fields, making up the magnetosphere.

These field trap low energy charged particles, diverting them from their origin path

and becoming part of the Van Allen Belts. A visual of the Van Allen Belts is shown in

Figure 2.2. [20] Trapped particles spiral around the magnetic field lines as they drift

around the planet. Particles trapped in these field have been known to cause soft

errors in electronics but can be mitigated by a certain amount of shielding. [6] The

region of earth where the radiation belts are closest to earth is a spot just off the coast

of Brazil called the South Atlantic Anomaly (SAA). This region is created due to the

offset from the Earth’s axis of rotation show in Figure 2.3. Radiation intensity can

be increase by an order of magnitude while traversing the SAA, increasing the chance

that electronics will be damaged by radiation. The Earth’s atmosphere attenuates

the majority of the remaining radiation that gets through the magnetosphere. These

protective shields are the reason space radiation isn’t a concern to ground-based

computers.

9

Figure 2.2: Van Allen belts

10

Figure 2.3: Radiation belts and location of the South Atlantic Anomaly [27]

Common Radiation Mitigation Techniques

There are various techniques employed to move towards mitigating damage from

ionizing radiation. These techniques include shielding, creating radiation hardened

electronics as well as enacting specific types of fault tolerant architectures.

Shielding

Shielding is an effective solution to protect electronics from alpha and beta

particles, but gamma particles, neutrons, and heavy ion strikes are not mitigated by

shielding. Figure 2.4 shows that the proton dose decreases by less than half when the

11

shielding is more than doubled. In most cases, increasing the shielding on a design

is impractical for terms of mass and cost, especially since an increase of shielding

is relatively ineffective at reducing the GCR spectrum. Shielding can also lead to

cascading particles of secondary radiation when struck by GCR.

Figure 2.4: Total dose as a function of aluminum shielding thickness [25]

Material Hardening

An alternate solution to mitigating the effects of radiation is to modify the

materials of the device. Usually this technique is called radiation hardening by process

(RHBP), hardening devices with RHBP involves changing the steps in fabrication of

the silicon device. Silicon on insulator (SOI) technology is one example of RHBP,

this involves adding an insulator layer below the silicon junction (Ex. Figure 2.5).

12

The insulating layer can be comprised of either silicon dioxide or sapphire (also called

Silicon on Sapphire (SOS)). Originally developed to reduce parasitic capacitance in a

device, SOI and SOS also decrease charge trapping by greatly reducing the thickness

of the semiconductor substrate. [7] Device isolation is also a benefit of this process.

Figure 2.5: Conventional CMOS transistor compared to a silicon-on-insulator
device [22]

Another technique to preventing charge from getting trapped in the insulating

layers is the radiation hardening by design (RHBD). This technique involves using

isolated transistors and guard rings to provide conduction paths (Figure 2.6). Charge

induced by radiation strikes flows through the conduction paths instead of remaining

trapped in the insulating material. [15]

13

Figure 2.6: Radiation hardening by Design inverter using isolated transistors with
guard rings [14]

Architectural Hardening

While shielding, RHBP, and RHBD provide extended tolerance for TID effects

on electronics, SEEs can still cause faults in the system. An approach to combat

SEEs is to design an architecture to handle any SEEs that strike the device. The

conventional approach is to use circuit redundancy and memory checking to identify

when a SEE happens and correct and resulting faults. The following paragraphs will

explain these two methods in further detail.

Triple Modular Redundancy (TMR) is a common SEE mitigation technique.

TMR design implement three of the same active circuit and have their outputs fed

though a voting process to detect any outliers. This method assumes that an outlier

signifies a fault has occured in the outlier circuit. The two other circuits provide a

valid output while the faulted circuit is repaired and TMR operation can continue.

Memory scrubbing is a process where the configured pattern of a system is

compared to a known good copy. This good copy is refered as the ”golden copy” [3]

14

and would ideally be stored in a radiation tolerant memory unit such as PROM

or EEPROM. If a system doesn’t have sufficient fault detection capabilities it may

rewrite the entire configuration, this is known as blind memory scrubbing. Whereas if

the system can detect where the fault is and can correct it with the ”golden copy” this

would be called readback memory scrubbing. Readback scrubbing can prevent the

system from going down for a full reset by detecting a fault and determining whether

or not it needs to be corrected. With Readback scrubbing’s capability of identifying

where a faultis located, this can be used to log potential strikes and record analytical

information about any radiation strikes that do happen. Blind scrubbing would just

wipe out any of this existing data with a full rewrite, not even needing to know if a

fault actually existed in the first place.

Triple modular redundancy and memory scrubbing are generally used together

to mitigate radiation effects. [5] Using TMR prevents single upsets from disrupting

normal operation, where as memory scrubbing corrects bit flips in the configuration

memory. Keeping the number of upsets as low as possible and helping keep the system

from failing over a large amount of time.

Existing Radiation Hardened Processors

Most existing radiation hardened processors are used by the aerospace industry,

nuclear industry, and the military. The Mongoose-V built by Synova Inc, for example,

is a radiation hardened flight computer used by New Horizons. [3] The Mongoose-V

costs $20,000-$40,000 and can run at 15 MHz. [17] Another rad hardened process

with a little more reputation is the RAD6000 by BAE Systems. This device costs

between $200,000 and $300,000 and can run at a maximum of 25MHz. This rad

hardened processor was used on the Spirit and Opportunity Mars rovers developed

by NASA-JPL (Jet Propulsion Laboratories). This processor was succeeded by the

15

RAD750 by BAE Systems. Capable of running at 200MHz and costing $200,000, this

rad hardened processor is two of the processors that run on the Curiosity Mars rover.

Limitations

The cost of these rad hardened systems greatly exceeds commercial processors

with similar processing speeds. While large entities like private defense contractors,

government funded space agencies, military can afford these products smaller

organizations like University research labs or startups cannot. Rad hardened

processors have had a history of lagging behind 10 years in performance (Figure

2.7).

Figure 2.7: Performance comparison of radiation hard processors and commercial
processors in the last 50 years [12]

16

Using FPGAs in the Harsh Environment of Space

A field programmable gate array (FPGA) device is a device that can be

configured/reconfigured to meet a target design. FPGAs are programmed by the

customer and not the retailer/manufacturer, making these devices more complex

since the knowledge needed to accomplish the same task as a commercial processor

is greater. FPGAs use a grid of logic blocks connected by configurable interconnects,

allowing custom routing to create a wide scale of designs from simple logic gates to full

featured processors. FPGAs have the capability to implement any function that an

application-specific integrated circuit (ASIC) could perform with reduced prototyping

development time. FPGAs have a feature called floor planning that allows for specific

allocation of resources to chosen designs, which can help meet timing conditions.

Functionality of FPGAs

The two most well known FPGA manufacturing companies, Altera and Xilinx,

have built into their products the option to include certain features to help reduce

radiation effects on a design. Designs utilizing their soft error mitigation (SEM)

controller and partial reconfiguration (PR) are two methods that MSU uses to combat

the effects of radiation.

A SEM controller has the capabilities to act as a real time readback memory

scrubber, being able to detect and correct soft errors within the active configuration

memory on a FPGA. The controllers have several in-built modes that allow for

error injection, error detection, error correction, and error classification. The SEM

controller aims to eliminate as many soft errors from SEEs as possible to keep

system reliability high. When implementing the SEM controller the design will have

”essential” or ”non-essential” bits, ”non-essential” bits can be bit changes based on

17

active memory or stored data in registers in the logic field. Without this functionality

the SEM would detect this stored data as erroneous data when compared to the

”golden copy” and cause a system wide mitigateion response that would freeze system

operations. Error correcting codes (ECC) and the subsection of error correcting

codes called cyclic redundancy checks (CRCs) are used to detect errors in memory.

The SEM controller can inject faults on demand to ensure normal error correction

functionality is working as intended.

Partial reconfiguration of FPGAs allows a specified region to be reconfigured

without interrupting or resetting the rest of the device. A FPGA’s input/output

connections, interconnects, and logic elements are referred as the fabric of an FPGA.

The fabric of modern FPGAs can be divided into static logic and non-static logic.

Regions of static logic can not be reconfigured while the non-static regions can be

reconfigured through PR. When a PR is performed the controlling PR block will take

a partial bitstream file that is generated for the region that the PR is happening on.

PR will overwrite all of the non-static region that is selected by the PR controlling

block without interrupting the rest of the fabric. Once the reconfigurable region

is reprogrammed normal normal operation continues. Partial reconfiguration is an

important aspect of combating the effects of radiation since it can reset a faulted

region without needing a full reset. Saving time and possibly critical data on the

design.

18

Figure 2.8: A visualization of partial reconfiguration with partial bitstreams [29]

Radiation Effects on FPGAs

Modern circuitry on electronics exhibit small feature sizes, creating less of a

concern for TID damage. The oxide thickness is so small it becomes statistically

improbably that a charge will get trapped. [3] Modern FPGAs are achieve TID

tolerance levels of greater than 300krad when implementing a feature size of 65nm and

as much as 600krad when implementing a 22nm node. [4] However, the small diffusion

region in current devices increase SEE susceptibility because radiation strikes can

carry enough energy change the state of an device. [21] This means that configuration

memory or design memory can be altered by these strikes, causing corresponding logic

elements to malfunction. These single events can cause bit flips in memory, leading

to data corruption. Additionally the interconnects between logic blocks can also

be effected by SEEs, either adding or removing a connection. Figure 2.9 shows a

visualization of this incident.

19

Figure 2.9: Normal FPGA operation compared to operation under SEE errors [22]

A Necessity for Fault Tolerant Computing

Faults caused by radiation in space combined with the needs of the space

community provide strong a strong argument that fault tolerant computing is

imperative to the advancement of space exploration. Fault Tolerant computing

solutions are being researched at MSU to provide a solution to the problems faced

during long-term space missions.

20

MONTANA STATES CONTRIBUTION

For the last decade MSU has been researching and developing an architecture

to monitor and combat the effects of SEEs in space computing. The design started

out on evaluation kits and has advanced to be flown on the ISS [3] and in free-fall

low earth orbit in a self-sufficient 101030 cm or 3unit (3U) form. [16]. The next

subsections will detail MSU’s history of developing a radiation tolerant computing

stack

Montana State University’s approach

The primary platform for MSU’s RTC research are on FPGAs developed by

Xilinx. Xilinx FPGAs have a reputation of being used in military and space

applications. Xilinx provides FPGAs that are low cost and readily available for

consumer use, considered to be Commercial Over The Shelf (COTS) products readily

available to universities through educational discounts and research programs. COTS

FPGAs from Xilinx’s 7th generation have a feature size of 28nm, which gives them

inherent TID immunity as an added perk. The reconfigurable nature of a FPGA is key

to MSU’s RTC design, paired with low power usage and high computing power COTS

FPGAs are ideal for prototyping MSU’s novel architecture on. The RTC combats SEE

faults by Triple Modular Redundancy (TMR) voting, real time scrubbing of the fabric

using Xilinx’s Soft Error Mitigation (SEM) controller to instill extra reliability into

it’s design. The design methodology is based on creating partitions of the fabric, each

of which a soft-core Xilinx MicroBlaze processor resides within. The MicroBlaze is a

32bit Reduced Instruction Set Computer (RISC) available through Xilinx’s software

suite. Partial Reconfiguration allows the FPGA to reset and configure the fabric

back to a working state after a SEU fault. The experimental FPGA contains 4 tiles

21

(current) and in the past contained up to 16 tiles. All of the tile identical to each

other in how they access the fabric and each of their memory cells. At any one point

in time 3 of the cells are running in a TMR setup with the remaining in reserve for

when a fault happens. The TMR voter is constantly checking the outputs of the active

tiles and when a output is misaligned the controlling process assumes that the active

tile(s) output signifies a fault somewhere in the tile’s fabric. The memory cells are

also controlled by a separate TMR system that uses combinational logic to determine

when the memory units have differing values and actively corrects any irregular data

detected by the TMR system, allowing storage of critical data accumulated by the

FPGA. When a tile is considered faulted a background process will run to repair and

reset the tile through PR back to a working state, once the tile is repaired it is listed

as a possible replacement tile for the next faulted tile.

22

TRL Description

1 Basic Principles observed and reported

2 Technology concept and/or application formulated

3 Analytical and experimental critical function and/or proof-of-concept

4 Component and/or breadboard validation in laboratory environment

5 Component and/or breadboard validation in relative environment

6 System/subsystem model or prototype demonstration in relative environ-

ment (ground or space)

7 System prototype demonstration in a space environment

8 Actual system completed and ”flight qualified” through test and demon-

stration (ground or space)

9 Actual system ”flight proven” through successful mission operations

Table 3.1: The levels of NASA’s TRL [18]

Technology Maturation

This section will detail the history of the development of the RTC at MSU.

NASA gauges new technology on a measurement system called Technology Readiness

Level (TRL). This system judges when a system can be flown safely on a mission or

is ready for an industrial level of replication. Table 3.1 describes NASA’s TRL scale

and where the technology has to be in its development process before qualification.

23

The RTC design started in 2007 at TRL-1 and in 2010 it had advanced to TRL-

2 and TRL-3. When TRL-3 was reached the design connected prototype boards to

Xilinx evaluation boards. Figure 3.1 shows proof of concept to reach TRL-3. [3]

Figure 3.1: Breadboard prototype to eval boards –needs to be updated to a better
resolution image for final

Testing at Texas A&M Radiation Effects Facility pushed the RTC to TRL-4.

To qualify for these tests a 4”x4”x4” form factor was designed using custom Printed

Circuit Boards (PCB). At this point the RTC system could be called Radiation

Tolerant Computing Stack (RTCS). Two tests on the RTCS were performed in 2010

and 2011 with this new form. The form factor was mounted in a test fixture in the

path of a cyclotron that bombarded the system with Krypton ion at 25MeV/AMU [3]

This round of testing with the cyclotron confirmed integration of different system

components and validation of testing in a laboratory environment, thus achieving

TRL-4.

The next phase of the design was to test it on high altitude balloons to move

towards achieving TRL-5. To fly in these conditions certain aspects of the payload

had to be further developed. A power board was developed to regulate power from

battery packs into the system as well as a data logging board to capture data for

review on return to surface. Six of the eight balloons were through a student driven

24

Figure 3.2: TRL-4 form factor(left), Cyclotron mounting (right)

program called Balloon Outreach, Research, Exploration and Landscape Imaging

System (BOREALIS). A program ran by Montana Space Grant Consortium (MSGC).

These balloon flights usually reached around 90.000ft before descent. The two other

flights were performed by NASA’s Columbia Scientific Balloon Facility. These flights

achieved altitude of 120.000ft and took place in New Mexico. [3] These tests proved

that the system could operate in harsh environments helping it achieve TRL-5.

25

Figure 3.3: BOREALIS balloon(left) and the CSBF balloon (right)

To achieve TRL-6 MSU chose to fly the system on a sounding rocket in 2014. The

rocket vehicle was SL-9 operated by UP Aerospace LLC which achieved an altitude of

408,000ft(Figure 3.4). The form factor of the RTCS has to be redesigned for this test,

which achieved a 1U form factor (10cm x 10cm x 10cm) [16]. This new design readied

the RTCS for future sounding rocket missions as well as future ISS and cube-satellite

missions. Attaining TRL-6 meant that the system and subsystems were validated in

an end-to-end environment. TRL-7 was attempted but several hardware malfunctions

prevented this achievement.

In March, 2015 the RTCS was flown on another sounding rocket down in Wallops,

Virginia (Figure 3.5). This rocket required further testing before launch in the form

of vibration testing and pressure testing after integration. A more solid deck platform

was used to interface the RTCS in this rocket.

26

Figure 3.4: Up Aerospace sounding rocket demonstration [3]

Figure 3.5: Wallops sounding rocket(left), view from rocket in orbit (right)

On Dec. 14th 2017, the design had the opportunity to visit the International

Space Station (ISS) with an designation of RTcMISS (pronounced ”Artemis”). This

successful test elevated the design to TRL-7 by successfully operating a prototype

design in space.

27

Prior Work

Prior work at MSU included numerous Master’s and Doctorate students

continuously developing and improving the RTCS. Jennifer Hane developed a fault

tolerant FPGA architecture to interface to a radiation sensor. [9] Justin Hogan worked

on modeling reliability of various architectures. [11] Raymond Weber designed the

Power board and ControlOS (the operating system controlling the Spartan 6 on the

stack). [22] Sam Harkness designed a custom PCB to fit the 1U design and a data

collection board. [23] Connor Julien designed the architecture that flew on Radsatg

and interfaced the RTCS with the avionics support system for Radsatg. [3]

Current Testing Phase

The next stage of this design is to use error correcting codes to preserve critical

data on a low earth orbit inside of a cube satellite of MSU’s design. This is to be

tested Radsatu which is set to be transported to the ISS in late 2019, with a release

from the ISS shortly after. A successful test here will prove that the system is capable

of operating in a harsh environment without losing data. Before this design can be

complete an examination of several popular error correcting method will be examined

in the following chapter.

Where this thesis ends is a plan to add another layer of fault mitigation to the

previous design. This can be seen in Fig 3.6. The three faults types displayed in the

flow diagram show the steps taken to mitigate each of those unique faults.

28

Figure 3.6: Fault Mitigation Flow diagram

First of the fault mitigation techniques implemented on teh RTC is the triple

modular redundancy (TMR) method. As shown in Fig 3.7 the TMR method is

designed to detect a fault in the active circuit. To do this a voter looks at the output

of three identical circuits. If there is an outlier this is detected by the voter system and

triggering the first step of this system. Halting foreground operation, which moves

into Replace Faulted core with a space processor waiting for this specific incident.

Once the core is replaced the system resumes operation after synchronizing all the

processors. While the system is resuming after the faulty core is replace, a background

repair method is ran to correct the faulted active circuit. This is accomplished by

re-configuring the specific active circuit through Partial Reconfiguration.

29

Figure 3.7: Fault Mitigation Using TMR

The second fault mititgation technique implemented on the RTC is by using

Xilinx’s soft error mitigation (SEM) controller. This controller creates ECCs for the

configuration of the RTC. While its running it actively waits for an fault to occur in

the configuration memory. Once this is detected the SEM can correct certain cases

of these errors, single or double bit adjacent errors. If there is an error that can’t be

corrected by the SEM a power cycle will reset the configuration. A power cycle is

the worst case scenario since this will effectively wipe out any critical data within the

system.

30

Figure 3.8: Fault mitigation using the SEM controller

My Contribution

What this thesis expanded on is the ”Fault in Data Memory Detected by ECCs”

fault mitigation method shown in Fig 3.9. This method looks at the memory space

allocated to storing critical information from the processors that TMR would wipe

out without it. This memory is still susceptible to SEEs, which is where the ECCs

come in. When there is a single bit fault detected the Hamming codes will correct

that flip, if this bit flip is uncorrectable due to the bit flip happening in the ECC

parity bits instead of data the Memory Voter & Repair block corrects this by using

a method similar to TMR. This block looks at all of the separate memory units and

finds the outlier. If there is an uncorrectable bit fault or a multi bit fault, this block

is able to correct this and allow the system to resume normal operation.

31

Figure 3.9: Fault mitigation using Error correcting codes in memory

32

THEORY

Error correcting codes (ECC) have been around since the late 1940’s, first

documented use was in the Model V computers Richard Hamming was using at Bell

to relay information. [26] The codes Mr. Hamming created to check the data running

through have been named Hamming codes. Being one of the first implementations of

ECC and in the early age of computers this is one of the simpler existing methods.

As the field of error correcting progressed, numerous other methods were created.

The four methods this thesis will cover are Hamming codes, BCH codes, Turbo

Codes, and Low-density parity codes. Each of these method have slightly different

implementation and different capabilities.

Each of these error correcting methods has two main processes, encoding and

decoding. The encoding process takes the existing data and creates a block of data

called the parity-check for use in the decoding process. This process is usually the

faster, less complex of the two.

The decoding process, which is usually more complex, can be broken down into

two sections:

1. analyze the data with the parity bits and detect if there are any errors.

2. if there are error, correct said errors, then report position if needed.

When it comes to computational requirements the encoding process takes less

resources/time to complete its task than the respective decoding process. This is

usually the case because the encoding process usually takes a known set of data and

know method or generator set to create parity bits. During the decoding process of

the same method the known values are the encoded data and the method to check

existing data against the parity bits generated during the encoding process. Some

33

method can be setup to report the error position after correction, while others can be

setup to report how many errors were corrected or failure to correct the code. This

can all be determined by the case that these codes are used.

The first of the method talked about in this thesis are Hamming Codes. This

implementation is a non-systematic method, this means that the parity bits are

mixed into the data string. A systematic code is separated into data and parity

bits separately as shown in Figure 4.1. Systematic codes can have the parity bits on

either side of the data bits, they just need to be separated from the data bits.

The rest of the methods discussed in this thesis after Hamming, in order, are

BCH codes, Turbo codes, and LDPC codes. these codes are design to be systematic in

these specific cases. With ECC a system can detect and correct for a certain amount

of errors. The number of errors a system is capable of correcting depends on the

capabilities of the method used.

Figure 4.1: The top block is a non-systematic representation of encoded data
Hamming(12,8), Bottom block is a systematic representation of the same data and
parity bits Hamming(12,8)

Hamming Codes

Hamming codes were invented by a Bell Lab’s employee Richard Hamming in the

late 1940s. These codes were used to detect errors on the Bell Model V, which is an

early computer design by Bell Labs to operate independently of an operator. When

34

these computers found an error, during work hours, it would flash lights and sound

and during the weekends they would just continue through errors. Mr. Hamming

decided that restarting his computer every time he found an error was something

that could be avoided if the Hamming code itself could identify the position of the

error and correct it. So in the 1950’s he published what today is know as Hamming

Code, a method still being used in devices today.

For this thesis the form of hamming codes mainly talked about are the

Hamming(12,8) codes. This means that there are eight data bits and four parity

bits, the number of parity bits allows for precise identification in memory is by using

Error Correcting Codes (ECC). An example of the simplicity of Hamming code parity

bit generation is shown in Fig 4.2 and an example snippet of sudo code is shown below.

%first hamming code Parity bit

hammingCode(1) = xor(xor(xor(xor(hammingCode(3), hammingCode(5)),

hammingCode(7)), hammingCode(9)), hammingCode(11));↪→

Figure 4.2: Encoding process of the 1st parity bit from a byte of data

35

Hamming Encoding

The main process of ending in Hamming is to xor data bits to find the required

Parity bit. First before encoding a few key features need to be known. First, how

much data is being encoded at a minimum. In this case 8 bits, next how many parity

bits are needed. For Hamming codes, with single error correcting (SEC) capabilities,

this can be found by looking at Eq. 4.1. The minimum amount of parity bits is

based on the length of inputted data n, for example is n = 8 then m has to be, at a

minimum, 4.

n ≥ 2m − 1 (4.1)

A visual representation of all the parity bits being generated is shown in Fig.

4.3. The method discussed in this thesis is the Hamming(12,8) method, where there

are 12 bits total and 8 of those are data bits as well as the figure that was referenced

in the previous sentence.

36

Figure 4.3: A non-systematic approach to generating Hamming parity bits for a
(12,8) method

The easiest way to explain how parity bits are generated in Hamming codes is

to show a visual of the non-systematic method. Equations 4.2, 4.3, 4.4, and 4.5 show

the math operations to computing each of the parity bits for the given data. The ⊕

symbol is the XOR logical operation, which functionally simular to taking the modulo

2 of a summed value.

P1 = D1 ⊕D2 ⊕D4 ⊕D5 ⊕D7 (4.2)

P2 = D1 ⊕D3 ⊕D4 ⊕D6 ⊕D7 (4.3)

37

P3 = D2 ⊕D3 ⊕D4 ⊕D8 (4.4)

P4 = D5 ⊕D6 ⊕D7 ⊕D8 (4.5)

With the parity bits calculated the encoding part of Hamming is complete, the

next step for this encoded data is to be decoded before use.

Hamming Decoding

The decoding process for Hamming codes uses the same process as the encoding

to generate check bits to compare against the existing parity bits, this comparison

implies a syndome vector is created. A syndrome vector is a set of values that

represent the output of comparing either:

1. a set of parity bits vs parity check bits

2. a set of equations using the parity bits

In the case of this Hamming code method parity bits are being compared to the

parity bits generated in the encoding method. As seen in Eq. 4.6, the syndrome bits

are computed exactly the same way as the the parity bits are generated.

S1 = D1 ⊕D2 ⊕D4 ⊕D5 ⊕D7 (4.6)

Knowing how to compute the syndrome bits can be used to the advantage of

hardware implementation. Instead of storing directly the value can just be compared

against the parity bit in a if statement to find any possible errors. The matlab function

show in 1 shows an example of how to use the syndrome bits to correct any possible

38

errors. This listed code can be directly converted to hardware, an example of this in

VHSIC Hardware Description Language (VHDL) can be seen in ??.

Listing 1: Hamming Decode example

%detection

if(hammingCode(1) ~= xor(xor(xor(xor(hammingCode(3), hammingCode(5)),

hammingCode(7)), hammingCode(9)), hammingCode(11)))↪→

parityErrors(1) = 1;

end

%correction

for x = 1:columns

errorBit = errorBit + parityErrors(x);

end

%corrects the 1 bit flip in the hamming code

if(errorBit > 0)

hammingCode(errorBit) = ~hammingCode(errorBit);

end

A visual of this code snippet can be seen in Fig. 4.4. This process just needs

a few xor logic gates and a and gate to figure out if there is an error in the data

bits exemplifying that this process can be done with small hardware footprint. An

similar circuit would be built for each of the four parity bits in this hamming code

(Hamming(12,8)).

39

Figure 4.4: Example of checking parity bit

BCH codes

Bosw-Chaudhuri-Hocquenghem (BCH) codes are a widely used set of encoding

methods. BCH codes are considered one of the most important cyclic codes in current

use. Codes (C) are considered cyclic if they can be shifted l times and display another

code C within the code. Equations 4.7 and 4.8 show the primary aspects of a cyclic

code. [8]

c = [c0c1c2...cn−1] (4.7)

c = [cn−lcn−l+l...cn−1c0...cn−l−1] (4.8)

When managing cyclic codes there are two important matrices that are needed to

encode and decode BCH, Turbo, and LDPC codes. These are the generator and parity

check matrices. For the parity check matrix one of the key features for defining a

parity check matrix for a code can be defined by Eq. 4.9. This allows for identification

40

of errors if the resultant of this equation is equal to anything but zero.

c ∗HT = 0 (4.9)

The parity check matrix used in this thesis was generated through MATLAB

2018 using the bchgenpoly function, this function itself is outside of the scope of this

thesis. This function, summarized, creates a generator matrix, that when transformed

into a parity check matrix, fulfills Eq. 4.9. The generator matrix (G) and parity check

matrix (H) are Toeplitz, which means that they follow the the equation 4.10. The εi,j

is the matrix element at the ith row and j th column. Example generator matrix 4.5 is

shown next to an example parity check matrix 4.6. These two matrices are considered

non-systematic matrices. In the explanation of BCH encoding a systematic generator

matrix is used to encode systematic

εi,j = εi−1,j−1 (4.10)

1 1 0 1 0 0 0

0 1 1 0 1 0 0

0 0 1 1 0 1 0

0 0 0 1 1 0 1

Figure 4.5: Example generator matrix [8]

1 0 1 1 1 0 0

0 1 0 1 1 1 0

0 0 1 0 1 1 1

Figure 4.6: Example parity check matrix, paired with 4.5 [8]

41

BCH Encoding

BCH encoding methods can be done in a systematic style or a non-systematic

style. This thesis will use a systematic style to encode data using a BCH method.

The specific BCH encoding parameters used in this thesis are 11 data bits (eight

actual data, three padded) and 15 total bits (BCH(15,11)). This method is capable

of correcting 1 error in the data bits. Preferably, a eight bit method would have

been chosen to align with the theory in the Hamming code section but for a clean

method with nicely defined generator and parity check matrices. The closest setups

would be four data bits, seven data bits, or 11 data bits. Using a method with

less than the required amount of bit would double the required amount of hardware

or completion time to accomplish encoding eight bits, plus some required storage

registers/recombining circuitry. Meaning that if the eight data bits are split, there

will be extra registers needed to maintain data between the two different encoding

circuits. A more complex method will use more hardware but simplify the process of

staging input data before encoding.

This means that the basic encoding process will have the original data embedded

in the encoded output. Thus allowing for visual confirmation that the encoding

process didn’t change any of the existing data. By defining the type of encoding

method beforehand the generator matrix can be created. The generator matrix is

defined by the Eq. 4.11, either through a table lookup or by plugging in respective

n,k values will end up with 1 + x+X4. [10].

g(x) = 1 + g1x+ g2x
2 + ...+ gn−k−1x

n−k−1 + xn−k (4.11)

The method described in this thesis uses a linear shift register with feedback

connections corresponding to the coefficients of the generator polynomial as show in

42

Eq. 4.11. [8] The generator polynomial for this specific method is 1 + x + x4 [10],

this information determines the generator and parity check matrices for encoding and

decoding data in this BCH method, shown in 4.12 and 4.13 respectively.

[
1 0 0 1 1

]
(4.12)

1 0 0 0 1

0 1 0 0 0

0 0 1 0 0

0 0 0 1 1

(4.13)

There are two different stages to the encoding circuit as seen in Fig. 4.7. The

variable k represents a clock cycle from the beginning of the data bit being fed into

the encoding circuit, c(x) is the code being inputted based on which bit the current

clock cycle x was at.

• for clock cycles 1 to k, the information bits are transmitted in unchanged

form (switch S2 in position 2) and the parity bits are calculated in the Linear

Feedback Shift Register (LFSR) (switch S1 is on).

• for clock cycles k+1 to n, the parity bits in the LFSR are transmitted (switch

S2 in position 1) and the feedback in the LFSR is switch off (S1 - off).

43

Figure 4.7: Encoding circuit for a (n,k) BCH code [8]

BCH Decoding

There are four main steps to decoding a BCH encoded word. Knowing the

number of data bits, code length, encoding type (example: BCH(15,11)) are all things

that need to be known before running through the four steps

1. calculate the Syndrome

2. Solving the key equation

3. Finding the error positions

Let there be known these four steps are designed for all BCH codes, whether

single error correction (SEC), double error correction (DEC), or triple/more error

correction (TMEC). Step 2 can be omitted from SEC and DEC since the syndrome

will show the error position in the incoming code. For all other error correction

methods using BCH all steps need to be accomplished. Since this thesis is looking at

44

single error correction in the rest of the listed codes, that is the method design this

section will follow.

c(x) = c0 + c1x+ c2x
2 + ...+ cn−1x

n−1 (4.14)

r(x) = r0 + r1x+ r2x
2 + ...+ rn−1x

n−1 (4.15)

e(x) = e0 + e1x+ e2x
2 + ...+ en−1x

n−1 (4.16)

Starting off with the required equations for calculating the syndrome. Eq. 4.17

shows three sets of equations: c(x) correlates to the incoming (encoded) message, r(x)

is the received polynomial, and e(x) is the error polynomial such that their form is

of Eq. 4.17. [8] Since this method has been designed for transmission over RF bands

the e(x) is the error noise that can infect the original data while being transmitted.

In the case of this thesis e(X) will take the place of possible SEEs from radiation.

r(x) = c(x) + e(x) (4.17)

The first step of the decoding process is to store the resulting r(x) in a buffer

and to calculate the syndrome with using Eq. 4.18 with the following constraints

Sj =

{∑n−1
i=0 riα

i−j for(1 ≤ j ≤ 2t)

Also since r(x) = c(x) + e(x) Eq. 4.19 is also true.

Sj =
n−1∑
i=0

riα
i−j (4.18)

45

Sj =
n−1∑
i=0

(ci + ei)α
i−j =

n−1∑
i=0

ciα
i−j +

n−1∑
i=0

eiα
i−j (4.19)

By the definition of BCH codes [8]

n−1∑
i=0

ciα
i−j = 0for(1 ≤ j ≤ 2t) (4.20)

thus arriving at,

Sj =
n−1∑
i=0

eiα
i−j (4.21)

Which signifies that the error polynomial is the only thing that will matter when

calculating the syndrome. If the error polynomial is zero, then there are no errors.

Si = r(αi) = r0 + r1α
i + r2(α

i)2 + ...+ rn−1(α
i)n−1 (4.22)

The syndromes can be generated by expressing Eq. 4.18 as Eq. 4.23

Sj = (...((rn−1 ∗ αj + rn−2) ∗ αj + ...) ∗ αj + r0 (4.23)

When using this equation (Eq. 4.23 for this method (m = 4 and generator

polynomial p = 1 + x + X4) the circuit of this equation (Fig 4.8) shows a high level

visual of the calculation of the syndromes for this BCH method. S0 through S3

represent the 4 syndromes needed to detect the position of an error. Just like how

Hamming codes detect the position of an error. All of the Syndromes are initialized

to zero and the recieved (r(x)) is clocked into the circuit 15 times to shift all values

of recieved code into the syndrome circuit.

46

Figure 4.8: Syndrome computation circuit for m=4 [8]

Since the BCH method used in this thesis is a SEC method the second step

(Solving key equation) will not have much discussed. As a high level overview of

what would happen for a TMEC code the coefficients for the error locations (σ) would

be calculated by using a Peterson-Gorenstein-Zieler algorithm, Euclid’s algorithm, or

Berlekamp-Massey algorithm [8] [10] [26].

Instead for a SEC method the error positions polynomial can be represented by

Eq. 4.24. This simplifies the process of finding the error locations substantially.

σ(x) = 1 + S1x (4.24)

Once the error location polynomial (σ(x)) is found the third step of the BCH

algorithm can be used to find and correct erroneous data. This is accomplished by

finding the reciprocal roots of σ(x) by substituting: 1, α, α2, ..., αn−1 into σ(x). A

common method in BCH schemes to do this is the Chien search algorithm (Eq. 4.25.

σ0 + σ1α
j + σ2α

2j + ...+ σtα
tj (4.25)

The range of Eq. 4.25 is t = 0, 1, 2, ..., 15 and j = 0, 1, ..., k − 1. The Chien

search algorithm is evaluated on every clock cycle, if σ(αj) = 0 then that receive bit

rn−1−j is corrupted. Therefore if for the clock cycle j the sum is equivalent to zero

47

the receive bit rn−1−j should be flipped.

A visual representation of the Chien search algorithm is shown in Fig 4.9. This

circuit is initialized by setting the registers c0, c1, .., ct to the coefficients of the error

location polynomial σ. The sum
∑n−1

i=0 cj is calculated, if the result of this is zero. The

corresponding error bit is found and corrected after a being delayed through a buffer

and corrected with an XOR gate. On each proceeding clock cycle the cj registers are

multiplied by their corresponding αj before another summation is completed. This

whole operation is repeated t = 15 times for this specific method.

Figure 4.9: Chien’s search circuit

The main portion of the encoding process for C2 and C3 only requires shift

registers and xor gate to accomplish its encoding.

For a BCH method that corrects more than one error, the corresponding circuits

for step 2 and step 3 will be much more complex. SEC is the simplest method for

using BCH codes and this is the smallest the area of hardware usage can be for this

method. The results section will detail resource usage for this method in more detail.

48

Turbo codes

Developed in 1993 [10], turbo codes performance benchmarks passed most

previous FEC block methods. Known for closely approaching the channel capacity.

Turbo codes are a popular method for safely transmitting data between RF systems.

Turbo encoding

Turbo encoding is a method that takes up quite a few more registers for the

output. By looking at Fig 4.10 the design shows that there are three outputs for

one set of data. One of the outputs will have the original form, making this method

systematic. The C2 and C3 codes are sent through a feed-forward/backwards register

system to encode the data. The third set of encoded data is ran through an interleave

process, which reorders the code in the index positions shown in Fig 4.10.

Listing 2: Example Turbo encoding using Matlab

for i = 1:8 \\

tmp = xor(msg_in(i),xor(reg(1),reg(2)));

c(i) = xor(tmp,reg(2));

reg = [tmp reg(1)];

end

49

Figure 4.10: Encoding structure for Turbo codes [10]

The code in Listing 2 shows the Turbo encoding method in matlab. The input

code is ran through a recursive systematic convolutional (RSC) encoder as shown in

Fig 4.10. The method that a simple RSC encoder uses to create the parity bits for

a Turbo code is shown in Listing 2. Once the code is processed by the Encoding

stage of this method there will be triple the original amount of bits for transmission.

For example if a input of the form [1 0 1 0 1 1 0 0] the Turbo encoding process

shown would result in the matrix shown in Eq. 4.26. As can be seen in the first

50

row of the output (Eq. 4.26) is the original input data, the next two rows show the

post-encoding process parity bits.

1 0 1 0 1 1 0 0

1 1 0 1 1 1 1 1

0 0 0 0 1 0 1 1

 (4.26)

Turbo Decoding

There are three key steps to decoding a Turbo code

1. Decoder 1: Compute L1(C
(1)
k) and de-interleav

2. Decoder 2: compute L2(C
(1)
k) and interleav

3. If decoding converges or iteration count is reached, stop and make a hard

decision to output.

These steps are shown in the visual representing Fig 4.11.

51

Figure 4.11: A high level visual of turbo decoding [10]

The first of these steps can be accomplished by looking at the inputted code

and taking the encoded data and splitting into its original data (the encoding is

systematic) and separating the two different parity bit sets to split between the

decoder 1 and decoder 2 process. Part of the decoder 1 process is to take the data

and reshape it for processing through a inbuilt function designed by Dr. Y. Jiang. An

example of this reshaping process is shown in the matrices show in Eq 4.27 (original)

and Eq 4.28.

1 1

0 1

1 0

0 1

(4.27)

52

[
1 1 0 1 1 0 0 1

]
(4.28)

The in build function is called a logmap function. This function takes an input

and runs the input through a set of log(eabs(var1−var2)) functions that converge the

approximation values toward, ideally, the correct value the more times that this

function is ran. This condition only works if there is an alternation between Decoder

1 and Decoder 2. This process depends on a convergence happening. If the process

shown in Fig 4.11 never converges the output shouldn’t be trusted.

While this process is used widely in transmission reliability, there are two key

functions used that are drawbacks to using this method on an FPGA. The log function

and exp function used in the logmap function. This will be discussed in more detail

in the results section of this thesis.

Low-Density Parity codes

The fourth of the encoding methods examined in this thesis, low-density parity

codes (LDPC) were discovered in the early 1960’s and originally called Gallager codes.

This encoding method didn’t come into use until the mid 1990’s. As with the other

encoding methods this is a high level observation of the required theory needed to

complete this version of a LDPC coding scheme. After discussing Turbo codes earlier

in this chapter the read should be aware there are a few advantages to using LDPC

codes compared to Turbo codes. [10]

• Low error floor

• Superior burst error correcting capabilities

53

While these are good there are a few drawbacks to using LDPC codes compared

to Turbo codes.

• High encoder complexity

• Interconnect in decoder is large and irregular

The main thing that this thesis is concerned about is hardware use vs time, this

is assuming that the decoding process can correct an error(s) every time there is one

detected. For Turbo codes the error rate was extremely high, for this method the

low error floor attribute that a major factor in determining the results of using this

method.

LDPC encoding

A high level examination of LDPC encoding shows that the process is a fast and

quick process. The main part of the encoding process relies on a generator matrix to

create parity bits for unique data input. The generator matrix is based on the parity

check matrix that will be needed in the decoding stage of the LDPC codes discussed

in this thesis. The equations to make a parity check matrix for a LDPC 4/7. This

method has four data bits and three parity bits making each chunk of encoded data

being seven bits long. The parity bits are generated from equations 4.29, 4.30, and

4.31 by setting the resulting E1,E2,E3 equal to zero and solving for the corresponding

C5,C6,C7. This is the hand method for creating parity bits for LDPC codes. For

using these equations with any input a generator matrix has to be created with these

parameters. First the parity check matrix is made directly from the equations listed

below, based on the bits of the resulting code on the right side of each of the parity

54

check equations, shown in Eq. 4.32.

E1 = C1 ⊕ C2 ⊕ C3 ⊕ C5 (4.29)

E2 = C1 ⊕ C2 ⊕ C4 ⊕ C6 (4.30)

E3 = C1 ⊕ C3 ⊕ C4 ⊕ C7 (4.31)

1 1 1 0 1 0 0

1 1 0 1 0 1 0

1 0 1 1 0 0 1

 (4.32)

Once the parity check matrix is found with the corresponding parity check

equations, a generator matrix can be created from cutting out the identity matrix

and rotating the matrix and restoring the identity matrix to the form of Eq. 4.33.

The generator matrix is design so that the parity check matrix can pull any error out

of the encoded data.

1 0 0 0 1 1 1

0 1 0 0 1 1 0

0 0 1 0 1 0 1

0 0 0 1 0 1 1

(4.33)

Once the generator matrix (4.33)is found the inputted data can be ran through

Eq. 4.34 to find the corresponding encoded output. Notice that the generator matrix

has an identity matrix making up part of of the matrix as a whole, this shows that

the generator matrix is designed to be systematic. Thus the original inputted data

55

can be seen in the first four bits of the encoded data.

encodedData = (inputdata ∗GeneratorMatrix)%2 (4.34)

Figure 4.12 shows an visual representation of the encoding process for a LDPC

method.

Figure 4.12: LDPC encoding method using a generator matrix

LDPC decoding

LDPC codes have been found to have multiple different method for decoding any

LDPC code as long as the parity check matrix and code parameters like code-length

and data length. These method can be parallel or sequentially designed, for this thesis

a ”bit-flip” (BF) method will be used to decode LDPC codes for the reason that this

method allows for quick implementation into the hardware with a low amount of

resources usage. There are four main steps to the BF method:

1. check parity matrix equations against encoded data

56

2. identify position of erroneous data

3. correct erroneous data

4. repeat until negative values are non-existent

The first step is as simple as using the parity check matrix (Eq. 4.32) to find

which equations (Eq. 4.29, 4.30, and 4.31) reported a non-zero value (Eq. 4.35).

These reported values can be multiplied against the parity check matrix to find an

resulting positional vector showing the location of any erroneous data (Eq. 4.36).

checkError = encodedData ∗ parityCheckMatrixT (4.35)

errorPositions = checkError ∗ parityCheckMatrix (4.36)

Once the location of the erroronous data is found the rest of the operation is just

to flip those bits and repeat the prior steps (1-4) until completion of a predetermined

number of iterations.

A hi-level representation of the LDPC decoder used in the process discussed in

this section is shown in Fig. 4.13.

57

Figure 4.13: Block diagram of a LDPC decoder

58

RESULTS AND EXPERIMENTS

This section is for the results of the synthesis and implementation of each ECC

method, detailing the required resources to implemented the discussed methods. The

main features of each method that is under inspection are

1. Error correction Capability

2. Speed of execution

3. Area used

In each of the sections below there are a resource utilization and timing results.

All of these values are compiled into a table at the end of this section in Table 5.7. A

figure of merit, based on the listed features above, will also gauge the viability of each

of the methods as well. This will determine which method will be used in Radsatu.

There are a few key terms that will pop in the tables below. LUTx: Look Up

Table (x=inputs) and FDRE : single D-flipflop with an data(D), clock enable(CE),

and synchronus reset(R), and multiplexer (MUXn) (n=inputs)

Hamming code

Hamming ECC requires only XOR logic gates to implement both the encoding

and decoding processes in hardware. A look up table is used in place of logic gates

to aid in timing of the system.

Hamming encoding

The encoding process takes 2ns on a 100MHz to complete its task as shown in

Fig 5.1.

59

Resource Type required

LUT4 2

LUT5 2

Table 5.1: Resource utilization of Hamming encoding

Table 5.1 show the required logic elements needed to run the Hamming encoding

method in FPGA fabric. As seen in later methods this is a relatively small usage of

resources.

Figure 5.1: Timing for Hamming encoding

Hamming decoding

The process to run through the hamming decoding process is 2ns with a 100MHz

clock, as seen in Figure 5.2.

Table 5.2 shows the resulting required resource utilization for the Hamming

decoding process used in this design.

60

Resource Type required

LUT5 2

LUT6 2

Table 5.2: Resource utilization of Hamming decoding

Figure 5.2: Timing for the decoding process with hamming codes

BCH Code

Implementing BCH codes in hardware was quite the task. This coding scheme

seemed to be suited for large data lengths. The implementation used in this thesis

was based on a single bit at a time shift method. Thus needing a clock cycle per bit

going through the shift registers, plus a few more for bit management.

BCH encoding

BCH encoding is completed decent amount of hardware resources (relative to

Hamming) as shown in Table 5.3.

61

The encoding process took 18ns as shown in Fig 5.3. This is due to the method

shifting bits into a shift register as previously mentioned.

Resource Type required

LUT1 12

LUT2 4

LUT3 1

LUT6 1

FDRE 4

Table 5.3: Resource utilization of BCH encoding

Figure 5.3: Encoding timing for BCH codes(18ns)

BCH decoding

The decoding stage of the BCH algorithm implemented in this thesis require

significantly more resources to build compared to the encoding process, the resources

required are shown in 5.4.

The BCH decoder took 66ns to complete decoding, as shown in Fig 5.4. The

clock speed for the encoding and decoding process of this BCH method was 100MHz.

Figure 5.4: Decode timing for BCH method (66ns)

62

Resource Type required

LUT1 12

LUT2 8

LUT3 23

LUT4 3

LUT6 6

FDRE 46

Table 5.4: Resource utilization of BCH decoding

Turbo Code

The results for Turbo ECC have been left out of this section for 2 key reasons.

1. Required math functions

2. Area usage

These two topics caused extensive issues with converting to vhdl with Matlab’s

hdl-coder tool. The first problem (math functions) is that the method being used

required a several log function calls and several ex calls. Each of these functions

calls require an lookup table with enough resolution to maintain the data resolution

being passed through. Which leads to the second issue, where in Matlab each of

these functions required a 213 resolutions, which in terms of a lookup table requires a

lookup table capable of storing 213 values. In Xilinx’s current generation of FPGAs,

which are only capable of 26 lookup tables at max, would require numerous linked

look up tables to accomplish this task (128 lookup tables). This usage of look up

tables eliminated this method from being used in the radiation tolerant computing

stack.

63

Low-Density Parity codes

LDPC encoding

LDPC codes were extremely simple to implement in hardware, the process of

setting up the parity-check bits was very similar to setting up Hamming codes, just

a little simpler. As shown in Table 5.5 LDPC encoding is a simple process, the data

set is fed in and ran through Eq. 4.34. The timing of the LDPC encoding process is

shown in Fig 5.5, having an instantaneous output in simulation. When implemented

on a real system a 2ns delay could be assumed due to the average setup time on a

logic gate

Resource Type required

LUT3 3

Table 5.5: Resource utilization of LDPC encoding

Figure 5.5: Encoding timing for the LDPC coding block

LDPC decoding

The decoding process of LDPC is a little more complex than Hamming decoding,

The timing for this process is extremely short, which is suitable for real time use.

While this process is short, the implementation used ends up using a large amount

of look up tables (LUT) as shown in Table 5.6.

64

Resource Type required

LUT2: 7

LUT3: 5

LUT4: 5

LUT5: 36

LUT6: 529

MUXF7: 14

MUXF8: 5

Table 5.6: Resource utilization of LDPC decoding

Figure 5.6: LDPC decoding Timing

Summation of resource usage

Table 5.7 shows the different resources for each of the different methods. As

a reminder of references to each of the acronym shown in the table: Look up

table(LUT), D Flip-Flop with Clock Enabled and Synchronus Reset (FDRE), adn

multiplexer (MUX). This information can be abstracted to show how many slices

on the FPGA are used. A slice is a section of the FPGA that has a set amount of

resources contained within it. Each slice, on a 7-Series device, contains 4 LUTs, 8

Flip-flops, 1 arithmetic carry, 128 bits of RAM, and 64 bits of shift registers. [28]

With this relation, we can approximate how many slices are used.

65

Method Resource usage Speed

Hamming Encoding LUT4: 2 LUT5: 2 2ns

Hamming Decoding LUT5: 2 LUT6: 2 2ns

BCH Encoding

LUT1: 12 LUT2: 4

LUT3: 1 LUT6: 1

FDRE: 4

18ns

BCH Decoding

LUT1: 12 LUT2: 8

LUT3: 23 LUT4: 3

LUT6: 6 FDRE: 46

66ns

LDPC Encoding LUT3: 3 2ns

LDPC Decoding

LUT2: 7 LUT3: 5

LUT4: 5 LUT5: 36

LUT6: 529

MUXF7: 14 MUX8: 5

2ns

Table 5.7: Total resource usage, based on Xilinx synthesis tools. Each of the
resource’s fan in value is indicated by the number following the resource. (Example:
LUT4 = 4 input look up table). Clock rate for this table is 100MHz

Table 5.8 shows the resulting slice usage for each of the methods described in this

thesis except Turbo encoding/decoding. This is due to the method of Turbo decoding

requiring a much larger amount of resources compared to the other methods, without

the decoding process the encoding process is useless.

66

Method Slice Usage

Hamming Encoding 1

Hamming Decoding 1

BCH Encoding 6

BCH Decoding 14

LDPC Encoding 1

LDPC Decoding 146

Table 5.8: Slice usage for each method, Each slice, for a 7-Series Xilinx FPGA,
contains 4 LUTs, 8 flip-flops, 1 arithmetic/carry chain, 128 bits of RAM, and 64
bits of shift registers [28]

Now that a metric for how many slices are used, an approximation of area based

no the FPGA that this method is used on. For this thesis these methods are going

to be used on an Artix 7 200T, which by referencing Table 5.9, shows that this

particular device has 33,650 slices available on the device. Using this as a maximum

number of resources we can predict the amount of area taken up with each method

(by percentage). This is shown in Table 5.10 in percentage. It can be noted that

these values are very small.

Using the percent area defined in Table 5.10 and the basic size of one Artix

7 200T chip (6250mm2) a table can be created to gauge how likely the chance of

ionizing radiation striking a section of the FPGA that is currently active. To do this

a few things need to be established first. What are the chances that our device will

be struck at all, how big is this strike, and how often. For the first question, it can

be assumed that at some point our device will be struck somewhere on the device.

As for how big is this strike, since this strike will usually be ionizing radiation. We

can assume the size of an electron, which is 2.82x10− 15m [7]. Since our feature size

67

7 Series FPGA Total Slices

7A12T 2,000

7A15T 2,600

7A25T 3,650

7A35T 5,200

7A50T 8,150

7A75T 11,800

7A100T 15,850

7A200T 33,650

Table 5.9: Each of the listed FPGAs are of the Artix 7 Series family, known for
their high performance per watt

(28nm) is much larger than this we can assume that only one feature will be struck

if the strike is normal to the surface and up to 60 deg from the surface normal. [11]

Third, how often, using a fault rate of 1.02E−15ms [11] a value of .93312 strikes per

day on the whole device, at a minimum. Combining all of these factors with the %

area displayed in Table 5.10 a minimum strike frequency for each of the methods can

be estimated. This is shown in Table 5.11, which shows that the method with the

highest slice usage has the highest chance of being struck by the .93312 strikes in a

day.

68

Method Area (%)

Hamming Encoding 2.9e-3

Hamming Decoding 2.9e-9

BCH Encoding 1.7e-2

BCH Decoding 4.1e-2

LDPC Encoding 2.9e-3

LDPC Decoding 4.3e-1

Table 5.10: Each of the area entries shows the percentage of slices used on a Artix-7
200T FPGA, this value is based on only using this method with none of the other
slices being used for any other design.

Method Strike Chance (%)

Hamming Encoding 2.77e-3

Hamming Encoding 2.77e-3

BCH Encoding 1.66e-2

BCH Decoding 3.88e-2

LDPC Encoding 2.77e-3

LDPC Decoding 4.04e-1

Table 5.11: This table displays an approximation of the active circuit being faulted
by an ionizing strike to the device (Artix 7 200T). This values is only for the
methods described in Table 5.10

69

Choosing an ECC method

To decide on which method to implement on the next cube satellite in design at

MSU a figure of merit (T) had to be established with all of the methods. Eq 5.1 is

the figure of merit that will be used in this thesis to pick which method will be used

on Radsatu.

T =
(ErrorCorrectionCapability) ∗ Speed

Area(slices)
(5.1)

In Eq. 5.1 the Error Correction Capability variable represents how many errors

each ECC method can correct for. The categories for this variable are single error

correction (SEC), double error correction (DEC), and triple or more error correction

(TMEC) are gauged in a linear scale based on how many errors can be corrected.

The higher the number the more errors that can be corrected by this method.

The Speed in Eq. 5.1 represents how fast the method can take a block of

information and complete its process on that block. This variable is represented

on a inverse scale, the smaller the number the slower the process.

Finally the Area in Eq. 5.1 is based on the number of slices that are needed to

implement the designs that were discussed in this thesis.

Using these metrics, a figure of merit for each of the methods can be created.

This is seen in Figure 5.7, the values shown are based on the values found in Table

5.12.

70

Method Error correction capability Speed (ns) Area (slices)

Hamming Encoding 1 2ns 1

Hamming Decoding 1 2ns 1

BCH Encoding 3+ 18ns 6

BCH Decoding 3+ 66ns 14

LDPC Encoding 1 2ns 1

LDPC Decoding 1 2ns 146

Table 5.12: Figure of merit table, based on the values found in development of this
thesis. Clock rate for this table was 100MHz

Figure 5.7: A gauge of merit for each of the viable methods, using metrics detailed
in Table 5.12

71

As seen in Figure 5.7, the best scores (highest) are Hamming Encoding,

Hamming Decoding, and LDPC Encoding. Since LDPC Decoding scored so low

on Figure 5.7 the LDPC Encoding method is eliminated from choice of usage in

Radsatu. This leads to having a final high scoring methods of Hamming Encoding

and Decoding. This solidified the decision of using Hamming Codes for ECC on

Radsatu.

72

Radsatu choice

The ECC method of choice for Radsatu happens to be Hamming Codes. After

generating a figure of merit, the Hamming Code method had the highest combined

figure of merit. Now that a method has been chosen, this method can be implemented

on the Radsatu’s memory as seen in Fig. 5.8. This design encodes data as it is

stored to memory, when the data is accessed from the memory unit it goes through

a decoding block to check the parity bits against the data. If there is an error, this is

corrected and the data is pushed to the DataOut port.

Figure 5.8: Memory Scheme on RTC

73

CONCLUSION

The error correcting methods described in this thesis were performed to push

the development of the FPGA based radiation tolerant computing system at MSU.

This venture was an effort to add a layer of fault mitigation on top of the previous

design while maintaining the same performance of the system. This system has an

technology maturation opportunity in the Radsatu project, integrating ECCs into the

design of the system increase the likelihood of the project succeeding. The research

team at MSU eagerly anticipate receiving data from Radsatu after its launch in to

low Earth orbit.

74

REFERENCES CITED

75

[1] A. Bar-Lev. Semiconductors and Electronic Devices (3rd Ed.). Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1993.

[2] H. J. Barnaby. Total-ionizing-dose effects in modern cmos technologies. IEEE
Transactions on Nuclear Science, 53(6):3103–3121, Dec 2006.

[3] Connor Russel Julien. A radiation tolerant computer mission to the international
space station. 2017. [Online; accessed March 21, 2019].

[4] J. Fabula. The total ionizing dose performance of deep submicron cmos processes.
2008.

[5] M. Fras, H. Kroha, J. V. Loeben, O. Reimann, R. Richter, and B. Weber. Use
of triple modular redundancy (tmr) technology in fpgas for the reduction of
faults due to radiation in the readout of the atlas monitored drift tube (mdt)
chambers. In IEEE Nuclear Science Symposuim Medical Imaging Conference,
pages 834–837, Oct 2010.

[6] C. H. Tsao, R. Silberberg, J. Adams, and J. R. Letaw. Cosmic ray effects on
microelectronics. part 3. propagation of cosmic rays in the atmosphere. page 74,
08 1984.

[7] A. Holmes-Siedle and L. Adams. Handbook of radiation effects. Oxford science
publications. Oxford University Press, 1993.

[8] E. Jamro. The design of a vhdl based synthesis tool for bch codecs. 1997.

[9] Jennifer Susan Hane. A fault-tolerant computer architecture for space vehicle
applications. 2012. [Online; accessed March 21, 2019].

[10] Y. Jiang. A Practical Guide to Error-control Coding Using Matlab. Artech House,
2010.

[11] Justin Allan Hogan. Reliability analysis of radiation induced fault mitigation-
strategies in field programmable gate arrays. 2014. [Online; accessed March 21,
2019].

[12] A. S. Keys, M. D. Watson, D. O. Frazier, J. H. Adams, M. A. Johnson,
and E. A. Kolawa. High-performance, radiation-hardened electronics for space
environments. 2007.

[13] B. LaMeres. Radsat - radiation tolerant small sat computer system. Proceesings
of the AIAA/USU conference, 2015.

[14] B. J. LaMeres. Fpga-based radiation tolerant computing. 2012.

76

[15] B. J. LaMeres, S. Harkness, M. Handley, P. Moholt, C. Julien, T. Kaiser,
D. Klumpar, K. Mashburn, L. Springer, and G. A. Crum. Radsat - radiation
tolerant smallsat computer system. 2015.

[16] Mehrparvar, Arash. Cubesat design specification. February 20, 2014. [].

[17] NASA. New horizons: Spacecraft systems and components. 2016.

[18] Nasa.gov. Nasa ta 11, 2015. [Online; accessed March 20, 2019].

[19] Nasa.gov. Nasa ta 11. 2015. [Online; accessed March 20, 2019].

[20] Nasa.gov. Van allen radiation belts, NDA. [Online; accessed March 6, 2019].

[21] H. Quinn. High-performance computing for airborn applications. 2010.

[22] Raymond Joseph Weber. Reconfigurable hardware accelerators for highperfor-
mance radiation tolerant computers. 2014. [Online; accessed March 21, 2019].

[23] Samuel Andrew Harkness. Experiment platform to facilitate flight testing of
faulttolerant reconfigurable computer systems. 2015. [Online; accessed March
21, 2019].

[24] W. Schimmerling. The space radiation environment: an introduction. The Health
Risks of Extraterrestrial Environments, 2011.

[25] J. Schwank. Space and military radiation effects in silicon-on-insulator devices.
09 1996.

[26] T. Thompson. From Error-Correcting Codes Through Sphere Packings to Simple
Groups. Number v. 21 in Carus Mathematical Monographs. Mathematical
Association of America, 1983.

[27] P. Walter Schimmerling. The space radiation enviroment: An introduction. 2011.

[28] Xilinx. 7 series fpgas configuratble logic block - user guide. 2016.

[29] Xilinx. Vivado design suite user guide: Partial reconfiguration. 2018.

	Titlepage
	Copyright
	Dedication
	Acknowledgements

	Table of Contents
	List of Tables
	List of Figures
	List of Algorithms
	Abstract
	Chapter 1 — Introduction
	Chapter 2 — Motivation
	Space technology requirements
	Harmful radiation effects
	Common Radiation Mitigation Techniques
	Existing Radiation Hardened Processors
	Using FPGAs in the Harsh Environment of Space
	A Necessity for Fault Tolerant Computing

	Chapter 3 — Montana States Contribution
	Montana State University's approach
	Technology Maturation
	Prior Work
	Current Testing Phase

	Chapter 4 — Theory
	Hamming Codes
	BCH codes
	Turbo codes
	Low-Density Parity codes

	Chapter 5 — Results and experiments
	Hamming code
	BCH Code
	Turbo Code
	Low-Density Parity codes
	Summation of resource usage

	Chapter 6 — Conclusion
	References Cited

