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Appendix Section 1. Details on Data Sources and Variable Construction 

 

Mortality rates were constructed from restricted-access microdata from the National Vital Statistics 

System multiple cause of death mortality files. For each death, these files included the month of death, 

state of residence, and up to 21 cause of death codes. A death was categorized as related to Pneumonia & 

Influenza (P&I) if any of the 21 cause of death codes indicated pneumonia or influenza (ICD-9 codes: 

480-488; ICD-10 codes: J9-J18).  Non-P&I causes of death are based on National Center for Health 

Statistics (NCHS) categorization of underlying cause of death, according to the 39-cause recode that is 

available as of 1999. Categories were mutually exclusive, and non-P&I categories excluded deaths with a 

secondary cause of death for P&I. 

 

Age-specific population data was obtained from the Surveillance, Epidemiology and End Results 

Program (SEER) data. SEER data are annual and were linearly interpolated to the monthly level to avoid 

discontinuous jumps at the beginning of each year. These population data were used as the denominators 

for calculating P&I mortality rates by age group. In all analyses we specify our outcome variable as the 

natural log of the P&I mortality rate per 100,000 population.  

 

We obtained information on state laws regarding influenza vaccination in long term care facilities or 

influenza vaccination in childcare facilities, to be used as covariates (CDC Public Health Law Program 

and the Immunization Action Coalition, respectively).  

 

We also obtained data on vaccine match rates from the CDC’s annual influenza season summaries, which 

are compiled from the CDC’s virologic surveillance system. The match rate is defined as the percentage 

of strains characterized by the CDC that are included (as exact matches) in the vaccine for that season.  

 

We obtained data on adult (age 18+) influenza and pneumococcal vaccine coverage through the 

Behavioral Risk Factor Surveillance System (BRFSS) for the years 1995 to 2017, although the relevant 

vaccination questions were not included in the survey for influenza-years 1995/96, 1997/98 and 1999/00. 

These data have information on vaccination receipt, the respondent’s age, and their state of residence (but 

not occupation), which allow us to construct measures of vaccine coverage at the age-state-influenza year 

level. Our measure of influenza vaccination is derived from the self-reported variable that asks if the 

individual received an influenza vaccine in the past 12 months. Given the 12 month look back period of 

this survey question and the fact that influenza vaccines are most commonly administered during the 

months of September to December,1 we assign individuals surveyed during January through August of 

year t to the influenza-year that began in year t-1, and drop individuals that were surveyed between 

September and December. Influenza vaccination coverage rates for each influenza-year are constructed as 

the share of surveyed individuals in a given state that reported receiving the influenza vaccine during the 

relevant influenza-year, weighted by the provided BRFSS sample adult person weights. As we do not 

have information on occupation in this dataset, these vaccination coverage rates are for the general adult 

population rather than the population of hospital workers. 

 

Data on adolescent influenza vaccination coverage were obtained from the 2008-2017 waves of the 

National Immunization Survey – Teen (NIS-Teen); infant influenza vaccination coverage data were 
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obtained from the 2003-2017 waves of the National Immunization Survey-Child.  The NIS-Teen survey 

targets adolescents between 13 and 17 years of age, and includes information on the adolescent’s state of 

residence, as well as a provider-verified measure of if an adolescent surveyed during year t received an 

influenza vaccine dose during the t-1/t influenza season.  

The NIS-Child survey is a counterpart to the NIS-Teen, and targets infants between 19 and 35 months of 

age. These data similarly include information on the infant’s state of residence, however, unlike the NIS-

Teen, these data do not consistently report information on if an infant surveyed during year t received an 

influenza vaccine dose during the t-1/t influenza season. Therefore, to construct our measure of infant 

influenza vaccination coverage, we utilized information on the number of influenza vaccine doses the 

infant had received during their life, and we restricted our sample to the youngest set of infants surveyed: 

19-23 month olds. We then constructed an indicator variable that equaled one if the infant had ever 

received an influenza vaccine dose, and that equaled zero otherwise. Since infants are not recommended 

to receive any influenza vaccine until the age of 6 months, by restricting our sample to 19-23 month olds 

our vaccine measure should primarily capture influenza doses received during the previous 13-17 months, 

thus allowing us to more closely approximate a measure of influenza vaccination during the t-1/t 

influenza season.  

From the NIS-Child dataset we also constructed a measure of pneumococcal vaccination among infants. 

Since infants are recommended to have received 4 doses of the pneumococcal conjugate vaccine by the 

age of 15 months, our measure of pneumococcal vaccination is an indicator variable that is equal to one if 

the infant is up-to-date on their pneumococcal vaccine series at the time of the survey, and is equal to zero 

otherwise.     
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Appendix Section 2. Details of State Healthcare Worker Influenza Vaccination Laws 

 
Language in the table below regarding the health care facilities and the set of workers covered by the laws 

is drawn from state statutes and regulations, which vary widely in their specificity. For example, some 

states specify that the law applies simply to all hospitals (e.g Oklahoma, Tennessee), whereas some 

specify all general acute care hospitals (e.g. California, Nebraska) or all acute general hospitals and 

special hospitals (Maryland). The laws in some states extend beyond hospitals; for example, in Colorado 

it applies to all licensed hospitals, hospital units, ambulatory surgical centers and long-term care facilities, 

and in Rhode Island it applies to all health care facilities. Within a given health care facility, there is also 

variation as to whether the statute applies to all employees (e.g. Oklahoma, California, Nebraska), or only 

all health care workers (e.g. Colorado, Rhode Island), or some intermediate version such as all employees 

with direct patient contact (Maine). As noted in the main text, federal facilities (including those overseen 

by the Veterans Health Administration (VHA)) are not bound by these state laws. Notably, effective 

November 2017 (after the end of our sample period), the VHA implemented a directive that all heath care 

workers are to receive the influenza vaccine annually or wear a face mask during the influenza season.2 

Prior to this directive, only 4% of VHA hospitals reported hospital level requirements that health care 

workers receive the influenza vaccine.3 

 

We also graphically present the timing of the law adoption across states, and how that coincides with our 

sample period, in the figure below.  

 

Figure S1: Hospital Worker Influenza Vaccination Laws, by State 
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Table S1: Details on State Law Content 

State 

First 

Season 

Law Type 

Summary 

Alabama 1994/95 
Vaccination 

Offered  

All hospitals are required to establish vaccine policies for all employees that are 

consistent with CDC recommendations. 

Maine 2002/03 

 

Vaccination 

or 

Declination 

Required 

All designated healthcare facilities are required to offer the influenza vaccine to 

employees with direct patient contact. Formal documentation of vaccine declination is 

required.  

New 

Hampshire 2005/06 

 

 

Vaccination 

Offered 

All hospitals, residential care facilities, adult day care facilities, and assisted living 

facilities are required to provide all employees annual influenza immunizations. 

Employees may decline to consent to the vaccine for any reason, and exemptions are 

available for medical contraindications and religious beliefs. 

California 2007/08 

 

Vaccination 

or 

Declination 

Required 

All general acute care hospitals are required to offer the influenza vaccine onsite to all 

employees, at no cost. Employees may decline the vaccine for any reason, but formal 

documentation of vaccine declination is required.  

Tennessee 2007/08 

 

Vaccination 

or 

Declination 

Required 

All hospitals are required to offer the influenza vaccine to all staff and independent 

practitioners, at no cost. Employees may decline the vaccine for any reason, but 

formal documentation of vaccine declination is required if it is declined for a reason 

other than medical contraindication.  

Maryland 2008/09 

 

Vaccination 

or 

Declination 

Required 

All acute general hospitals and special hospitals are required to offer the influenza 

vaccine to all staff and independent practitioners. Reasons for vaccine declination 

must be formally documented.  

Washington 

D.C. 2008/09 

 

Vaccination 

or 

Declination 

Required 

All hospital employees and other persons with direct patient contact must be 

immunized in accordance with CDC standards. 

Massachusetts 2009/10 

 

Vaccination 

or 

Declination 

Required 

Hospitals must provide the influenza vaccine to all personnel, at no cost. Employees 

may decline the vaccine for any reason, and exemptions are available for medical 

contraindications and religious beliefs. Formal documentation of vaccine declination 

is required. 

Oklahoma 2009/10 

 

Vaccination 

or 

Declination 

Required 

All hospitals are required to offer the influenza vaccine onsite to all employees, at no 

cost. Employees may decline the vaccine for any reason, but formal documentation of 

vaccine declination is required if it is declined for a reason other than medical 

contraindication.  

Georgia 2010/11 
Vaccination 

Offered 

All hospitals are required to offer the influenza vaccine to all health care workers and 

other employees that have direct contact with patients, at no cost.  

Illinois 2010/11 

 

Vaccination 

or 

Declination 

Required 

All health care settings must offer the influenza vaccine to all health care employees.  

Employees may decline the vaccine for any reason, and exemptions are available for 

medical contraindications and religious beliefs. Formal documentation of vaccine 

declination is required. 

Nebraska 2011/12 
Vaccination 

Offered 

All general acute care hospitals are required to offer the influenza vaccine onsite to all 

employees. Employees may decline the vaccine for any reason. 

Colorado 2012/13 

 

 

Vaccination 

or 

Declination + 

Mask 

Required 

All licensed hospitals, hospital units, ambulatory surgical centers and long-term care 

facilities must provide an annual influenza vaccine to all healthcare workers. 

Healthcare workers are required to show proof of immunization or a valid medical 

exemption. Healthcare workers without proof of immunization must wear a mask 

during influenza season when in direct contact with patients. 
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Rhode Island 2012/13 

 

 

 

Vaccination 

or 

Declination + 

Mask 

Required 

All health care facilities must provide the influenza vaccine at no cost to the health 

care worker. Health care workers are required to receive the annual influenza vaccine, 

although may decline for any reason and medical exemptions are available.  Any 

workers who do not receive the vaccine must wear a mask during influenza season 

when in direct contact with patients.   Formal documentation of vaccine declination is 

required. 

New York 2013/14 

 

Vaccination 

or 

Declination + 

Mask 

Required 

Health care personnel are required to receive the annual influenza vaccine, although 

may decline for any reason and medical exemptions are available.  Any workers who 

do not receive the vaccine must wear a mask during periods when influenza is 

prevalent and when in areas where patients may be present.   Formal documentation of 

vaccine declination is required. 

 

Appendix Section 3. Details on the Synthetic Control Estimation Method 

 

We conduct a synthetic control analysis in which we estimate a separate treatment effect for each 

of the 14 states that adopted a vaccination law between 2002 and 2014. We construct a synthetic 

counterfactual for each of the 14 treated states, where the synthetic counterfactual is a weighted average 

of the P&I mortality rate of the set of states that never adopt a vaccination law (i.e., the “donor pool”). To 

obtain these weights, we match on the pre-treatment values of the outcome variable (log P&I mortality 

per 100,000 population) in each influenza year prior to treatment. For example, California was treated in 

the 2007/08 influenza-year, and thus we matched on the P&I mortality rate in each influenza-year from 

1995/96 (the first year in our sample period) through 2006/07. The synthetic control weights are those 

that minimize the pre-treatment root mean squared prediction error (RMSPE), and these weights were 

obtained using the synth command in Stata.  

 

The estimated treatment effect for each treated state is the average treatment-control difference in the 

post-treatment period.  P-values for the estimates were constructed via randomization inference using the 

distribution of the ratio of post-treatment root mean squared prediction error (RMSPE) to pre-treatment 

RMSPE.4 The post-treatment RMSPE is a measure of the size of the treatment effect, and the pre-

treatment RMSPE is a measure of pre-treatment goodness of fit. Therefore, achieving a small p-value 

requires both good pre-treatment fit and a relatively large post-treatment difference between treatment 

and control. Figure S2 displays the pre-treatment RMSPE for each of the 14 treatment states. The large 

pre-treatment RMSPE for Washington DC, for example, implies that these estimates are relatively less 

reliable and thus an extremely large treatment effect would be necessary achieve a small p-value. 

Confidence intervals for these estimates cannot be constructed without the additional assumption that 

treatment is randomly assigned (which would obviate the need for a synthetic control design).  
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Figure S2: Pre-treatment Root Mean Squared Prediction Error, by State 

 
 

Note: Each bar represents the pre-treatment root mean squared prediction error (RMSPE) for the synthetic 

control procedure described in Appendix Section 3. The pre-treatment RMSPE is a measure of how well 

the synthetic control procedure is able to match trends in the treated state to its synthetic control (lower 

values indicate better fit). Synthetic control estimates are more reliable for states with better pre-treatment 

fit. 
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Appendix Section 4. Details on Two-Way Fixed Effects Estimation Method  
 

4.1 Main Specification (Table 1) 

To estimate the effect of state laws regarding influenza vaccination for health care workers on P&I 

mortality rates we perform a state-level longitudinal data analysis and estimate two-way fixed effects 

models in which we control for national time fixed effects and state fixed effects, as well as state-specific 

linear time trends. Specifically, we estimate the following multivariate linear regression model: 

 

𝑌𝑠𝑡 = 𝛽0 + 𝛽1𝐿𝑎𝑤𝑠𝑦 +  𝛽2𝑋𝑠𝑡 + 𝛿𝑠 + 𝛿𝑡 +  𝛿𝑠 × 𝑡 +  𝜀𝑠𝑡 

 

where 𝑌𝑠𝑡 is the natural log of the P&I mortality rate per 100,000 population in state s and year-month t. 

We used the natural log of the mortality rate to ensure that predicted values from the regression would not 

take on impossible values (i.e., negative mortality rates), although the main estimates are nearly identical 

when we used the mortality rate in levels instead of logs. 𝛽1 is the coefficient of interest, where 𝐿𝑎𝑤𝑠𝑦 is 

a binary variable indicating the presence of any state law regarding health care worker influenza 

vaccination in state 𝑠 and influenza-year 𝑦. 𝑋𝑠𝑡 represents a vector of indicators for the presence of state 

laws regarding influenza vaccination in long term care facilities and childcare facilities. 

 

𝛿𝑠 are state fixed effects, which control for observable and unobservable time-invariant differences in log 

P&I mortality rates across all states. In other words, 𝛿𝑠 control for all cross-sectional differences across 

states. 𝛿𝑡 are year-month fixed effects, which allow for differences in log P&I mortality rates over time 

that are common to all states (e.g., the common component of a particularly bad influenza season). 

Finally, 𝛿𝑠 × 𝑡 are state-specific linear time trends, which allow for time-varying differences across states 

to evolve linearly over time. In the trend difference specification below we formally evaluate the extent to 

which there were statistically different trends in P&I mortality across states during the period prior to law 

adoption. While the evidence from these analyses (discussed elsewhere) suggests that there were not 

meaningful differences in pre-trends, we conservatively choose to include state-specific linear time trends 

in our preferred specification. We also report estimates excluding these trends, however.   

This approach estimates the change in the log P&I mortality rate before and after a state implements a 

vaccination law, relative to the changes in states that implemented laws in different years or not at all. 

Interpreting the estimates as causal effects of the law requires assuming that log P&I mortality rates 

would have evolved similarly in treatment and control states (i.e. with parallel trends) in the absence of 

the new laws.  

 

Regressions are weighted by the mean state population over the sample period and standard errors are 

clustered at the state level to allow for autocorrelation in the errors within states. Additionally, since the 

proportion of treated states is low (14 out of the 50 states plus D.C.), as a robustness check we also report 

in Table S2 p-values obtained from a non-parametric bootstrap procedure in which resampling was done 

at the state level and was stratified within the two intervention groups (law adopter or non-adopter).5, 6 

 

For interpretation, we also present in Figure S3 two plots that graphically show the aggregate impact of 

the laws in each influenza-year in our sample. In the left panel, we plot two sets of predicted values that 
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were generated using the results from the estimation of our main two-way fixed effects model: (1) P&I 

mortality rates for each influenza year for states that adopted a law, assuming the actual timing of law 

adoption; and (2) the predicted counterfactual P&I mortality rates for the set of states that adopted a law, 

had they never adopted a law. Thus, the gap between the two lines represents the estimated reduction in 

the P&I mortality rate that occurred in treated states in each influenza year as a result of law adoption. We 

note that although our treatment effect represents a permanent level shift in the P&I mortality rate, in the 

figure the gap between the predicted average P&I mortality rate and the counterfactual grows over time 

due to the fact that more states are adopting laws (as shown by the light blue bars representing the share 

of population affected by the laws). The right panel calculates the implied number of deaths averted due 

to the laws in each year. To calculate this, we first estimated the number of predicted deaths and 

counterfactual predicted deaths for each state, year, and month (i.e., the estimates in the left panel, but at a 

more granular level). We then estimated the number of deaths averted in each state, year and month as the 

difference predicted deaths and counterfactual predicted. We then summed over all treated states and 

months to generate the aggregated, annual estimates displayed in the right panel. 

 

 

Figure S3: Predicted Trends in P&I Mortality Rate per 100,000 Population, and Deaths Averted Due 

to Laws 

 
Note: The left panel uses the main specification (described in Appendix Section 4.1 and estimated in the first row of 

Table 1) to generate two sets of predicted values: (1) P&I mortality rates per 100,000 population for each influenza 

year for states that adopted a law, assuming the actual timing of law adoption (solid line); and (2) the predicted 

counterfactual P&I mortality rates per 100,000 population for the set of states that adopted a law, had they never 

adopted a law (dashed line). Thus, the gap between the two lines represents the estimated reduction in the monthly 

P&I mortality rate that occurred in treated states each influenza year as a result of law adoption. The population 

share represents the percent of the US population subject to these laws in a given influenza-year. The right panel 

calculates the implied number of deaths averted due to the laws in each year. To calculate this, we first estimated the 

number of predicted deaths and counterfactual predicted deaths for each state, year, and month (i.e., the estimates in 

the left panel, but at a more granular level). We then estimated the number of deaths averted in each state, year and 

month as the difference predicted deaths and counterfactual predicted. We then summed over all treated states and 

months to generate the aggregated, annual estimates displayed in the right panel. 
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4.2 Role of Negative Weights in the Two-Way Fixed Effects Model 

One important limitation of the standard two-way fixed effect model is that the resulting estimate of the 

average treatment effect on the treated (ATT) represents a weighted average of many treatment effects. In 

an empirical setting such as ours, in which states are adopting laws at different points in time, there is the 

potential for the weights to be negative, which can induce bias in the estimates of the average treatment 

effects.7-9 To mitigate concern regarding the role of this bias in our estimates of the average treatment 

effect, we do several key things.  

First, we implement a test for the potential influence of negative weights, as proposed by de Chaisemartin 

and d’Haultfoeuille (2020). Using the Stata command twowayfeweights we find that our ATT is the 

weighted sum of 112 estimated average treatment effects. Of those, 104 estimates receive a positive 

weight, and only 8 receive a negative weight. Additionally, the sum of negative weights is -0.021, 

representing a very small contribution to the overall ATT estimate, as the total of all weights sums to one. 

Thus, this test suggests that there is not likely to be substantial bias in our estimated ATT due to negative 

weights. 

Second, we show that our findings are robust to the “DIDm” estimator proposed by de Chaisemartin and 

d'Haultfoeuille (2020), which is also not subject to the concern of negative weights. This result is reported 

in Table 2 in the main text. We note that we do not use the DIDm estimator as our main model, as it faces 

other empirical limitations. Specifically, the DIDM estimator only allows for a single treatment variable 

(i.e., we cannot interact the treatment with subgroups, as in our heterogeneity analysis). Furthermore, 

given the large number of time periods in the monthly data, we can only use the DIDm estimator on 

annual-level data in our setting. These issues make it difficult to test for statistical differences in the 

effects of treatment across groups (especially across peak and non-peak influenza months). Like our main 

specification, the DIDm estimator controls for state-specific linear time trends and indicators for the 

presence of state laws regarding vaccination in long-term care facilities and childcare centers. 

Finally, we estimate the version of the DIDm estimator that estimates dynamic treatment effects over 

time, both before and after treatment, as suggested by de Chaisemartin and d’Haultfoeuille (2020). We 

present the findings from this analysis below in Figure S4.  

  

https://scholar.google.com/citations?user=Q659MuAAAAAJ&hl=en&oi=sra
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Figure S4: Estimated Effects of State Laws on Pneumonia & Influenza Mortality Rates by Year 

Relative to Law Implementation, de Chaisemartin and d’Haultfoeuille (2020) DIDm Estimator 

 
Notes: Reported estimates represent the differential change relative to the year prior to law adoption (t=-

1) in the P&I mortality rate per 100,000 population, in adopting versus non-adopting states. Like our main 

specification, the DIDm estimator controls for state-specific linear time trends and indicators for the 

presence of state laws regarding vaccination in long-term care facilities and childcare centers. The seven-

year pre-period (t=-7 to t=-1) and four year post-period (t=0 to t=3) were chosen because these were the 

maximum number of years of pre- and post-treatment data that were available for all states implementing 

laws. Bars represent 95% confidence intervals. 
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4.3 Trend Difference Specification 

To quantitatively evaluate the extent to which we can rule out important differences in trends between 

treatment and control states, we estimate the following trend difference specification:10 

𝑌𝑠𝑡 = 𝛾0 + θ𝐸𝑣𝑒𝑟𝐴𝑑𝑜𝑝𝑡𝑠 × 𝑡 + ∑ 𝛾𝑗

4

𝑗=0

𝐿𝑎𝑤𝑠𝑦,𝑗 + 𝛿𝑠 + 𝛿𝑡 +  𝜀𝑠𝑡 

 

As in our main models, 𝑌𝑠𝑡 is the natural log of the P&I mortality rate per 100,000 population in state s 

and year-month t; 𝛿𝑠 are state fixed effects; and 𝛿𝑡 are year-month fixed effects.  The coefficients on 

𝐿𝑎wsy,j are the estimates of the treatment effect. The 𝐿𝑎wsy,j variables represent a set of indicators for 

time relative to policy adoption. Note that in this model we only estimate post-treatment effects (i.e., 𝑗 =

0, 𝑗 = 1, … , 𝑗 ≥ 4), as this allows us to estimate our trend difference parameter based on the pre-treatment 

differences. 𝐸𝑣𝑒𝑟𝐴𝑑𝑜𝑝𝑡𝑠 is an indicator variable equal to 1 if a state ever adopts a hospital worker 

vaccination law and is 0 otherwise, thus θ represents the difference in slope between ever adopting and 

never adopting states during the period prior to adoption.   
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4.4 Heterogeneity Analyses (Table 1) 

The version of the two-way fixed effects model that flexibly allows for differential effects of the laws for 

each year following law adoption is described by the following equation: 

𝑌𝑠𝑡 = 𝛾0 + ∑ 𝛾𝑗

4

𝑗=0

𝐿𝑎𝑤𝑠𝑦,𝑗 + 𝛽𝑋𝑠𝑡 + 𝛿𝑠 + 𝛿𝑡 +  (𝛿𝑠 × 𝑡) +   𝜀𝑠𝑡 

 

In this model, the coefficients on 𝐿𝑎wsy,j are the coefficients of interest. The 𝐿𝑎wsy,j variables represent a 

set of indicators for time relative to policy adoption. For example, if 𝐿𝑎𝑤𝑠𝑦,𝑗=2 equals one, this implies 

that a law was implemented two years prior to influenza-year 𝑦 in state 𝑠. The years prior to law adoption 

are omitted as the reference group, so all estimates are measured as relative to the years prior to adoption 

of the laws. Note that because of the staggered timing of adoption of these laws across states, relative 

event time (i.e., years relative to law adoption) is identified separately from the common effects across all 

states in a given calendar month-year (captured by 𝛿𝑡).  For example, in this model, 1 year post adoption 

occurs in 2003 for Maine, 2006 for New Hampshire, 2008 for California and Tennessee, etc. Thus, we 

can estimate effects of the law, on average, for each year post-adoption, independently of secular trends 

over calendar time. 

 

There are at least 4 years of post-policy data (i.e., 𝑗 = 0 through 𝑗 = 3) for all states adopting laws. The 𝛾𝑗 

coefficient estimates are identified off of the same number of states for all coefficients 𝛾𝑗=0 through 𝛾𝑗=3, 

and as such these are the estimates we report. The variable at the extreme (i.e., 𝐿𝑎𝑤𝑠𝑦,𝑗=4) is defined 

slightly differently, and represents 4 or more years post law adoption (and it is identified off of a smaller 

set of states compared to the other estimates).  

 

To test for potential differences in the effect of the implementation of hospital worker influenza 

vaccination laws on log P&I mortality across peak versus non-peak influenza season we augment our 

baseline two-way fixed effects model as follows: 

 

𝑌𝑠𝑡 = 𝛽0 + 𝛽1𝐿𝑎𝑤𝑠𝑦 + 𝛽2(𝐿𝑎𝑤𝑠𝑦 × 𝑆𝑒𝑎𝑠𝑜𝑛𝑡) +  𝛽3𝑋𝑠𝑡 + 𝛿𝑠,𝑠𝑒𝑎𝑠𝑜𝑛 + 𝛿𝑡 + (𝛿𝑠,𝑠𝑒𝑎𝑠𝑜𝑛 × 𝑡 ) + 𝜀𝑠𝑡 

 

 

In this specification, 𝑆𝑒𝑎𝑠𝑜𝑛𝑡 is an indicator variable that is equal to 1 if a given state-month-year 

observation is during peak influenza season (defined as December through March), and is zero otherwise; 

all other variables are as defined in our baseline model. We used this definition for peak influenza months 

rather than a definition based on ex-post observed prevalence to ensure that the sample was not selected 

based on a variable that could have been affected by the treatment.  Relative to the baseline model we 

have additionally included in this specification the following interaction term: (𝐿𝑎𝑤𝑠𝑦 × 𝑆𝑒𝑎𝑠𝑜𝑛𝑡), such 

that 𝛽2 captures the differential effect the state laws have on mortality during peak influenza season, 

relative to the effect on mortality during non-peak seasons (captured by 𝛽1). Relative to the baseline 

model, we have also allowed controls to vary across peak and non-peak seasons. Specifically, 𝛿𝑠,𝑠𝑒𝑎𝑠𝑜𝑛 

are state-by-season fixed effects (in place of state fixed effects), the inclusion of which controls for all 

factors specific to a state and season (e.g., California during peak season) that do not vary over years. 
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(𝛿𝑠,𝑠𝑒𝑎𝑠𝑜𝑛 × 𝑡 ) are state-by-season linear time trends (in place of state linear time trends), which allows 

for P&I mortality in each state to follow a different linear trend during peak versus non-peak influenza 

season. We note that the 𝑆𝑒𝑎𝑠𝑜𝑛𝑡 indicator variable does not separately enter into the regression 

specification, as it would be colinear with the included month-year fixed effects.  In this specification, the 

effect of the law on P&I mortality during non-peak influenza season is given by 𝛽1; the effect on P&I 

mortality during peak influenza season is given by 𝛽1 +  𝛽2.  

 

We next test for potential differences in the effect of the implementation of hospital worker influenza 

vaccination laws on log P&I mortality across non-elderly (18-64 year olds) versus elderly (65+ year olds) 

using the following similarly augmented regression model: 

 

𝑌𝑎𝑠𝑡 = 𝛽0 + 𝛽1𝐿𝑎𝑤𝑠𝑦 + 𝛽2(𝐿𝑎𝑤𝑠𝑦 × 𝐸𝑙𝑑𝑒𝑟𝑙𝑦𝑎) +   𝛽3𝑋𝑠𝑡 +  𝛿𝑠,𝑎 + 𝛿𝑡,𝑎 +  (𝛿𝑠,𝑎 × 𝑡) +  𝜀𝑎𝑠𝑡 

 

In this specification, in order to compare the effects of the law across different age groups, we define an 

age-group specific P&I mortality rate. Specifically, our outcome variable 𝑌𝑎𝑠𝑡 is the P&I mortality rate for 

age group a (either non-elderly or elderly) in state s and year-month t. In this model, 𝐸𝑙𝑑𝑒𝑟𝑙𝑦𝑎 is an 

indicator variable that is equal to 1 if a given P&I mortality rate observation is for the elderly age group, 

and is zero otherwise; all other variables are as defined in our baseline model. Relative to the baseline 

model we have additionally included in this specification the following interaction term: 

(𝐿𝑎𝑤𝑠𝑦 × 𝐸𝑙𝑑𝑒𝑟𝑙𝑦𝑎) such that 𝛽2 captures the differential effect the state laws have on mortality among 

the elderly, relative to the effect for the non-elderly (captured by 𝛽1). Relative to the baseline model, we 

have also allowed controls to vary across age groups. Specifically, 𝛿𝑠,𝑎 are state-by-age fixed effects (in 

place of state fixed effects), the inclusion of which controls for all factors specific to a state and age group 

(e.g., age 65+ population in California) that do not vary over time. 𝛿𝑡,𝑎 are time-by-age group fixed 

effects (in place of time fixed effects), the inclusion of which controls for all factors specific to a time 

period and age group (e.g., age 65+ population during January 2012) that do not vary across states. 

(𝛿𝑠,𝑎 × 𝑡 ) are state-by-age group linear time trends (in place of state linear time trends), which allows for 

P&I mortality in each state and age group to follow a different linear trend. We note that the 𝐸𝑙𝑑𝑒𝑟𝑙𝑦𝑎 

indicator variable does not separately enter into the regression specification, as it would be colinear with 

the included state-by-age fixed effects.  In this specification, the effect of the law on P&I mortality for the 

non-elderly is given by 𝛽1; the effect on P&I mortality for the elderly is given by 𝛽1 +  𝛽2.  
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Table S2: Change in Log Monthly Pneumonia and Influenza Deaths Associated with State Laws 

Regarding Hospital Worker Influenza Vaccination, with Bootstrapped P-Values 

Outcome: Log P&I Mortality Rate (Monthly Deaths 

per 100,000 Population)* 

Difference in Log P&I 

Mortality per 100,000 

Population 

  (95% CI) 

P-

value 

 

 

 

Bootstrap 

P-value§ 

 

Average treatment effect on the treated across all 

months, ages, and states † -0.025 (-0.047 to -0.004) 0.022 

 

 

0.028 

    

Heterogeneity across Years since Law     

     Effect for first year of law (t=0) -0.013 (-0.044 to 0.018) 0.365 0.410 

     Effect for first year after law (t=1) -0.027 (-0.054 to 0.000) 0.041 0.054 

     Effect for second year after law (t=2) -0.032 (-0.062 to -0.002) 0.029 0.034 

     Effect for third year after law (t=3) -0.055 (-0.092 to -0.018) 0.002 0.003 

 

Heterogeneity across Peak vs. Non-Peak Months †   

 

     Effect for Non-Peak Months -0.019 (-0.043 to 0.005) 0.099 0.121 

     Effect for Peak Months -0.038 (-0.063 to -0.014) 0.002 0.002 

     Differential Effect for Peak vs. Non-Peak ‡ -0.019 (-0.036 to -0.003) 0.017 0.022 

 

Heterogeneity across Elderly vs. Non-Elderly   

 

     Effect for Age <65 -0.006 (-0.035 to 0.024) 0.655 0.696 

     Effect for Age 65+ -0.026 (-0.047 to -0.006) 0.013 0.013 

     Differential Effect for Age 65+ vs. Age <65 -0.020 (-0.047 to 0.007) 0.110 0.141 

* P&I Mortality Rate denotes the Pneumonia & Influenza mortality rate, calculated as the number of 

deaths per month with any pneumonia/influenza diagnosis per 100,000 population. Age-specific mortality 

rates were calculated using age-specific populations. There were 9,672 state-year-month observations in 

the sample. 

† Estimates test for differences in the effects of the laws across groups. For example “Peak vs. Non-Peak 

Months” tests for the difference between the effect of the laws during peak months and the effect of the 

laws during non-peak months (i.e., Peak minus Non-Peak).  

‡ Peak Months refer to December-March, and Non-Peak months refer to April-November. 

§ Bootstrapping was achieved through a non-parametric bootstrapping procedure with 200 iterations. 

Resampling was done at the state level and was stratified within the two intervention groups (state law or 

no state law). 
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Appendix Section 5. Falsification Analyses 

It is possible that there are unobservable state time-varying confounders, such as other 

vaccination policies or attitudes regarding vaccination, that are driving the observed changes in P&I 

mortality. To examine this possibility, we estimate two-way fixed effects models analogous to our 

baseline specification using data from NIS-Child, NIS-Teen, and BRFSS, to examine the association of 

the hospital worker influenza vaccination laws with changes in infant, adolescent, and adult influenza and 

pneumococcal vaccinations, respectively. Details on these data sources are discussed in Appendix Section 

1, above.  Given that hospital workers make up approximately 2 percent of the adult population, we 

would not expect to detect changes in the overall rate of vaccination coverage among adults if the laws 

only influenced uptake among hospital workers and were not correlated with other unobservable changes 

that broadly impact adult vaccination. Similarly, hospital worker vaccination laws should have no effect 

on infant and adolescent vaccination rates.  

Specifically, for analyses of infant and adolescent vaccination, we use individual level vaccination 

measures from NIS-Child and NIS-Teen, respectively, and estimate the following multivariate logistic 

regression model: 

 

𝑌𝑖𝑠𝑦 = 𝛽0 + 𝛽1𝐿𝑎𝑤𝑠𝑦 +  𝛽2𝑋𝑠𝑦 +  𝛿𝑠 + 𝛿𝑦 + 𝛿𝑠 × y + 𝜀𝑖𝑠𝑦 

 

where 𝑌𝑖𝑠𝑦 is an indicator variable that is equal to 1 if child i, residing in state s, received a given vaccine 

(either influenza or pneumococcal for infants, or influenza, for adolescents) during influenza-year y. As in 

our main specification, 𝛽1 is the coefficient of interest, where 𝐿𝑎𝑤𝑠𝑦 is a binary variable indicating the 

presence of any state law regarding hospital worker influenza vaccination in state 𝑠 and influenza-year 𝑦. 

𝑋𝑠𝑡 represents a vector of indicators for the presence of state laws regarding influenza vaccination for 

workers in long term care facilities and childcare facilities.  

 

As in our main specification, 𝛿𝑠 are state fixed effects, which control for observable and unobservable 

time-invariant differences in vaccination across all states. 𝛿𝑦 are influenza-year fixed effects, which allow 

for differences in vaccination uptake across influenza years that are common to all states. Finally, 𝛿𝑠 × y 

are state-specific linear time trends at the annual level, which allow for time-varying differences across 

states to evolve linearly over time. For these specifications, time fixed effects and trends are at the year 

level (as opposed to year-month level) because this is the level of granularity available in the data. We 

separately estimate models for infants and for adolescents, as the determinants of vaccination for those 

groups are likely different. Regressions are weighted using the relevant sample weights provided by NIS-

Child and NIS-Teen and standard errors are clustered at the state level. For these regressions, all samples 

are limited to influenza-years with a well-matched vaccine (similar to the main analysis), though the 

results are not sensitive to this restriction. The results from these analyses are presented in Appendix 

Table S3 below.   

 

For analyses of adult vaccination, we construct measures of adult vaccine coverage at the age-state-

influenza-year level from BRFSS data and estimate the following multivariate linear regression model: 

 

𝑌𝑠𝑦 = 𝛽0 + 𝛽1𝐿𝑎𝑤𝑠𝑦 +  𝛽2𝑋𝑠𝑦 +  𝛿𝑠 + 𝛿𝑦 + 𝛿𝑠 × y + 𝜀𝑠𝑦 
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where 𝑌𝑠𝑦 is the natural log of the vaccination coverage rate for a given vaccine (influenza or 

pneumococcal) and age group in state s during influenza-year y. Due to the fact that the hospital worker 

vaccination laws are associated with reductions in mortality only among the elderly, in addition to 

considering the overall adult vaccination coverage rate, we also separately consider vaccination coverage 

rates for non-elderly (18-64 years old) and elderly (65+ years old) adults. All other variables in the 

specification are as defined previously. Regressions are weighted by mean state population, and standard 

errors are clustered at the state level. The sample is limited to influenza-years with a well-matched 

vaccine (similar to the main analysis), though the results are not sensitive to this restriction. The results 

from these analyses are presented in Appendix Table S4 below.   

 

In Table S6 we test whether the laws had an impact for any non-P&I cause of death. These estimates were 

calculated using a Poisson model: the outcome was the total number of deaths for 38 cause of death 

categories and the sample was limited to peak influenza months only. The Poisson model was used due to 

the fact that there were many state-year-month observations with zero deaths for certain causes. Similar to 

the main specification, the following equation was used to calculate the monthly change in the mortality 

rate in levels: (exp(𝑀𝑜𝑛𝑡ℎ𝑙𝑦 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐿𝑜𝑔𝑠) − 1) × 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑀𝑒𝑎𝑛. The cause of death categories 

follow the 39-cause recode utilized in the National Vital Statistics System mortality files, and estimates 

for deaths due to one category (Syphilis) were omitted because the model failed to converge. The sample 

was limited to influenza-years in which the 39-cause recode was available and deaths were categorized 

using ICD10 codes (1999/00-2016/17). The P&I category represents deaths with any diagnosis 

(underlying diagnosis or up to 20 secondary diagnoses) for P&I. Other categories represent deaths with an 

underlying cause of death for the other 37 categories, and exclude deaths with a secondary cause of death 

for P&I. P-values were corrected for multiple hypothesis testing using the Bonferroni and Simes 

procedures.11,12 The 95% confidence intervals account for multiple hypothesis testing and were calculated 

the formula described in Altman and Bland (2011, BMJ).13 The confidence intervals utilized the Simes 

procedure because valid confidence intervals cannot be calculated when the p-value equals one (which 

frequently occurs with the Bonferroni correction) 
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Table S3: Effects of State Laws Regarding Hospital Worker Influenza Vaccination on Influenza 

Vaccination Coverage Rates Among Adolescents and Infants 

Outcome: 

Baseline Mean 

in Adopting 

States 

Change in Child’s 

Probability of Vaccination 

(95% CI) P-value 

NIS-Teen     
Influenza Vaccination, age 13-17 years 0.193 -0.011 (-0.029 to 0.007) 0.240 

NIS-Child    

Influenza Vaccination, age 19-23 months 0.470 -0.011 (-0.053 to 0.031) 0.610 

      Pneumococcal Vaccination, age 19-35 months 0.681 -0.005 (-0.009 to 0.019) 0.449 

    

Notes: Each observation in these analyses represents an individual child, and the outcome variables are 

indicator variables equal to 1 if the child had received the specified vaccine by the time of survey and are 

equal to zero otherwise. The NIS-Teen regression includes 162,601 individual observations from the 2008-

2017 sample waves; The NIS-Child regression includes 53,964 individual observations aged 19-23 months, 

and 185,653 individual observations aged 19-35 months from the 2003-2017 sample waves.  More details 

on the data and construction of the outcome variables is given in Appendix Section 1. All samples are 

limited to influenza-years with a well-matched vaccine (as in the main analysis), though the results are not 

sensitive to this restriction. Regressions include state fixed effects, influenza-year fixed effects, state linear 

time trends, and the following time-varying covariates: long-term care vaccination laws, and childcare 

vaccination laws. Estimates were obtained via logistic regression and marginal effects assumed the mean 

values for all covariates. Survey weights were used to weight the regressions, and standard errors were 

clustered at the state level to allow for within-state dependence over time. 

 

 

 

Table S4: Effects of State Laws Regarding Hospital Worker Influenza Vaccination on Influenza and 

Pneumococcal Vaccination Coverage Rates 

Outcome: 

Baseline Mean in 

Adopting States 

Change in State Adult 

Vaccination Rate (95% CI) P-value 

Influenza Vaccination Rate     
All Adults 0.328 0.000 (-0.005 to 0.006) 0.909 

Age 18-64 0.259 0.000 (-0.004 to 0.005) 0.840 

Age 65+ 0.689 -0.009 (-0.033 to 0.016) 0.472 

Pneumococcal Vaccination Rate   
 

All Adults 0.219 -0.001 (-0.004 to 0.001) 0.307 

Age 18-64 0.14 -0.000 (-0.001 to 0.001) 0.700 

Age 65+ 0.604 -0.010 (-0.025 to -0.005) 0.200 

Notes: Each regression includes 765 state-by-year observations. The sample is limited to influenza-years 

with a well-matched vaccine (as in the main analysis), though the results are not sensitive to this 

restriction. Regressions include state fixed effects, influenza-year fixed effects, and the following time-

varying covariates: long-term care vaccination laws, and childcare vaccination laws. Observations are at 

the state-year level, and estimates are obtained via linear regression using the log vaccination rate as the 

outcome. Similar to the main estimates in Table 1, changes in levels (i.e., the probability of vaccination) 

were calculated using following equation: (exp(𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐿𝑜𝑔𝑠) − 1) × 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑀𝑒𝑎𝑛. Regressions 

were weighted by mean state population and standard errors were clustered at the state level to allow for 

within-state dependence over time. 
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Appendix Section 6. Sensitivity Analyses 

 

Table 2 shows results from a series of sensitivity analyses based on the all-months all-age model of Table 

1. 

 

The first set of estimates reported vary only controls for potential time-varying confounders in our 

regression. Our main estimates include state and year-month fixed effects as well as covariates and state-

specific linear time trends, corresponding to the most conservative estimate of the association with 

mortality. In Panel A of Table 2, we show how the estimates change when covariates and state trends are 

omitted.  

 

Next, in Panel B of Table 2 we show the estimate for the full set of sample years, including the five 

influenza-years with match rates below 50% which were dropped from our main specification. This 

results in a smaller estimated effect which is not statistically significant at the 5% level (p=0.076).  We 

also show estimates dropping H1NI influenza-years.  

 

In Panel C of Table 2 we show that our main estimate is similar when estimated with a Poisson regression 

model designed to deal with count data (implemented via Stata command xtpoisson). For this model our 

outcome variable is a count of the number of P&I deaths in a given state-month, as opposed to the natural 

log of the mortality rate. For comparability with the other coefficient estimates derived from log-linear 

models (which were transformed to be interpreted as the difference in levels between states with influenza 

laws and the counterfactual), we computed the implied difference in P&I mortality rates from the Poisson 

regression. Specifically, we used the Poisson regressions to construct the predicted (i.e., expected) 

number of deaths (and then mortality rates) for treated states after the laws were in place, both using the 

actual treatment status and a counterfactual in which the laws were never implemented. We then 

calculated the population-weighted average difference in predicted mortality rates between treated state-

month observations and the counterfactual.  

 

Finally, in Panel D of Table 2 we show that our results are robust to estimating the DIDm estimator 

proposed by de Chaisemartin and d’Haultfoeuille (2020). Because this estimator requires the use of 

annual data, we also provide in Panel D an estimate from our main two-way fixed effect model that 

similarly uses annual data. As discussed in Appendix Section 4.2 above, the DIDm estimator is not 

subject to the concern of negative weights, as with the standard two-way fixed effect estimate of the 

average treatment effect.7  
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Appendix Section 7: Calculation of the E-value 

 

As a test for the sensitivity of our results to unmeasured confounding, we calculate the E-value 

for several specifications of our two-way fixed effects model.14 These results are presented in Table S5 

below. Specification (1) is based on our main specification in the paper, which uses data at the monthly 

level. This specification also uses the raw standard deviation of the outcome variable in the E-Value 

formula. Because the E-value is intended to assess the potential effect of unmeasured confounders, 

Haneuse, VanderWeele and Arterburn (JAMA, 2019) point out that it is appropriate to adjust for 

measured confounders in calculating the standard deviation of the outcome.15  

In specification (2), the raw standard deviation is replaced by “residualized” standard deviation, 

which is the standard deviation of the residuals from a regression of the outcome on all control variables 

(state fixed effects, time fixed effects, state-specific linear time trends, and indicators for other laws). 

Specifications (3) and (4) use annual data in place of monthly data. There is much greater variation in the 

outcome in monthly compared to annual data. Thus, using annual data substantially limits the scope for 

unmeasured confounding to bias the estimates. Because the treatment (state laws) is at the annual level, 

the main estimates do not rely on the use of monthly data and the main estimates are very similar in 

specifications that use monthly versus annual data. The reason monthly data was used in the main 

specification was only to allow the flexibility to test for differences across different months (i.e., peak 

versus non-peak months).  

We calculate an E-value of 3.419 using the estimated residual standard deviation from our two-

way fixed effects linear regression on annual data. This implies that for an unobserved time-varying 

confounding variable to be fully responsible for the association we estimate between state laws and P&I 

mortality, that unobserved variable would need have a 3.4-fold association with both P&I mortality, after 

adjusting for state and year and all control variables, and with state law passage.   
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Table S5: Test for Sensitivity of Findings to Unmeasured Confounding 

Specification Regression 

Coefficient 

Regression 

Coefficient 

SE 

SD(Outcome) E-Value and its 95% 

Confidence Interval 

(1) Monthly Data, 

Raw SD 

-0.0253 0.0107 0.2817 1.389 (1.327 to 1.448) 

(2) Monthly Data, 

Residualized SD 

-0.0253 0.0107 0.1878 1.514 (1.457 to 1.570) 

(3) Annual Data, 

Raw SD 

-0.0295 0.0113 0.2070 1.536 (1.484 to 1.587) 

(4) Annual Data, 

Residualized SD 

-0.0295 0.0113 0.0387 3.419 (3.348 to 3.490) 

 

Notes: Specification (1) is based on our main specification in the paper, which uses data at the monthly 

level. This specification also uses the raw standard deviation of the outcome variable in the E-Value 

formula. In specification (2), the raw standard deviation is replaced by “residualized” standard deviation, 

which is the standard deviation of the residuals from a regression of the outcome on all control variables 

(state fixed effects, time fixed effects, state-specific linear time trends, and indicators for other laws). 

Specifications (3) and (4) use annual data in place of monthly data.   
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Appendix Section 8. Details on Construction of Figure 1A  

 
National level influenza vaccination coverage rates by occupation and influenza-year are constructed 

from the IPUMS National Health Interview Survey (NHIS) database, 1997-2017 survey waves.16 We 

focus on vaccination coverage rates among employed individuals, and thus restrict our sample to the set 

of individuals who report their employment status in the past 1 to 2 weeks as “working” or “with job, but 

not at work.” Individuals are classified into one of the following three mutually exclusive industry groups 

based on the provided 1995 industry of employment code: hospital sector (1995 industry code: 1910), 

non-hospital health services (1995 industry code: 1920), or non-health services (all others).  We focus on 

the vaccination rates of hospital employees in this figure because all fourteen laws applied to them. Since 

six of the fourteen laws also applied to healthcare workers outside of hospitals, however, for the 

comparison group of non-affected workers we exclude all healthcare workers. 

 

Our measure of influenza vaccination is derived from the self-reported variable that asks if the individual 

received an influenza vaccine in the past 12 months. Given the 12 month look back period of this survey 

question and the fact that influenza vaccines are most commonly administered during the months of 

September to December,1 we assign individuals surveyed during quarters 1-3 of year t to the influenza-

year that began in year t-1, and assign individuals surveyed during quarter 4 of year t to the influenza-year 

that began in year t. Influenza vaccination coverage rates for each influenza-year are constructed as the 

share of surveyed individuals in a given industry group that reported receiving the influenza vaccine 

during the relevant influenza-year, weighted by the provided NHIS sample adult person weights. As state 

identifiers are not provided in the publicly available NHIS, our vaccination coverage rates for each 

occupation are at the national level. 

 

The variable capturing exposure of hospital workers to a hospital influenza vaccination law in a given 

influenza-year is constructed using data from the IPUMS Current Population Survey (CPS) database, 

1997-2017 survey waves.17 The CPS contains information on both occupation and state of residence (but 

not influenza vaccination), thus for each year we can construct a measure of the share of all hospital 

workers in the nation that are exposed to a state vaccination law. In order to construct this variable we 

first create weighted counts of individuals at the state and year level who report that they were employed 

last year and report their industry of employment as hospitals (1990 industry code: 831). For each year we 

then calculate the fraction (number of treated hospital workers)/(total number hospital workers), in which 

individuals surveyed in year t are considered treated by the law if their state had adopted a law that was in 

effect for the influenza-year starting in year t.  
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Figure S5: Vaccine Match Rates by Influenza Season 

 

Note: The vaccine match rate is the percentage of virus strains characterized by the CDC that are included 

in each the season’s vaccine. Seasons with match rates below 50% are dropped from the sample in the 

main specification and are highlighted here in red. Note that the match rate is not well defined for the 

2008/09 influenza season due to the H1N1 pandemic. Specifically, the 2008/09 vaccine was well-matched 

to the seasonal epidemic for that season (illustrated on the plot), but the H1N1 pandemic arrived in April 

and a subsequent monovalent vaccine was developed (not illustrated on the plot). The pandemic strain 

was included in the 2009/10 seasonal influenza vaccine, and the vaccine was well-matched to the strains 

that circulated during the seasonal epidemic (illustrated on the plot).  
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Figure S6: Mean P&I Mortality Rate per 100,000 Population Across States, Grouped by Year of 

Implementation of Hospital Worker Influenza Vaccination Law 

 
Notes: Each line represents the mean monthly P&I mortality rate per 100,000 population for the group of 

states that adopted a hospital worker influenza vaccination law during the period denoted in the figure 

legend. 
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Table S6: Change in Monthly Deaths Associated with State Laws Regarding Hospital Worker 

Influenza Vaccination by Cause of Death 

Outcome: Number of Deaths by 

Cause 

Change in monthly P&I deaths 

per 100,000 population  

(95% CI) 

Bonferroni 

Corrected 

P-Value 

Simes 

Corrected 

P-Value 

Pneumonia & Influenza -.250 (-.465 to -.035) .023 .023 

Cerebrovascular Disease -.134 (-.278 to .010) .134 .067 

Peptic Ulcer -.011 (-.025 to .003) .383 .117 

Accidents – Motor Vehicle -.094 (-.211 to .023) .467 .117 

Chronic Lower Respiratory Disease -.079 (-.199 to .041 1 .198 

Cancer – Cervix/Ovary .016 (-.008 to .039) 1 .198 

Diabetes -.068 (-.175 to .039) 1 .216 

Ischemic Heart Disease -.377 (-.972 to .217) 1 .216 

Heart Disease - Other -.104 (-.267 to .060) 1 .216 

Hypertensive Heart Disease -.054 (-.139 to .031) 1 .216 

Cancer – Urinary Tract -.020 (-.057 to .016) 1 .277 

Conditions Pregnancy/Childbirth .003 (-.003 to .010) 1 .277 

Alzheimer’s  .040 (-.066 to .147) 1 .47 

Tuberculosis -.002 (-.009 to .004) 1 .47 

Chronic Liver Disease and Cirrhosis -.018 (-.070 to .033) 1 .493 

Essential Hypertension .009 (-.030 to .049) 1 .655 

Other External Causes -.025 (-.159 to .110) 1 .732 

Accidents - Other .051 (-.227 to .329) 1 .732 

HIV -.015 (-.100 to .069) 1 .732 

Cancer – Trachea/Bronchus/Lung -.035 (-.273 to .204) 1 .789 

Other Diseases -.039 (-.356 to .277) 1 .819 

Cancer - Leukemia .005 (-.036 to .047) 1 .819 

Cancer - Pancreas -.008 (-.075 to .059) 1 .819 

Congenital Disease -.003 (-.030 to .024) 1 .819 

Assault (Homicide) -.017 (-.158 to .123) 1 .819 

Sudden Infant Death Syndrome .004 (-.026 to .033) 1 .819 

Cancer - Prostate .005 (-.032 to .042) 1 .819 

Nephritis, etc. -.010 (-.093 to .073) 1 .819 

Conditions in the Perinatal Period -.006 (-.056 to .043) 1 .819 

Cancer - Stomach -.006 (-.055 to .043) 1 .819 

Cancer - Lymphoma .004 (-.027 to .035) 1 .819 

Cancer - Colon -.006 (-.108 to .095) 1 .908 

Unclassified Diseases .027 (-.756 to .810) 1 .95 

Circulatory System - Other .001 (-.037 to .039) 1 .961 

Intentional Self-Harm (Suicide) -.002 (-.079 to .075) 1 .961 

Cancer - Other .004 (-.142 to .150) 1 .961 

Atherosclerosis .001 (-.035 to .037) 1 .961 

Cancer - Breast -.001 (-.034 to .032) 1 .961 
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Note: These estimates were calculated using a Poisson model and the outcome was the total number of 

deaths for 38 cause of death categories and the sample was limited to peak influenza months only. The 

Poisson model was used due to the fact that there were many state-year-month observations with zero 

deaths for certain causes. Similar to the main specification, the following equation was used to calculate 

the monthly change in the mortality rate in levels: (exp(𝑀𝑜𝑛𝑡ℎ𝑙𝑦 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐿𝑜𝑔𝑠) − 1) ×

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑀𝑒𝑎𝑛. The cause of death categories follow the 39-cause recode utilized in the National Vital 

Statistics System mortality files, and estimates for deaths due to one category (Syphilis) were omitted 

because the model failed to converge. The sample was limited to influenza-years in which the 39-cause 

recode was available and deaths were categorized using ICD10 codes (1999/00-2016/17). The P&I 

category represents deaths with any diagnosis (underlying diagnosis or up to 20 secondary diagnoses) for 

P&I. Other categories represent deaths with an underlying cause of death for the other 37 categories, and 

exclude deaths with a secondary cause of death for P&I. P-values were corrected for multiple hypothesis 

testing using the Bonferroni and Simes procedures.11,12 The 95% confidence intervals account for multiple 

hypothesis testing and were calculated the formula described in Altman and Bland (2011, BMJ).13The 

confidence intervals utilized the Simes procedure because valid confidence intervals cannot be calculated 

when the p-value equals one (which frequently occurs with the Bonferroni correction).  
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